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Introduction

W hy are device drivers evil in kernel-mode?

= Drivers have a high bug frequency

—> Difficult development process

—> Highly hardware specific

= Sharing kernel address space offers huge error potential
= Drivers make up to /0% of Linux kernel

= Drivers are often responsible for system crashes




Device drivers




Device drivers

Device drivers

* |nteract with and manage a particular type of
hardware device
= Main tasks:
* Accessing device memory

»= Managing data transfer




Device drivers User-mode device driver development

Accessing device memory

= Memory-mapped /0
= Mapping physical device memory into virtual
address space

= |/0 device is accessed like it is part of the memory

program

data

/O
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Device drivers User-mode device driver development

Accessing device memory

= Port-mapped /0
= |ntel x86 architectures

= Special commands for read / write = in / out

program

data

/O
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Device drivers

Managing data transfer

= Programmed |/0
= Polling

= CPU repeatedly checks status of device




Device drivers

Managing data transfer

" |nterrupt-driven [/0
= Hardware emits Interrupt Requests (IRQ)
= [nterrupt handler receives interrupts

= Asynchronous




Device drivers

Managing data transfer

= Direct Memory Access (DMA)
= DMA controller bypasses CPU, uses the system bus

= Fast transfer of large data
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User-mode device drivers

in microkernel systems

User-mode device drivers In
microkernel systems
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User-mode device drivers in microkernel systems

Microkernels

» User-mode drivers per definition

= Examples: MINIX 3, selL4
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User-mode device drivers in microkernel systems

MINIX 3

= POSIX-compliant, UNIX-like, open-source

= | ayer architecture
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Microkernel handles interrupts,

processes, scheduling, IPC
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User-mode device drivers in microkernel systems

MINIX 3 — Kernel layer

= Kernel calls

= Notifications
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User-mode device drivers in microkernel systems

MINIX 3 — User-mode layers

" Message passing

= Memory grants

Process
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Microkernel handles interrupts,

processes, scheduling, IPC
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User-mode device drivers in microkernel systems

MINIX 3 — User-mode layers

= Reincarnation Server

—> Detects crashed processes and restarts them

- Feature of device drivers in user space

Process

User
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Microkernel handles interrupts,
processes, scheduling, IPC
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User-mode device drivers in microkernel systems

MINIX 3 - Tasks for driver development

= |/0 access

—> read/write 1/0 ports via kernel calls (Intel x86)

* Interrupts are passed to the driver by kernel

notifications
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User-mode device drivers in microkernel systems

sel 4

= |4 microkernel familiy = high performance microkernels
= sel 4 secure = formally verified
= (Capability-based

- Ensure authorization of all operations
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User-mode device drivers in microkernel systems

sel.4 — Tasks for driver development

= |/0 access
- Intel x86: /0 Port capability authorizes reading/writing of
|/0 ports
—> Mapping device memory into virtual address space
= |nterrupt handling

—> Implemented as asynchronous IPC messages / notifications
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User-mode device drivers in microkernel systems

seL4 - [PC

Uses synchronous and asynchronous endpoints
IRQHandler capability authorizes definition of an endpoint
Synchronous IPC

- Data, capabilities
Asynchronous |PC / notifications

—> Only a single word
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User-mode device drivers in microkernel systems

Microkernel - DMA

= Security risks: bypassing the MMU, malicious driver
can initiate access of inappropriate address space

= Supporting I/0 Memory Management Unit ((OMMU)

—> Constrains the regions of memory for the device

—> Address mapping
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User-mode device drivers

in monolithic systems

User-mode device drivers In
monolithic systems

(kernel-mode device driver = KD)
(user-mode device driver = UD)

22



User-mode device drivers in monolithic systems

Early approaches port the UD concept to Linux

= Suffered from poor performance, e.g. mode switch

= [ack of interrupt handling
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User-mode device drivers in monolithic systems

Early approaches port the UD concept to Linux

= Suffered from poor performance, e.g. mode switch

Lack of interrupt handling

Recent UD approaches fix this problem by

Modifying the original UD concept
Splitting driver into KD and UD component
KD component: time- and performance-critical functionality

UD component: non-critical code
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User-mode device drivers in monolithic systems

Remember: drivers and therefore UDs have to
realize two main tasks

= Accessing a device's memory

= Managing data transfer

Accessing a device's memory

= Using mmap() and /dev/mem

Managing data transfer

= |nterrupt handling
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User-mode device drivers in monolithic systems

Interrupt handling with UDs

= (Cannot be done within user space

= Several workarounds
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User-mode device drivers in monolithic systems

Interrupt handling with UDs

= (Cannot be done within user space

= Several workarounds

Using a device file

= KD component registers ISR, which listens on special device file
= UD component executes system call read()

= read() gets blocked

= Device sends IRQ, call gets unblocked

=  UD can handle IRQ
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User-mode device drivers in monolithic systems

Interrupt handling with UDs

Using ioctl()

= Estimates device handle, request code and data argument

= (Calling gets blocked

= |f device message is available, function gets unblocked and message can

be received in user space

28



User-mode device drivers in monolithic systems

Interrupt handling with UDs

Using ioctl()

= Estimates device handle, request code and data argument

= (Calling gets blocked
= |f device message is available, function gets unblocked and message can

be received in user space

Using Netlink

= Socket-style kernel interface
= Blocking and non-blocking send/receive functions in user space

= (allback function in kernel space is called when device message appears
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User-mode device drivers in monolithic systems

Goals of UD concept
= |solate possible driver bugs

—> Improve stability and reliability

= Decrease kernel footprint

—> Improve maintainability

Two categories of UD approaches

= Split existing KD nearly automatically into the two components

= Write UD component from scratch using provided kernel adapter
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UD frameworks and architectures for Linux

UD frameworks anc

for Linc

architectures
X
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UD frameworks and architectures for Linux

Microdriver architecture:
= Splitting pure KD into KD and UD component

= Refactoring tool
= Splitter: determines critical functions

= Code generator: generates communication between components

= Evaluation of Microdriver architecture follows after the next

approach is introduced

=  Common metrics like CPU utilization and network throughput
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UD frameworks and architectures for Linux

Unified User-Mode Driver Framework (U°MDF):
= Based on the Microdriver architecture
= Aims at high compatibility and simple development
= U?MDF drivers can use
= |/0 ports using iopl()
=  mmap() using /dev/mem

= Zero-Copy DMA-Ilike technology

=  Communication via enhanced Netlink mechanism
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UD frameworks and architectures for Linux

normalied network throughput

Comparison of Microdriver and U°MDF
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UD frameworks and architectures for Linux

Userspace |/0 (UIO):

UIO framework in kernel space
Aims at high performance and simple development

UIO drivers can use
=  mmap() using /dev/mem
Communication via device file in /dev/uioX

=  Additional set of status files in sysfs

No evaluation for pure UIQ, as the following approach is partially

based on UlO and provides a detailed evaluation
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UD frameworks and architectures for Linux

Portable Driver Architecture (PDA)
= Partially based on UIO and the PDA predecessor Baracuda

= Aims at high performance, low latency and improved maintainability

= (C library provides kernel adapter
= Interrupt handling
= Programmed |/0
=  mmap() using /dev/mem

= Zero-Copy DMA-like approach like U?MDF
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UD frameworks and architectures for Linux

Evaluation of PDA

= Performance evaluation is done with a high-performance

fiber-links network interface card
= Reached 987% of theoretical throughput of 35GiB/s

= Served the same IRQ rate as pure KD
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+7 i D. Eschweiler, V. Lindenstruth. “The Portable Driver Architecture”, 2014 )

= PDA library only needs 128 loc to extend compatibility

to 27 kernel revisions

= Greatly improved maintainability
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Conclusion
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Conclusion

Advantages of UDs

Developers can use debugging tools

No restriction to specific programming language
Decoupled from kernel revision schedule

Possibility for easy restarting of crashed drivers

Kernel footprint is decreased

Improved maintainability

Removing especially faulty drivers out of kernel improves

stability and reliability
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Conclusion

1. The small performance loss on average 5% is easily
compensated by these advantages.
2. Several UD approaches provide a simple UD development by

either splitting pure KDs or providing libraries and frameworks.

Concept of UDs should be taken into consideration

when developing drivers
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