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Introduction
● What is a microkernel?
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“Traditionally, the word 'kernel' is used to denote the part of
the operating system that is mandatory and common to all
other software. The basic idea of the -kernel approach is
to minimize this part, i.e. to implement outside the kernel

whatever possible.” - J. Liedtke
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Introduction
Monolothic kernel
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IPC improvements
● Measurement conditions:

○ Hot cache (tight loop)
○ One way (half of round-trip)
○ Inter address space (requiring a full context switch)

● Notes:
○ MIPS and Alpha were incomplete, add ~100 cycles
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IPC improvements

6Quelle: http://l4hq.org/docs/performance.php
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Adding combined IPC calls
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Adding combined IPC calls
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Adding combined IPC calls
● Combining IPC saves two systemcalls

○ Send() & receive() ⇒ call()
○ Send() & wait() ⇒ reply and wait()

● Call() initiates instant context switch
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Adding asynchronous IPC
Synchronous IPC only:

● Upside
○ No message buffering needed in the kernel
○ Only one way for IPC ⇒ “more pure”

● Downside
○ Multithreading needed ⇒ more complexity
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Adding asynchronous IPC
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Kernel

Zero copy 
Twofold copy:
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Kernel

Zero copy 
Single copy:
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Kernel

Zero copy 
Zero copy:
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Zero copy 
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Procedure:
1. Kernel initiates IPC from sender’s context
2. Message registers are not altered
3. On receiver’s context, the data is still there

⇒ Number and size of message registers vary
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Virtual message registers
● Set of configurable virtual message registers

○ Some pinned to physical registers
○ Rest pinned to extra per-thread space

⇒ Better platform independency
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Abandoning long IPC
Idea: multiple registers with one copy
● Problem: Can lead to pagefaults

● Solution:
○ Pagefault handling in user-space?
○ Better: Transfer data via shared buffer

⇒ Abandoning of long IPC
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Abandoning IPC timeouts
● Timeouts prevent tasks from blocking forever

● Theoretically: Timeout configurable for every IPC

● Practically: Guessing of good timings is very hard
⇒ Mostly set to ∞

● Watchdogs showed to be more commonly used
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Conclusion
● IPC improvements

○ Not one huge, but many small improvements
○ Better hardware
○ “From 5.000 ns to 89 ns”

● Future outlooks
○ Responsiveness gets faster and faster
○ Architectural advantage: Security
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Sources
● From l3 to sel4 what have we learnt in 20 years of l4 microkernels?

○ Elphinstone and G. Heiser

● Improving ipc by kernel design
○ J. Liedtke

● On micro-kernel construction
○ J. Liedtke

20


