
Improvement of IPC responsiveness in 
microkernel-based operating systems

Steffen Reichmann - WAMOS 2015



WAMOS 2015 - Steffen Reichmann

Agenda
● Introduction
● IPC improvements

○ Adding combined IPC systemcalls
○ Adding asynchronous IPC
○ Zero copy & virtual message registers
○ Abandoning of long IPC
○ Abandoning of IPC timeouts

● Conclusion
2



WAMOS 2015 - Steffen Reichmann

Introduction
● What is a microkernel?

3

“Traditionally, the word 'kernel' is used to denote the part of
the operating system that is mandatory and common to all
other software. The basic idea of the -kernel approach is
to minimize this part, i.e. to implement outside the kernel

whatever possible.” - J. Liedtke



WAMOS 2015 - Steffen Reichmann

Introduction
Monolothic kernel

4

Hardware Hardware

...

Scheduler, memory mgmt

Application ...

Filesystem, device drivers, ...

IPC

Scheduler, memory mgmt

Application Filesystem ...
user-mode

kernel-mode

Microkernel

syscalls



WAMOS 2015 - Steffen Reichmann

IPC improvements
● Measurement conditions:

○ Hot cache (tight loop)
○ One way (half of round-trip)
○ Inter address space (requiring a full context switch)

● Notes:
○ MIPS and Alpha were incomplete, add ~100 cycles

5



WAMOS 2015 - Steffen Reichmann

IPC improvements

6Quelle: http://l4hq.org/docs/performance.php



WAMOS 2015 - Steffen Reichmann

Adding combined IPC calls

7

Application A Application B

send()

send()

wait()

receive()

Kernel



WAMOS 2015 - Steffen Reichmann

Adding combined IPC calls

8

Application A Application B

Call()

Reply and Wait()
Kernel

send()

send()



WAMOS 2015 - Steffen Reichmann

Adding combined IPC calls
● Combining IPC saves two systemcalls

○ Send() & receive() ⇒ call()
○ Send() & wait() ⇒ reply and wait()

● Call() initiates instant context switch



WAMOS 2015 - Steffen Reichmann

Adding asynchronous IPC
Synchronous IPC only:

● Upside
○ No message buffering needed in the kernel
○ Only one way for IPC ⇒ “more pure”

● Downside
○ Multithreading needed ⇒ more complexity

10



WAMOS 2015 - Steffen Reichmann

Adding asynchronous IPC

11



WAMOS 2015 - Steffen Reichmann

Kernel

Zero copy 
Twofold copy:

12

Application A

Application B

data data

data



WAMOS 2015 - Steffen Reichmann

Kernel

Zero copy 
Single copy:

13

Application A

Application B

data data

data



WAMOS 2015 - Steffen Reichmann

Kernel

Zero copy 
Zero copy:

14

Application A

Application B

data

data



WAMOS 2015 - Steffen Reichmann

Zero copy 

15

Procedure:
1. Kernel initiates IPC from sender’s context
2. Message registers are not altered
3. On receiver’s context, the data is still there

⇒ Number and size of message registers vary



WAMOS 2015 - Steffen Reichmann

Virtual message registers
● Set of configurable virtual message registers

○ Some pinned to physical registers
○ Rest pinned to extra per-thread space

⇒ Better platform independency

16



WAMOS 2015 - Steffen Reichmann

Abandoning long IPC
Idea: multiple registers with one copy
● Problem: Can lead to pagefaults

● Solution:
○ Pagefault handling in user-space?
○ Better: Transfer data via shared buffer

⇒ Abandoning of long IPC

17



WAMOS 2015 - Steffen Reichmann

Abandoning IPC timeouts
● Timeouts prevent tasks from blocking forever

● Theoretically: Timeout configurable for every IPC

● Practically: Guessing of good timings is very hard
⇒ Mostly set to ∞

● Watchdogs showed to be more commonly used

18



WAMOS 2015 - Steffen Reichmann

Conclusion
● IPC improvements

○ Not one huge, but many small improvements
○ Better hardware
○ “From 5.000 ns to 89 ns”

● Future outlooks
○ Responsiveness gets faster and faster
○ Architectural advantage: Security

19



WAMOS 2015 - Steffen Reichmann

Sources
● From l3 to sel4 what have we learnt in 20 years of l4 microkernels?

○ Elphinstone and G. Heiser

● Improving ipc by kernel design
○ J. Liedtke

● On micro-kernel construction
○ J. Liedtke

20


