User-mode device driver development

WAMOS 2015, 06.08.2015

Annalena Gutheil Benjamin Weil3er

User-mode device driver development

WAMOS 2015, 06.08.2015

Annalena Gutheil Benjamin Weil3er

Introduction

Device drivers

User-mode device drivers in microkernel systems

User-mode device drivers in monolithic systems

User-mode device driver frameworks and architectures for Linux

Conclusion

Introduction

W hy are device drivers evil in kernel-mode?

= Drivers have a high bug frequency

—> Difficult development process

—> Highly hardware specific

= Sharing kernel address space offers huge error potential
= Drivers make up to /0% of Linux kernel

= Drivers are often responsible for system crashes

Device drivers

Device drivers

Device drivers

* |nteract with and manage a particular type of
hardware device
= Main tasks:
* Accessing device memory

»= Managing data transfer

Device drivers User-mode device driver development

Accessing device memory

= Memory-mapped /0
= Mapping physical device memory into virtual
address space

= |/0 device is accessed like it is part of the memory

program

data

/O

WAMOS 2015, 06.08.2015

Device drivers User-mode device driver development

Accessing device memory

= Port-mapped /0
= |ntel x86 architectures

= Special commands for read / write = in / out

program

data

/O

WAMOS 2015, 06082015

Device drivers

Managing data transfer

= Programmed |/0
= Polling

= CPU repeatedly checks status of device

Device drivers

Managing data transfer

" |nterrupt-driven [/0
= Hardware emits Interrupt Requests (IRQ)
= [nterrupt handler receives interrupts

= Asynchronous

Device drivers

Managing data transfer

= Direct Memory Access (DMA)
= DMA controller bypasses CPU, uses the system bus

= Fast transfer of large data

10

User-mode device drivers

in microkernel systems

User-mode device drivers In
microkernel systems

n

User-mode device drivers in microkernel systems

Microkernels

» User-mode drivers per definition

= Examples: MINIX 3, selL4

12

User-mode device drivers in microkernel systems

MINIX 3

= POSIX-compliant, UNIX-like, open-source

= | ayer architecture

Process
7

” - =/

User

mode< @ @ Servers
(m) - (ove) | orvers

\

Microkernel handles interrupts,

processes, scheduling, IPC

"\

13

User-mode device drivers in microkernel systems

MINIX 3 — Kernel layer

= Kernel calls

= Notifications

Process
7

” - =/

User

mode< @ / Servers
clolclonci

\

Microkernel handles interrupts,

processes, scheduling, IPC

AN

14

User-mode device drivers in microkernel systems

MINIX 3 — User-mode layers

" Message passing

= Memory grants

Process

User

mode< @ @ LSewers
&) @) () &) o) |owen

\

Microkernel handles interrupts,

processes, scheduling, IPC

)

5

User-mode device drivers in microkernel systems

MINIX 3 — User-mode layers

= Reincarnation Server

—> Detects crashed processes and restarts them

- Feature of device drivers in user space

Process

User
mode<

[E) () (=)

Microkernel handles interrupts,
processes, scheduling, IPC

"4
Servers
Drivers

16

User-mode device drivers in microkernel systems

MINIX 3 - Tasks for driver development

= |/0 access

—> read/write 1/0 ports via kernel calls (Intel x86)

* Interrupts are passed to the driver by kernel

notifications

17

User-mode device drivers in microkernel systems

sel 4

= |4 microkernel familiy = high performance microkernels
= sel 4 secure = formally verified
= (Capability-based

- Ensure authorization of all operations

18

User-mode device drivers in microkernel systems

sel.4 — Tasks for driver development

= |/0 access
- Intel x86: /0 Port capability authorizes reading/writing of
|/0 ports
—> Mapping device memory into virtual address space
= |nterrupt handling

—> Implemented as asynchronous IPC messages / notifications

19

User-mode device drivers in microkernel systems

seL4 - [PC

Uses synchronous and asynchronous endpoints
IRQHandler capability authorizes definition of an endpoint
Synchronous IPC

- Data, capabilities
Asynchronous |PC / notifications

—> Only a single word

20

User-mode device drivers in microkernel systems

Microkernel - DMA

= Security risks: bypassing the MMU, malicious driver
can initiate access of inappropriate address space

= Supporting I/0 Memory Management Unit ((OMMU)

—> Constrains the regions of memory for the device

—> Address mapping

21

User-mode device drivers

in monolithic systems

User-mode device drivers In
monolithic systems

(kernel-mode device driver = KD)
(user-mode device driver = UD)

22

User-mode device drivers in monolithic systems

Early approaches port the UD concept to Linux

= Suffered from poor performance, e.g. mode switch

= [ack of interrupt handling

23

User-mode device drivers in monolithic systems

Early approaches port the UD concept to Linux

= Suffered from poor performance, e.g. mode switch

Lack of interrupt handling

Recent UD approaches fix this problem by

Modifying the original UD concept
Splitting driver into KD and UD component
KD component: time- and performance-critical functionality

UD component: non-critical code

24

User-mode device drivers in monolithic systems

Remember: drivers and therefore UDs have to
realize two main tasks

= Accessing a device's memory

= Managing data transfer

Accessing a device's memory

= Using mmap() and /dev/mem

Managing data transfer

= |nterrupt handling

25

User-mode device drivers in monolithic systems

Interrupt handling with UDs

= (Cannot be done within user space

= Several workarounds

26

User-mode device drivers in monolithic systems

Interrupt handling with UDs

= (Cannot be done within user space

= Several workarounds

Using a device file

= KD component registers ISR, which listens on special device file
= UD component executes system call read()

= read() gets blocked

= Device sends IRQ, call gets unblocked

= UD can handle IRQ

27

User-mode device drivers in monolithic systems

Interrupt handling with UDs

Using ioctl()

= Estimates device handle, request code and data argument

= (Calling gets blocked

= |f device message is available, function gets unblocked and message can

be received in user space

28

User-mode device drivers in monolithic systems

Interrupt handling with UDs

Using ioctl()

= Estimates device handle, request code and data argument

= (Calling gets blocked
= |f device message is available, function gets unblocked and message can

be received in user space

Using Netlink

= Socket-style kernel interface
= Blocking and non-blocking send/receive functions in user space

= (allback function in kernel space is called when device message appears

29

User-mode device drivers in monolithic systems

Goals of UD concept
= |solate possible driver bugs

—> Improve stability and reliability

= Decrease kernel footprint

—> Improve maintainability

Two categories of UD approaches

= Split existing KD nearly automatically into the two components

= Write UD component from scratch using provided kernel adapter

30

UD frameworks and architectures for Linux

UD frameworks anc

for Linc

architectures
X

31

UD frameworks and architectures for Linux

Microdriver architecture:
= Splitting pure KD into KD and UD component

= Refactoring tool
= Splitter: determines critical functions

= Code generator: generates communication between components

= Evaluation of Microdriver architecture follows after the next

approach is introduced

= Common metrics like CPU utilization and network throughput

32

UD frameworks and architectures for Linux

Unified User-Mode Driver Framework (U°MDF):
= Based on the Microdriver architecture
= Aims at high compatibility and simple development
= U?MDF drivers can use
= |/0 ports using iopl()
= mmap() using /dev/mem

= Zero-Copy DMA-Ilike technology

= Communication via enhanced Netlink mechanism

33

UD frameworks and architectures for Linux

normalied network throughput

Comparison of Microdriver and U°MDF

105
100
95
9

o

8

(6]

8

o

75
70

KD and UD component run in kernel space

Mode switch is simulated with fixed delays

network throughput

™ Microdriver ™ U2MDF

1 10 100 1000
delay in us

10000 20000 30000

normalized CPU utilization

145
135
125
11

(6]

10

o]
v O,

8

(6]

75

CPU utilization

™ Microdriver ™ U2MDF

1000
delay in us

= Performance degradation of U°MDF starts earlier

10000 20000 30000

CPU utilization of Microdrivers is growing faster with fixed delays

higher than 10us

34

UD frameworks and architectures for Linux

Userspace |/0 (UIO):

UIO framework in kernel space
Aims at high performance and simple development

UIO drivers can use
= mmap() using /dev/mem
Communication via device file in /dev/uioX

= Additional set of status files in sysfs

No evaluation for pure UIQ, as the following approach is partially

based on UlO and provides a detailed evaluation

35

UD frameworks and architectures for Linux

Portable Driver Architecture (PDA)
= Partially based on UIO and the PDA predecessor Baracuda

= Aims at high performance, low latency and improved maintainability

= (C library provides kernel adapter
= Interrupt handling
= Programmed |/0
= mmap() using /dev/mem

= Zero-Copy DMA-like approach like U?MDF

36

UD frameworks and architectures for Linux

Evaluation of PDA

= Performance evaluation is done with a high-performance

fiber-links network interface card
= Reached 987% of theoretical throughput of 35GiB/s

= Served the same IRQ rate as pure KD

Latest
Version

3.0 3.1 6‘
2629 2.6.31 2.6.34 2.6.39 32 3.7 3.12
I L I 1 L I 1 1 L 1 | 1 I L 1 1 L I 1 L 1 1 I L L 1 1
VOt I I 1] I L] 1] 1 | I I] 1 1] I 1 1]) I 1 1 1 1
-« :l“ested N
1052
8 Lines
Of
+74 > Code
+39
+7 i D. Eschweiler, V. Lindenstruth. “The Portable Driver Architecture”, 2014)

= PDA library only needs 128 loc to extend compatibility

to 27 kernel revisions

= Greatly improved maintainability

37

Conclusion

38

Conclusion

Advantages of UDs

Developers can use debugging tools

No restriction to specific programming language
Decoupled from kernel revision schedule

Possibility for easy restarting of crashed drivers

Kernel footprint is decreased

Improved maintainability

Removing especially faulty drivers out of kernel improves

stability and reliability

39

Conclusion

1. The small performance loss on average 5% is easily
compensated by these advantages.
2. Several UD approaches provide a simple UD development by

either splitting pure KDs or providing libraries and frameworks.

Concept of UDs should be taken into consideration

when developing drivers

40

