Towards policy-free Microkernels

WAMOS 2015
Second Wiesbaden Workshop on
Advanced Microkernel Operating Systems

a Hochschule RheinMain

University of Applied Sciences
Wiesbaden Risselsheim

2

OlgaDedi 06.08.2015

Outline

Introduction

Motivation

Difference between policy and mechanism

CPU Inheritance Scheduling v
= General approach //‘ / $ o
Threads Kl /
Requesting CPU Time Jo
Time and Accounting 14953;
Scheduling Overhead f10. Juni 2001)

Conclusion

[m]

[m]

[m]

[m]

e — |

OlgaDedi 06.08.2015

Introduction

- Kernel is mandatory and common to all parts of

the system
« Microkernel minimizes this part
 Serious attention in the late 90s
- Jochen Liedtke “On Microkernel Construction”

» Microkernels are following the design pattern of

“separation of policy and mechanism”

S |

OlgaDedi 06.08.2015

Motivation

- Separation of policy and mechanism is not completely reached

« Scheduler implements a policy and is part of the kernel

- This makes scheduling more efficient

- But contradicts the microkernel idea and makes the system inflexible
- Today the need for user-level scheduling rises

- = A slightly loss in performance seams more acceptable

———— (|

OlgaDedi 06.08.2015

Difference: policy and mechanism

Mechanisms are needed for the system to function

Mechanisms are used to implement a policy

Policies implement specific strategies

Mechanisms describe what to do.

« Policies describe how to do it.

» Dispatcher implements a mechanism; Scheduler implements a policy

CPU Inheritance Scheduling

Framework for user-level scheduling.

Developed by Bryan Ford and Sai Susarla.

System independent framework.

A dispatcher must be provided by the underlying System.

CPU Inheritance Scheduling

- Dispatcher performs context switches.

- Dispatcher implements thread blocking, unblocking and CPU

donation.

- Dispatcher has no notion of thread priority.

General approach

- Threads are acting as schedulers for
other threads by donating CPU time

- By stacking threads it is possible to
build a logical scheduling hierarchy

- Root scheduler with fixed-priority
— can be used for scheduling real-
time threads

OlgaDedi 06.08.2015

Root Scheduler

(real-time fixed-priority " 5 i
RR/FIFO scheduler) Real-time threads

.r_—————i"o

fr——

Timesharing class
(lottery scheduler)

Mike
\ESD scheduler)

@
\

Web browser
o O

\Jaf applets
O
@)

Jay

(lottery scheduler) Jay’s threads

o— V5

Background class O
(gang scheduler)

Background jobs

General approach

- Works naturally for multi-core
architectures

- Each CPU core is assigned to one root
scheduler

- Fixes-priority scheduling for multi-core
architecture possible

» Mutual ready queue from which both
schedulers get threads assigned

OlgaDedi 06.08.2015

Scheduler

Scheduler
threads

Ready
queues

CPUO

CPU 1

o

“scheduling
7 requests’

CPU by

donation

O

_ Ready
- - threads

O

Running

thread
0%

o O
Waiting thread App 2

R

OlgaDedi 06.08.2015

Threads

Defined as virtual CPUs, purpose to execute programs.

Thread is running, if real CPU is assigned to it.

Running threads can be preempted.

Threads are managed by schedulers.

]

OlgaDedi 06.08.2015

Threads

Traditionally schduled in OS kernels, here: by other threads.

Threads with real CPU assigned can donate CPU time.

Root scheduler determines the base scheduling policy.

Priority inversion happens automatically through CPU donation.

=]

OlgaDedi 06.08.2015

Requesting CPU Time

 Only the root scheduler has real CPU assigned to it.

 Other threads rely in CPU time donation.

- Each thread has a scheduler associated with them.

- When a thread awakens the responsible scheduler is notified.

 Scheduler can decide to give CPU time to the awoken thread or

resume the preempted thread.

Requesting CPU Time

« If the scheduler has no CPU time left the next scheduler in the

hierarchy will be woken.

- If the process reaches an already woken thread which is preempted

it indicates that this event is irrelevant .

|

OlgaDedi 06.08.2015

Time and Accounting

- Usually a notion of time and some kind of accounting is needed.

- Generally a periodic timer interrupt is sufficient to implement a

dispatcher.

 Accounting is needed e.g. for billing customers or dynamically

adjust scheduling policies.

- Two well known approaches exist.

S ——— (|

OlgaDedi 06.08.2015

Statistical CPU Accounting

- Scheduler has to wake up every tick.

» Checks running thread and charges the time quantum to this thread.

- Approach is considered very efficient, since a scheduler usually
wakes almost every tick.

- But this approach provides only limited accuracy which is limited by

the timer tick intervals.

'}

OlgaDedi 06.08.2015

Timestamp-based CPU Accounting

» The scheduler checks the timestamp with each context switch.

- It charges the thread for the exact amount of time.

- This approach provides a much higher accuracy.

- It also has a higher cost, because the context switch takes more time.

- Especially on systems on which it is expensive to read the current

time.

e ——— |

OlgaDedi 06.08.2015

Accounting problems and CPU Donation

- To has to wait for a resource by T1 and

donates CPU time to T1i.
- Whom to charge? %_ﬁ .S"
, =Om
- It seems fair to charge T1. / (high-priority)
- But since high priority threads are OF m1
mostly more expensive, the scheduler (low-priority)

has to charge To to avoid outsourcing.

- “with privilege comes responsibility”

5]

OlgaDedi 06.08.2015

Scheduling Overhead

- Overhead caused by the dispatcher

[m]

m]

u]

Cost to compute the next thread depends on the depth of the hierarchy.
Concerns because there is no limitation.

The dispatcher is always the component with the highest priority —
source for unbound priority inversion.

Possible solution for hard real-time systems is to limit the depth to 4-8

levels.

T — |

OlgaDedi 06.08.2015

Scheduling Overhead

- Overhead caused by additional context switches
> Additional context switches between scheduling threads.
= Overhead mostly dependent on system design.

= E.g. context switches on monolithic kernels are much higher then on
microkernel, since context switches in the same address space is cheaper.

= Also a chain of wake up calls can cause additional context switches, if the

schedulers have no CPU time.

]

OlgaDedi 06.08.2015

Conclusion

« CPU Inheritance Scheduling causes some scheduling overhead and

therefore some performance loss.
- But the framework provides the flexibility that modern systems require.
« The loss of performance seems to be acceptable in order to gain more
scheduling flexibility.
- However, the real performance loss has still to be determined in more

practical tests.

