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Introduction

- Kernel is mandatory and common to all parts of

the system
« Microkernel minimizes this part
 Serious attention in the late 90s
- Jochen Liedtke “On Microkernel Construction”

» Microkernels are following the design pattern of

“separation of policy and mechanism”
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Motivation

- Separation of policy and mechanism is not completely reached

« Scheduler implements a policy and is part of the kernel

- This makes scheduling more efficient

- But contradicts the microkernel idea and makes the system inflexible
- Today the need for user-level scheduling rises

- = A slightly loss in performance seams more acceptable
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Difference: policy and mechanism

Mechanisms are needed for the system to function

Mechanisms are used to implement a policy

Policies implement specific strategies

Mechanisms describe what to do.

« Policies describe how to do it.

» Dispatcher implements a mechanism; Scheduler implements a policy



CPU Inheritance Scheduling

Framework for user-level scheduling.

Developed by Bryan Ford and Sai Susarla.

System independent framework.

A dispatcher must be provided by the underlying System.



CPU Inheritance Scheduling

- Dispatcher performs context switches.

- Dispatcher implements thread blocking, unblocking and CPU

donation.

- Dispatcher has no notion of thread priority.



General approach

- Threads are acting as schedulers for
other threads by donating CPU time

- By stacking threads it is possible to
build a logical scheduling hierarchy

- Root scheduler with fixed-priority
— can be used for scheduling real-
time threads
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General approach

- Works naturally for multi-core
architectures

- Each CPU core is assigned to one root
scheduler

- Fixes-priority scheduling for multi-core
architecture possible

» Mutual ready queue from which both
schedulers get threads assigned
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Threads

Defined as virtual CPUs, purpose to execute programs.

Thread is running, if real CPU is assigned to it.

Running threads can be preempted.

Threads are managed by schedulers.
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Threads

Traditionally schduled in OS kernels, here: by other threads.

Threads with real CPU assigned can donate CPU time.

Root scheduler determines the base scheduling policy.

Priority inversion happens automatically through CPU donation.
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Requesting CPU Time

 Only the root scheduler has real CPU assigned to it.

 Other threads rely in CPU time donation.

- Each thread has a scheduler associated with them.

- When a thread awakens the responsible scheduler is notified.

 Scheduler can decide to give CPU time to the awoken thread or

resume the preempted thread.



Requesting CPU Time

« If the scheduler has no CPU time left the next scheduler in the

hierarchy will be woken.

- If the process reaches an already woken thread which is preempted

it indicates that this event is irrelevant .
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Time and Accounting

- Usually a notion of time and some kind of accounting is needed.

- Generally a periodic timer interrupt is sufficient to implement a

dispatcher.

 Accounting is needed e.g. for billing customers or dynamically

adjust scheduling policies.

- Two well known approaches exist.
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Statistical CPU Accounting

- Scheduler has to wake up every tick.

» Checks running thread and charges the time quantum to this thread.

- Approach is considered very efficient, since a scheduler usually
wakes almost every tick.

- But this approach provides only limited accuracy which is limited by

the timer tick intervals.
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Timestamp-based CPU Accounting

» The scheduler checks the timestamp with each context switch.

- It charges the thread for the exact amount of time.

- This approach provides a much higher accuracy.

- It also has a higher cost, because the context switch takes more time.

- Especially on systems on which it is expensive to read the current

time.



e ——— |

OlgaDedi  06.08.2015

Accounting problems and CPU Donation

- To has to wait for a resource by T1 and

donates CPU time to T1i.
- Whom to charge? %_ﬁ .S"
,  =Om
- It seems fair to charge T1. / (high-priority)
- But since high priority threads are OF m1
mostly more expensive, the scheduler (low-priority)

has to charge To to avoid outsourcing.

- “with privilege comes responsibility”
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Scheduling Overhead

- Overhead caused by the dispatcher

[m]

m]

u]

Cost to compute the next thread depends on the depth of the hierarchy.
Concerns because there is no limitation.

The dispatcher is always the component with the highest priority —
source for unbound priority inversion.

Possible solution for hard real-time systems is to limit the depth to 4-8

levels.
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Scheduling Overhead

- Overhead caused by additional context switches
> Additional context switches between scheduling threads.
= Overhead mostly dependent on system design.

= E.g. context switches on monolithic kernels are much higher then on
microkernel, since context switches in the same address space is cheaper.

= Also a chain of wake up calls can cause additional context switches, if the

schedulers have no CPU time.
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Conclusion

« CPU Inheritance Scheduling causes some scheduling overhead and

therefore some performance loss.
- But the framework provides the flexibility that modern systems require.
« The loss of performance seems to be acceptable in order to gain more
scheduling flexibility.
- However, the real performance loss has still to be determined in more

practical tests.



