
Towards policy-free Microkernels
WAMOS 2015

Second Wiesbaden Workshop on

Advanced Microkernel Operating Systems

06.08.2015

1

Olga Dedi

Outline
• Introduction

• Motivation

• Difference between policy and mechanism

• CPU Inheritance Scheduling

▫ General approach

▫ Threads

▫ Requesting CPU Time

▫ Time and Accounting

▫ Scheduling Overhead

• Conclusion

06.08.2015 Olga Dedi

2

Jochen Liedtke
(* 26. Mai 1953;
 † 10. Juni 2001)

Introduction
• Kernel is mandatory and common to all parts of

the system

• Microkernel minimizes this part

• Serious attention in the late 90s

• Jochen Liedtke “On Microkernel Construction”

• Microkernels are following the design pattern of

“separation of policy and mechanism”

06.08.2015 Olga Dedi

3

Motivation

• Separation of policy and mechanism is not completely reached

• Scheduler implements a policy and is part of the kernel

• This makes scheduling more efficient

• But contradicts the microkernel idea and makes the system inflexible

• Today the need for user-level scheduling rises

•  A slightly loss in performance seams more acceptable

06.08.2015 Olga Dedi

4

Difference: policy and mechanism
• Mechanisms are needed for the system to function

• Mechanisms are used to implement a policy

• Policies implement specific strategies

• Mechanisms describe what to do.

• Policies describe how to do it.

Dispatcher implements a mechanism; Scheduler implements a policy

06.08.2015 Olga Dedi

5

CPU Inheritance Scheduling

• Framework for user-level scheduling.

• Developed by Bryan Ford and Sai Susarla.

• System independent framework.

• A dispatcher must be provided by the underlying System.

06.08.2015 Olga Dedi

6

CPU Inheritance Scheduling

• Dispatcher performs context switches.

• Dispatcher implements thread blocking, unblocking and CPU

donation.

• Dispatcher has no notion of thread priority.

06.08.2015 Olga Dedi

7

General approach
• Threads are acting as schedulers for

other threads by donating CPU time

• By stacking threads it is possible to
build a logical scheduling hierarchy

• Root scheduler with fixed-priority
 can be used for scheduling real-
time threads

06.08.2015 Olga Dedi

8

General approach
• Works naturally for multi-core

architectures

• Each CPU core is assigned to one root
scheduler

• Fixes-priority scheduling for multi-core
architecture possible

• Mutual ready queue from which both
schedulers get threads assigned

06.08.2015 Olga Dedi

9

Threads

• Defined as virtual CPUs, purpose to execute programs.

• Thread is running, if real CPU is assigned to it.

• Running threads can be preempted.

• Threads are managed by schedulers.

06.08.2015 Olga Dedi

10

Threads

• Traditionally schduled in OS kernels, here: by other threads.

• Threads with real CPU assigned can donate CPU time.

• Root scheduler determines the base scheduling policy.

• Priority inversion happens automatically through CPU donation.

06.08.2015 Olga Dedi

11

Requesting CPU Time

• Only the root scheduler has real CPU assigned to it.

• Other threads rely in CPU time donation.

• Each thread has a scheduler associated with them.

• When a thread awakens the responsible scheduler is notified.

• Scheduler can decide to give CPU time to the awoken thread or

resume the preempted thread.

06.08.2015 Olga Dedi

12

Requesting CPU Time

• If the scheduler has no CPU time left the next scheduler in the

hierarchy will be woken.

• If the process reaches an already woken thread which is preempted

it indicates that this event is irrelevant .

06.08.2015 Olga Dedi

13

Time and Accounting

• Usually a notion of time and some kind of accounting is needed.

• Generally a periodic timer interrupt is sufficient to implement a

dispatcher.

• Accounting is needed e.g. for billing customers or dynamically

adjust scheduling policies.

• Two well known approaches exist.

06.08.2015 Olga Dedi

14

Statistical CPU Accounting

• Scheduler has to wake up every tick.

• Checks running thread and charges the time quantum to this thread.

• Approach is considered very efficient, since a scheduler usually

wakes almost every tick.

• But this approach provides only limited accuracy which is limited by

the timer tick intervals.

06.08.2015 Olga Dedi

15

Timestamp-based CPU Accounting

• The scheduler checks the timestamp with each context switch.

• It charges the thread for the exact amount of time.

• This approach provides a much higher accuracy.

• It also has a higher cost, because the context switch takes more time.

• Especially on systems on which it is expensive to read the current

time.

06.08.2015 Olga Dedi

16

Accounting problems and CPU Donation

• T0 has to wait for a resource by T1 and
donates CPU time to T1.

• Whom to charge?

• It seems fair to charge T1.

• But since high priority threads are
mostly more expensive, the scheduler
has to charge T0 to avoid outsourcing.

•  “with privilege comes responsibility”

06.08.2015 Olga Dedi

17

Scheduling Overhead

• Overhead caused by the dispatcher

▫ Cost to compute the next thread depends on the depth of the hierarchy.

▫ Concerns because there is no limitation.

▫ The dispatcher is always the component with the highest priority 

source for unbound priority inversion.

▫ Possible solution for hard real-time systems is to limit the depth to 4-8

levels.

06.08.2015 Olga Dedi

18

Scheduling Overhead

• Overhead caused by additional context switches

▫ Additional context switches between scheduling threads.

▫ Overhead mostly dependent on system design.

▫ E.g. context switches on monolithic kernels are much higher then on

microkernel, since context switches in the same address space is cheaper.

▫ Also a chain of wake up calls can cause additional context switches, if the

schedulers have no CPU time.

06.08.2015 Olga Dedi

19

Conclusion
• CPU Inheritance Scheduling causes some scheduling overhead and

therefore some performance loss.

• But the framework provides the flexibility that modern systems require.

• The loss of performance seems to be acceptable in order to gain more

scheduling flexibility.

• However, the real performance loss has still to be determined in more

practical tests.

06.08.2015 Olga Dedi

20

