

WAMOS 2015

Second Wiesbaden Workshop on
Advanced Microkernel Operating Systems

Editor / Program Chair: Robert Kaiser

RheinMain University of Applied Sciences
Information Science
Unter den Eichen 5

65195 Wiesbaden
Germany

Technical Report August 2015

Contents

Foreword 3

Program Committee 3

Keynote Talk 5

Session 1: Kernel Design Principles 7
Unikernels

Kevin Sapper . 7
Shared libraries for the seL4 Kernel

Andreas Werner . 13

Session 2: IPC Performance and Security 19
Improvement of IPC responsiveness in microkernel-based operating systems

Steffen Reichmann . 19
Side Channel and Covert Channel Attacks on Microkernel Architectures

Florian Schneider and Alexander Baumgärtner . 23

Session 3: Microkernel Scheduling 29
Towards policy-free Microkernels

Olga Dedi . 29
User-level CPU Inheritance Scheduling

Sergej Bomke . 33

Session 4: Device Drivers and I/O 37
USB in a microkernel based operating system

Daniel Mierswa and Daniel Tkocz . 37
User-mode device driver development

Annalena Gutheil and Benjamin Weißer . 43

Program 50

© Copyright 2015 RheinMain University of Applies Sciences (HSRM).
All rights reserved. The copyright of this collection is with HSRM. The copyright of the individual articles
remains with their authors.

Foreword

Welcome to HSRM and to WAMOS 2015, the second edition of the Wiesbaden Workshop on Advanced
Microkernel Operating Systems.

This workshop series was conceived to provide a forum for students of the advanced operating systems
course at Wiesbaden University of Applied Sciences to present the results of their work.

Besides submitting papers themselves, students also serve as members of the program comittee and are
involved in the peer-reviewiewing process. The intention, besides the presentation of interesing operating system
papers, is to provide hands-on experience in organizing and running a workshop.

The authors were given the opportunity to revise and re-submit final versions of their papers based on the
reviews. The papers contained herein are the final versions submitted just before the workshop.

I’d like to thank all participants for their enthusiasm.
I’d like also to thank our guest speaker Alex Züpke who provided an interesting insight into novel concepts

of microkernel design.

The Workshop Chair,

Robert Kaiser
RheinMain University of Applied Sciences

Wiesbaden, Germany

Program Committee

Alexander Baumgärtner
Sergej Bomke
Olga Dedi
Annalena Gutheil
Daniel Mierswa
Steffen Reichmann
Kevin Sapper
Florian Schneider
Daniel Tkocz
Benjamin Weißer
Andreas Werner

RheinMain University of Applied Sciences, Wiesbaden, Germany

3

Keynote Talk

AUTOBEST: A microkernel-based system (not only) for automotive applications

Alexander Züpke
RheinMain University of Applied Sciences

AUTOBEST is a united AUTOSAR-OS and ARINC 653 RTOS kernel that addresses the requirements of both
automotive and avionics domains. We show that their domain-specific requirements have a common basis and
can be implemented with a small partitioning microkernel-based design on embedded microcontrollers with
memory protection (MPU) support.

While both, AUTOSAR and ARINC 653, use a unified task model in the kernel, we address their differences
in dedicated user space libraries. Based on the kernel abstractions of futexes and lazy priority switching, these
libraries provide domain specific synchronization mechanisms. Our results show that thereby it is possible
to get the best of both worlds: AUTOBEST combines avionics safety with the resource-efficiency known from
automotive systems.

Alexander Züpke is a passionate software developer of operating systems since 2001. After working at
SYSGO on their microkernel-based embedded operating system PikeOS for more than 10 years, he decided to
start a PhD thesis on the topic of synchronization in safe operating systems at RheinMain University of Applied
Sciences, in Wiesbaden, Germany in 2012.

5

Unikernels

No OS? No problem!

Kevin Sapper
Hochschule RheinMain

Unter den Eichen 5
Wiesbaden, Germany

kevin.b.sapper@student.hs-rm.de

ABSTRACT
Unikernels aim to reduce the layers and dependencies mod-
ern operating systems force onto applications. The concept
is similar to library operating systems from the 90s but
is leveraging hypervisor technology for hardware indepen-
dence.

Categories and Subject Descriptors
D.4 [Software]: OPERATING SYSTEMS

Keywords
microkernel, cloud, library operating system, virtualization

1. INTRODUCTION
In recent years cloud computing made it possible to rent

computing resources in possibly multiple large data centers
and from possibly multiple competing providers. The en-
abling technology for the rise of cloud computing is operating-
system virtualization which allows multiplexing of virtual
machines (VMs) on a set of physical hardware. A VM usu-
ally represents a self-contained computer which boots and
runs a standard full operating-system like Linux or Win-
dows. A key advantage of this approach is the ability to
run unmodified applications as if they were executing on
a physical machine. Furthermore, those VMs can be cen-
trally backed up and migrated and/or duplicated onto dif-
ferent physical machines. This allows for applications, that
are installed on physical hosts, to be packed on fewer hosts
without modifying or recompiling them. (see [4])

2. OS-VIRTUALIZATION
Despite the fact that VMs allow multi-user and multi-

purpose applications and services, virtualization and cheap
hardware created situations where most deployed VMs only
perform single functions such as a database or a web server.
This shift towards single-purpose VMs shows how easy it
has become to create and deploy new VMs. (see [4])

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
.

2.1 Problems
Operating-system virtualization is obviously very useful,

but at the same time it adds another layer to the already
highly layered software stack that modern applications im-
plicitly are forced to use. These layers include irrelevant
optimizations (e.g. spinning disk algorithms on SSDs), back-
wards compatibility (e.g. POSIX), userspace processes/threads
and code-runtimes (e.g. Java Virtual Machine). One obvi-
ous issue with many layers is performance. An approach to
shrink the virtualization layer of VMs are OS containers like
FreeBSD Jails and Linux Containers. These usually abstract
at the operating-system level as opposed to the hardware
level of VMs. Hence, they virtualize the userspace instead
of the physical machine. Even though this architecture is
somewhat lighter and improves performance, it doesn’t re-
move the extra layer added on top. Also, both VMs and
containers provide large attack surfaces which can lead to
severe system compromising. (see [4])

Another problem with virtualization is strong isolation of
multi-tenant application to support the distribution of appli-
cation and system code. This is especially critical on public
clouds as VMs of different customers might be running on
the same physical hardware. The limitations therefore are
current operating systems, which are designed to be general-
purpose in order to solve problems for a wide-audience. For
example Linux runs on low-power mobile devices as well as
high-end servers in vast data centers. Changing these prin-
ciples to cater one class of users is not acceptable. (see [4])

2.2 Half the Solution
To radically reduce the amount of layers to improve per-

formance and security in the late 90s several research groups
proposed a new operating-system architecture, known as li-
brary operating system (libOS). A libOS consists of a set
of libraries which allow operating the hardware or talk to
network protocols. Further, they contain a set of policies to
provide access control and isolation on the application layer.
A core advantage of this approach is predictable performance
as it allows applications to talk to the hardware resources
directly, instead of repeatedly switching between user and
kernel space. Hence, a libOS doesn’t have a centralized net-
working service. Thus network packets from different appli-
cations are mixed together when they arrive at the network
device. When running multiple applications that can ac-
cess the hardware directly it is a serious problem to provide
strong resource isolation. Another issue occurs when port-
ing applications that rely on interfaces such as POSIX and
thus need to be rewritten. Though the major drawback and

7

Figure 1: Comparison traditional OS vs MirageOS
[3]

,

probably the reason why library operating systems failed is
the need to rewrite drivers. At the speed that new commod-
ity PC hardware is developed and their short lifetime makes
this an almost impossible task. (see [3])

2.3 Unikernels
Modern hypervisors run on commodity hardware and pro-

vide VMs with CPU time, strongly isolated virtual devices
for networking, block storage, USB and PCI bridges. A li-
brary operating system running as a VM would only need
to implement drivers for these virtual appliances. Further,
the isolation between a libOS applications can simply be
achieved by spawning one VM per application. These vir-
tual library operating systems are called unikernels. Each
unikernel VM therefore can be specialized to its particular
purpose. Even though the hypervisor caters for a lot of work
an unikernel would still need to take care of traditional op-
erating system services like file system access. As each VM
is highly specialized therefore the attack surface is reduced
in comparison to traditional operating systems that share
huge amounts of common code. (see [3])

The remainder of this paper will introduce the two uniker-
nel implementations MirageOS and rump kernels. Whereas
MirageOS (Section 3) has been developed to be used in cloud
computing area, rump kernels (Section 4) aim to run any-
where even on bare-metal.

3. MIRAGEOS
The MirageOS unikernel has been developed at the Uni-

versity of Cambridge and is a Xen and Linux Foundation
incubator project. It is entirely written in the functional
programming language OCaml and thus only supports ap-
plications written in OCaml. Figure 1 shows a comparison
between an application running on top of a traditional op-
erating system and the Mirage unikernel. During compila-
tion the Mirage compiler combines configuration files, ap-
plication source code and needed kernel functionalities, e.g.
TCP/IP-Stack, into one specialized unikernel. The uniker-
nel can greatly reduce the footprint of a VM. For example
a Bind9 DNS Server appliance on a Debian VM uses over
400MB, in contrast the Mirage DNS server unikernel has
only 200KB. To assure communicating with external sys-

Figure 2: Virtual memory layout of 64-bit Mirage
running on [3]

tems the mirage unikernel relies on standard network pro-
tocols. The kernel can either be executed as a user process
on top of a UNIX operating system, which allows to easily
debug and test applications, or it can be launched like a VM
on the Xen hypervisor.

3.1 Performance & Security
Apart from a possible much smaller footprint Mirage aims

for better performance and security. Traditional OS con-
tain several hundred thousand, if not millions, lines of code
that have to be executed every time it boots. The Mirage
unikernel only contains the bare minimum needed to run
its appliance this allows a VM to boot in only a couple of
milliseconds. This can be especially useful if VMs are to be
spawned based on traffic.

To offer better security an unikernel is sealed at compile
time. This means any code not present during the com-
pilation will never be run, which completely prevents code
injection attacks. Therefore, the unikernel creates a set of
page tables which are never both writable and executable.
The sealing is achieved by a special seal hypercall to the
hypervisor. This approach means that the hypervisor needs
to be adjusted to support sealing and that an unikernel VM
cannot expand its heap, but instead must pre-allocate all
memory at startup.

Modern operating systems use Runtime Address Space
Randomization (ASR) to make it harder for attackers to
execute malicious code. Doing ASR at runtime requires a
runtime linker which will add significant complexity into the
unikernel. Luckily any changes to the unikernel appliance
must result in recompiling it, hence ASR can be performed
at compile time using a freshly generated linker script which
avoids the need for runtime ASR. (see [4])

3.2 Virtual memory layout
Mirage is run on Xen with the special boot library PV-

Boot. PVBoot will initialize the VM with one virtual CPU
and jump into the entry function. Mirage applications are
always single purpose, hence to minimize the OS overhead it
doesn’t support multiple processes or preemptive threading.
The VM will halt once the main function returns. The whole
VM is laid out in a single 64-bit address space. PVBoot pro-
vides two memory page allocators. A slab allocator which

8

is used to support the C code of the OCaml runtime. The
idea of a slab allocator is to have caches of commonly used
objects which are kept in an initialized state. Therefore, the
slab allocator aims to cache freed objects, as most code is
in OCaml this allocator is not heavily used. The second is
an extent allocator which serves continuous virtual memory
in 2MB chunks. The language layout in the virtual mem-
ory is shown in Figure 2 which is divided into three regions:
text and data, external I/O pages and the OCaml heaps.
The OCaml heap is split into a small minor heap for short
lived values and large major heap for long lived values. The
minor heap has a single extend of 2MB and grows in 4kB
chunks and the major head has the remainder of the heap
and grows in 2MB chunks.

Communication between VMs is achieved by the local VM
granting memory page access right to the remote VM via the
hypervisor. The PVBoot library therefore reserve virtual
memory (Figure 2: foreign memory) and allocates a proxy
value in the minor heap. (see [4])

3.3 Drivers
Mirage uses the driver interfaces provided by Xen which

consists of a frontend driver in the VM and a backend driver
in Xen that multiplexes frontend requests. These are con-
nected through an event channel for signaling and a single
memory page which contains fixed size of slots organized
in a ring. Responses are written into the same slots as re-
quests. The entire Mirage I/O throughput relies on this
shared memory ring. Instead of writing data directly into
the shared page, 4kB memory pages are passed by reference.
Using the same granting mechanism that is applied by in-
ter VM communication. This results in a high-performance
Zero-Copy Device I/O. All drivers in Mirage are written in
OCaml, therefore the shared memory ring is mapped into
an OCaml Bigarray.

The network driver supports two communication meth-
ods. Firstly for on-host-inter-VM vchan transport and sec-
ondly Ethernet transport. vchan is a fast shared memory
interconnection. The driver allocates multiple continuous
pages for the I/O ring to have reasonable buffer. VMs can
exchange data directly without intervention of the hyper-
visor. vchan is present in Linux since kernel version 3.3.0
which enables easy interaction between Mirage and Linux
on the same host. Things get more complicated for Eth-
ernet. While the changes for reading only require splitting
header and data, writing is a bit more complicated because
a variable length header has to be prepended. This is solved
by allocating an explicit header page for every write opera-
tion. The entire payload must be present before writing the
whole packet into device ring.

Besides networking most applications also require storage.
Storage uses the same ring based shared memory I/O as
networking does. For example the FAT-32 storage driver
accesses the disk one sector at a time to avoid building large
lists in the heap. (see [4])

3.4 Modularity
MirageOS is composed of a highly modularized depen-

dencies system which allows users to easily develop and test
their appliances in a familiar UNIX environment and after-
wards recompile it to run on Xen. Figure 3 shows a module
graph for the sample application MyHomePage which serves
static web sites. Therefore, it depends on a HTTP signa-

Figure 3: Example MirageOS application with dif-
ferent modules [3]

ture which is satisfied by the Cohttp module. The Cohttp
signature itself requires an TCP implementation. For devel-
opers on a UNIX system this dependency can be provided
by the UnixSocket library. In a next step the developer can
decide to switch to the OCaml TCP/IP stack (MirTCP).
MirTCP requires Ethernet frames to be delivered which can
be provided by the MirNet module. At this point things
get exciting as the developer can either decide to stick with
UNIX or recompile the application to link against the Xen
network drivers. For the developer recompiling just requires
to substitute the compiler flag –unix to –xen.

4. RUMP KERNELS
The rump in rump kernels doesn’t mean the fleshy hindquar-

ters of an animal and is in no way to be associated with a
rump steak. Instead, it defines a small or inferior remnant
that is carrying on in the name of the original body after the
expulsion or departure of a large number of its members. In
case of the rump kernel the original body is the monolithic
NetBSD OS and the remnant are the NetBSD kernel drivers.
To put things into perspective, the rump kernel project’s
original goal was to make kernel driver development pos-
sible in userspace where a driver crash doesn’t result in a
crash of the whole OS which is a bliss for driver developers.
The rump kernel is shown in figure 4 which consists of ap-
proximately one million lines of unmodified, battle-hardened
NetBSD kernel drivers running on top of a documented hy-
percall interface [1]. In order to run the unmodified drivers
some platform-independent glue code is necessary which is
entirely transparent to the users. The platform-specific hy-
percall implementation is only about 1000 lines of code. Us-
ing this architecture allows running the standalone NetBSD
kernel drivers on many platforms. Currently supported plat-
forms are Xen, KVM, POSIX userspace, Linux userspace
and every bare-metal that is supported by NetBSD. Having
the drivers run anywhere is a neat thing for driver develop-

9

Figure 4: Rump kernel overview [1]

ers but it isn’t necessarily the concern of most application
developers who rather like to run applications on top of a
rump kernel. The solution of running unmodified POSIX
applications on top of the rump kernel is as clever as simple.
All that is necessary is a modified libc library where syscall
traps have been replaced with equivalent rump kernel calls.

The drivers are the components of a rump kernel which
are built for the target system as libraries and the final image
is constructed by linking the component-libraries which are
controlled by some kind of application which controls their
operations. An application can put together a subset of
driver which it needs to operate. For example a web server
serving dynamically created content will need a TCP/IP
stack and sockets support as well as memory and I/O devices
access. These dependencies are resolved by the anykernel
and the rump kernel hypercall interfaces. (see [1])

4.1 Anykernel & Hypercalls
The anykernel architecture is the key technology for rump

kernels. The “any” in anykernels stands for the possibility
to use the drivers in any configuration: monolithic, micro-
kernel, exokernel, etc. In short, using the anykernel kernel
modules can be loaded into places beyond the original OS.
This is done by separating the NetBSD kernel into three lay-
ers: base, factions and drivers. The base layer contains all
mandatory routines, such as allocators and synchronization,
and thus must be present in every rump kernel. The other
two layers are optional. The factions are further separated
into devices, file systems and networking which provide ba-
sic routines. Finally, the driver layer provides the actually
drivers like file system, PCI driver, firewalls, etc. To compile
the anykernel no magic is required, just plain old C linkage.

In order to run the anykernel the drivers needs access to
back-end resources like memory. These resources are being
provided by the hypercall interface implementation. The
hypercall implementation is written on top of a platform
where it must be able to run C code and do stack switching.
On bare-metal this requires some bootstrap code whereas in
hosted environments like the POSIX userspace, that code is
implicit present. (see [1])

4.2 Rump Kernel Clients
Rump kernel clients are defined as applications that re-

quest services from a rump kernel. Applications must ex-
plicitly request the services they require. There are three

Figure 5: Rump kernel clients [2]

types of clients - local, remote and microkernel - which are
shown in figure 5.

The local client exists in the same process as the rump
kernel and does have full access to the kernel’s address space
but typically request are made through function calls which
are defined in the kernel syscall interface. The benefit of this
architecture is compactness and speed. The downside is that
the client is required to bring the kernel into a suitable state
such as adding routing tables and mounting file systems.

Remote clients use a rump kernel but reside elsewhere.
They can be either located at the same host or a remote one.
Due to this separation they can only access kernel modules
which are implemented by the interface. Hence, the client is
not allowed to access arbitrary resources, this allows for se-
curity models with different levels. Furthermore, one rump
kernel can be used by clients which is especially useful in
userspace where the fork() semantic otherwise would mean
to duplicate the entire kernel. The communication between
client(s) and kernel is possible via local domain or TCP sock-
ets. The request routing policies is hereby controlled by the
remote client. The drawback of remote clients is that the
IPC mechanism causes an overhead which negatively affects
the performance.

Microkernel clients are similar to remote clients with the
difference that the requests are routed by the host kernel.
The key difference is that the host kernel controls the request
routing policies instead of the client. The rump kernel is
implemented as microkernel server. (see [2])

5. CONCLUSIONS
Unikernel reduce the amount of layers an application has

to go through to the bare minimum which results in highly
specialized, fast and lean operating systems that run one ap-
plication or even one module of a larger application. With
this approach hundreds if not thousands of unikernels can
be run on a hypervisor. This approach greatly reduces the
size of VMs are a lot of dependencies can be left out. Fur-
thermore, security bugs can only result in the compromise
of one application and not the entire OS.

When using MirageOS there are some drawbacks as it
completely drops compatibility for existing appliances and
forces developers to use the OCaml programming languages.
Both Mirage and rump kernels provide the ability to run
application in userland which allows developers to efficiently
test and debug their applications.

Unikernels take library operating systems to the next level
by alleviating their driver problem. Further, using rump
kernels also avoids rewriting applications because of a com-
patibility layer.

6. REFERENCES

10

[1] A. Kantee and J. Cormack. Rump kernels: No os? no
problem! ;login: The Usenix Magazine, 39(5):11–17,
2014.

[2] A. Kantee et al. Flexible operating system internals:
the design and implementation of the anykernel and
rump kernels. 2012.

[3] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott,
B. Singh, T. Gazagnaire, S. Smith, S. Hand, and
J. Crowcroft. Unikernels: Library operating systems for
the cloud. SIGPLAN Not., 48(4):461–472, Mar. 2013.

[4] A. Madhavapeddy and D. J. Scott. Unikernels: Rise of
the virtual library operating system. Queue,
11(11):30:30–30:44, Dec. 2013.

11

Shared libraries for the seL4 Kernel

Andreas Werner
University of Applied Science RheinMain

Unter den Eichen 5
65195 Wiesbaden, Germany

hs@andy89.org

ABSTRACT
One important feature of modern Operating Systems is the
ability to share code and read only data between Applica-
tions. This feature is mostly referred to shard library. At
the moment the seL4 Kernel dos not support shard libraries.
This paper discusses techniques to add shard library support
to seL4. Also the advantage and the disadvantage of shared
Library is discussed by the paper.

Categories and Subject Descriptors
D.5 [Operating Systems]: Shared Library

General Terms
Design, Algorithms

Keywords
Microkernel, seL4, shared library, shard memory, global off-
set table, Executable and Linking Format, ELF

1. INTRODUCTION
One of the most needed features of programming language is
called a ”Function” or a ”Subroutine”. In the first paragraph
of the chapter ”Subroutine” of Donald E. Knuth’s book ”The
Art of Computer Programming” subroutines are defined as
followed:

When a CERTAIN task is to preformed at sev-
eral different place in a program, it is usually
undesirable to repeat the codding in each place.
To avoid this situation, the coding (called a sub-
routine) can be put into one place only, and a
few extra instruction can be added to restart the
outer program properly after the subroutine is
finished. Transfer of control between subroutines
and main programs is called subroutine linkage.

— Donald E. Knuth[5]

This definition defines a ”Subroutine” as a small piece of
a code, that can be reused in many places. The compos-
ite of many ”Subroutine” is called Library[5]. The defini-
tion of reused codes can be expanded over the border of
programs. For that reason modern operating systems such
as Linux, Unix, BSD or Windows give the option to share
codes between programs in runtime. This is mostly realized
by Shared Libraries. Shared Libraries are also known as
dynamic linked libraries (.dll) or shared objects (.so). The
share of codes in compile time is called static linkage with
static libraries and is not the focus of this paper.

The seL4 userland actually implements no capability for the
usage of Shared Libraries. This paper provides an overview
of Shared Libraries and discusses techniques to implement
Shared Libraries capability to a microkernel.

2. BACKGROUND
This section describes how dynamic linking mechanism usu-
ally works and gives an overview of seL4 Kernel.

2.1 Executable and Linking Format (ELF)
A basic prerequisite to understand a Shared Library is the
grasp of Executable and Linking Format (ELF). The ELF
Format was specified in 1993 by the Tool Interface Standard
Committee as an executable binary format standard. It is
defined in the ”Tool Interface Standard (TIS) Executable
and Linking Format (ELF) Specification” [1]. The ELF For-
mat is the standard output format of the GCC compiler
and is used in many operating systems such as Linux, OS
X, Unix as well as in the seL4 Kernel as the standard binary
format for executables. Basically an ELF-file contains:

• ELF Header: gives basic information about the file.

• Program Header Table (optional): contains program
or library information (program name, architecture,
. . .)

• Segments: contain sections.

• Sections: contain the program, its data and debug in-
formation.

• Section Header Table (optional): contains information
about the content of the sections.

The specification distinguishes between program files and
relocatable files. Program Files need to contain a Program

13

Header Table and may have a Section Header Table. Pro-
gram files contain executable programs. Relocatable Files
need to contain a Section Header Table and may own a Pro-
gram Header Table. Relocatable Files are better known as
Object Files(”.o” Files). The Option ”-c” in the GCC C
Compiler creates for example a Relocatable ELF file. The
Relocatable Files are used by the linker to create a program
file. In the final linking phase the compiler adds sections of
the Relocatable Files to the program file and moves the Re-
locatable File sections to their final positions in the ELF file.
This position is defined by linker files(”.ld” Files). Basically
static libraries are just archives that comprise relocatable
files. They get linked in the Program Files just like normal
Relocatable Files.

Shared Libraries are special program files. They contain
commonly position independent code and data and are linked
in execution time by a dynamic linker. A program file con-
tains a special section called procedure linkage table ”.plt”
and a global offset table ”.got”called a procedure in a Shared
Library. Shared Libraries can be built position dependent.
This means position of the Shared Library cannot be changed
at linkage time.

The Global Offset Table contains the absolute addresses of
the Shared Library procedures and is set up at program load
time by the dynamic linker. The procedure linkage table
contains functions to call the Shared Library procedure out
of the Program Code. The usage and the content of global
offset table and procedure is processor dependant.

The Program Header Table also contains the Shared Library
dependencies. The Dynamic Linker analyzes the dependen-
cies of the Shared Library and of the program being loaded
and loads all required Shared Libraries automatically.

It is also possible to have global variables in a Shared Li-
brary. This may happen in the ”.data”section or in the ”.bss”
section of the Shared Library. These data are allocated and
initialized by the dynamic linker / program loader. Each
process with access to the Shared Library posesses their own
”.data” and ”.bss” section. Shared data are not included in
this concept of a Shared Library.

For Linking at start time a Dynamic Linker exists. Com-
monly a Dynamic Linker is a Helper Program. In Linux
the Helper Program is located in /lib/ld.so1. This Helper
Program is a Shared Library and an executable at the same
time. The Program loader scans the Program-Header for
a special entry that is the Program Interpreter entry. This
entry tells the Program Loader to execute an interpreter in-
stead of the original executable. This Program Interpreter
entry can be compared with the #!/bin/bash Line of Scripts.

The original executable cannot be executed without the Shared
Library, so the main task of the Dynamic Linker is to cre-
ate the process image. The process image is a complete
memory image of a program in exaction, together with all
Shared Libraries it requires. The dynamic Linker performs
the following steps: [1]

1or /lib/ld-linux.so.2

• Load executable memory segments.

• Load or Map Shared Library.

• Perform relocation(witting GOT entry) of executable.

• Start application.

2.2 seL4
The seL4 Kernel is an open source microkernel with an
end-to-end proof of implementation correctness and secu-
rity enforcement. The Kernel is developed by National In-
formation Communications Technology Australia (NICTA)
and General Dynamics Mission Systems and was published
in 2014[4]. The Kernel is based on the L4 specification
by Jochen Liedtke[6, 7, 3]. The Kernel only implements
scheduling, minimal virtual memory mangement, interrupt
handling, inter - process - communication and capabilities
based right management. All device drivers are implemented
in the user space and are thus not included in Kernel. The
NICTA developed a small test userland libraries and Ap-
plication to test the kernel implementation. This userland
contains a small platform driver subsystem, a memory man-
agement, an application loader and a small Standard C Li-
brary. The Implantations in this paper are based on this
small userland. [4]

3. ANLALYSIS SHARED LIBRARIES
One of the main reasons to use Shared Libraries is to reduce
the program’s memory footprint. Is this really correct? In
this chapter this problem is discussed as well as the need
of a Dynamic Linker. This chapter shows the memory con-
sumption of Shared Libraries.

3.1 Playground
In this Paper two very small applications are used. The
test application is based on the seL4 test application and
contains task initialization and interprocess communication.
Optimization is disabled while building. Test procedure
means that the root task creates a client process and sends
the initialized data to the client process. The client process
receives this data and sends a String back to the root task.
The client task terminates after sending. Both tasks are
used printf to print something out to UART. The architec-
ture run by the application is a small self made board based
on freesacales ARM Cortex - A5 VF610. [2] The build is
compatible with other Boards based on VF610 (Tested on
Phytec phyCORE R©-Vybrid).

Two versions were created. One statically Linked and one
dynamically Linked. The Dynamic Version is not really
working correctly so that it is only used for binary size cal-
culation. For binary size calculation all debug information
was stripped from the binary and converted to bin file with
objcpy.

3.2 Static Link
If all applications are statically linked against libraries, the
programs contain all symbols they need to run. If there are
many applications the size of the duplicated code is huge
which is a problem. For example every application called
function __libc_start_main. This function initializes the
libc internal. The test application is analyzed by the tool

14

readelf to parse ELF File. The table 1 shows the memory
consumption of the client task binary2. This simple example

File Library Size
crtstuff.o libc 80
common.o libsel4platsupport 1272

libc start main.o libc 508
assert.o libc 64
exit.o libc 98
.

main.o Application 1004
offset + padding 32772

Sum 121980

Table 1: Memory consume of the static Linked client
Task Binary

shows that over 104 object files are needed to create a simple
application.

3.3 Dynamic Link
If the application is linked dynamically the memory con-
sumption of one application shrinks. But a reason against
dynamically linking is that the Shared Library is fully added
to the memory. The consequences are that some components
of the Library never get executed but at a certain point the
memory overhead is accepted. Table 2 shows the memory
consumption of the client task binary3. At first glance the

File Library Size
crtstuff.o libc 80

cpio.o libcpio 896
main.o Application 1004
Data Data 4

ROData Data 280
dynsym 509
dynstr 614
rel.plt 104

plt 176
dynamic 264

got 64
offset + padding 33585

Sum 37476

Table 2: Memory consume of the dynamic Link
client Task Binary

memory consumption seems dramatically smaller but it can-
not run without the sheard libary. So the Shared Library is
added to the memory consumption. Table 3 shows the mem-
ory consumption of the Shared Libraries. What can clearly
be seen is, that the memory consumption is 1 MB higher
than the static linked application. But if 13 static Link Ap-
plications and 13 dynamically linked Applications run at the
same time, the dynamic version will consume less Memory
than the static Link Application because the shared Library
loads only once.

2The original Table has 104 entries
3libcpio can’t build as shared. Error while building elfloader.

Library Size
libc.so 599,36k

libsel4allocman.so 73,60k
libsel4platsupport.so 39,90k

libsel4.so 32,69k
libsel4muslcsys.so 85,20k
libsel4allocman.so 73,60k

libsel4simple.so 35,89k
libelf.so 39,58k

libplatsupport.so 52,07k
libsel4vspace.so 34,35k

libutils.so 35,05k

Sum 1108,23k

Table 3: Memory consumption of the Shared Li-
braries

4. SHARED LIBRARIES IN SEL4
In this chapter one solution to port a dynamic linker and the
capability of Shared Library support in seL4 is described. In
seL4 application loading is implemented in the userland. In
this userland actually no Dynamic Linker exists.

4.1 Approaches
The seL4 Userland uses a library called libmuslc to re-
place the standard C library libc. This library is built stati-
cally. libmuslc contains a Dynamic Linker based on Linux.
One possible approach is to rework this Dynamic Loader for
SeL4. Another version is to integrate a dynamic load in the
ELF loader of libsel4util.

4.2 Architecture
Our suggested architecture to support Shared Libraries in
seL4 uses a server to manage the libraries. An example
architecture is shown in figure 1.

Figure 1: Architecture

The Server is supposed to manage multiply things:

• Client Requests: The Server shall handle request from
Clients

15

• Accesses to Shared Libraries itself: The Server must
contain a list of Shared Libraries mapped in RAM

• Mange capabilities: a List that possesses the capability
to access the Shared Library

4.2.1 Client Requests
One Part of this server is to handle Client Requests. The
Client owns two possible requests:

• get capability: Get capability to map a specific Shared
Library

• add a new Library: Add a new Library to server

• remove Task: Remove a Task from the access to a
Shared Library

For Library identification the Library name is used. The Dy-
namic Section of ELF Files contains the name that Shared
Libraries need. [1]

Get a capability
The Algorithm to load an existing Shared Library is de-
scribed in figure 2. If a client(Dynamic Linker at libsel4util)
wants to access a Shared Library the client calls the server
and asks for the shared Library. The Server takes a look at
a List if the requested shared Library is already mapped. If
it exists the server creates a capability to access the Shared
Library. If it does not exist the server sends an error to the
client.

Figure 2: Load exists Shared Library

Add new Library
The Algorithm to load a new Shared Library is described in
figure 3. If the client recieves an error form the server while
loading a shared library the client copies the new shared
library to RAM and creates a capability to access this part
of memory. This capability is sent to the server. The Server
adds the Library identification and the capability to its list.

Remove task
If a task dies the caller task needs to request the server to
remove the capability to recieve access to the Shared Library.

Figure 3: Load new Shared Libaray

If there is no task any more to access the Shared Library the
server deletes the Shared Library out of RAM.

Task start With all libraries loaded the client copies the
capability to access the server endpoint, shares it with the
new process and starts the process.

4.2.2 Access to Shared Library
The server manages the Shared Library. The server is the
only task possessing full access to the RAM section. The
Client has only the capability to read and execute the Shared
Linearly. The task that creates the Memory Segment is
supposed to dismiss the write access after loading.

4.2.3 Mange capabilities
The server has the capability of managing the capability of
the Clint Tasks. The Kernel obtains a List of all tasks that
have access to share the Libraries.

4.2.4 Problem with this concept
This architecture contains a problem: the Root Task is cre-
ated by the Kernel itself. The Kernel has no Shared Library
Support at all. Thus the Shared Library Server is not cre-
ated. One Solution to this Problem is the Sever Thread that
is the root Task. Another Solution is to link the root task
statically. No matter what solution is pursued the root task
needs to get statically allocated.

In Linux this problem is solved with a helper program. The
”root Process”(called ”init Process”in Linux) may use Shared
Libraries because the Kernel calls the interpreter first. This
interpreter is the Dynamic Linker. The big disadvantage of
this method is that before a program can be stated a helper
program needs to be created and destroyed for every pro-
gram call. Another big disadvantage of this method is the
Filesystem access. In Linux or Unix Systems the Kernel
manages the access to the filesystem. The Helper Program
can access the Filesystem from the beginning. The seL4

16

Kernel only possesses an Image of the Root Task. The Ker-
nel has no filesystem driver because the Filesystem driver is
implemented by the userland. In most microkernel systems
the Filesytem driver is a server. This server is started by
the root process. But if the kernel loads the Helper Pro-
gram the Server does not exist because the root task is not
running at that moment. One solution to this problem is to
add an algorithm to access the filessystem. This increases
the complexity of the helper program a lot.

5. CONCLUSIONS
Dynamic Linking provides big advantages but also big dis-
advantages. For systems with many processes it is highly
recommended to use dynamic linking. One advantage of the
static linking has not been mentioned before. If a hardware
error in RAM at the position of the Shared Library is lo-
cated, all programs that use this Library are corrupted. On
statically Linked systems only one Program is corrupted.

Another question is about the trust that application gives to
the Sever. The Application needs to trust the server because
the server may give a hacked version of the Library to the
application. The application has no control of the version or
variant that is given to the application to access the server.

Due to a lack of time this paper does not elaborate an imple-
mentation. The implantation of a Dynamic Linker takes a
lot of time. The Implementer can use the code of libmuslc
or the GNU libc for some inspiration. The Userland uses
the libelf to read ELF Files. The implantation of libmuslc
or the GNU libc uses an own implementation to read ELF
Files. The usage of the Library simplyfies writing a Dynamic
Linker.

6. REFERENCES
[1] Tool interface standard (tis) executable and linking

format (elf) specification 1.2. Specification, TIS
Committee, May 1995.

[2] D. Brand and A. Werner. Vybrid ’http://scuderia.cs.hs-
rm.de/dokuwiki/doku.php?id=electrics:hardwarepool:vybrid’,
Jule 2015.

[3] A. Gefflaut, T. Jaeger, Y. Park, J. Liedtke, K. J.
Elphinstone, V. Uhlig, J. E. Tidswell, L. Deller, and
L. Reuther. The sawmill multiserver approach. In
Proceedings of the 9th Workshop on ACM SIGOPS
European Workshop: Beyond the PC: New Challenges
for the Operating System, EW 9, pages 109–114, New
York, NY, USA, 2000. ACM.

[4] G. Klein, J. Andronick, K. Elphinstone, T. Murray,
T. Sewell, R. Kolanski, and G. Heiser. Comprehensive
formal verification of an OS microkernel. ACM
Transactions on Computer Systems, 32(1):2:1–2:70, feb
2014.

[5] D. E. Knuth. The Art of Computer Programming.
Addison-Wesley, third edition, 1997.

[6] J. Liedtke. Improving ipc by kernel design. SIGOPS
Oper. Syst. Rev., 27(5):175–188, Dec. 1993.

[7] J. Liedtke. On micro-kernel construction. SIGOPS
Oper. Syst. Rev., 29(5):237–250, Dec. 1995.

17

Improvement of IPC responsiveness in microkernel-based
operating systems

Advanced Operating Systems

Steffen Reichmann
Hochschule RheinMain

Unter den Eichen 5
Wiesbaden, Germany

steffen.b.reichmann@student.hs-rm.de

ABSTRACT
The communication between processes in microkernel-based
operating systems was long time seen as the reason why fast
microkernel-based operating systems are not achievable. The
interprocess communication (IPC) performance made huge
steps forward in the past decades, which was the result of
improvements in both hardware and IPC-mechanisms itself.
In this paper some of these mechanism improvements are
described like combining systemcalls, adding asynchronous
IPC, zero-copy mechanisms and the abandoning of IPC ti-
meouts, in particular for the L4 microkernel of Jochen Liedt-
ke and its latest successor seL4.

Categories and Subject Descriptors
D.4 [SOFTWARE]: OPERATING SYSTEMS

Keywords
Microkernel, IPC performance, L4

1. INTRODUCTION
Common operating systems like Linux and Windows fol-
low the idea of monolithic kernels. In these systems the
performance critical parts of the operating system like dri-
vers and memory management are implemented inside the
kernel-space. Microkernel-based operating systems on the
other hand follow the principle of a minimal footprint. For
deciding which part of functionality belongs inside the ker-
nel Jochen Liedtke formulated the microkernel minimality
principle:

Traditionally, the word ’kernel’ is used to denote the part of
the operating system that is mandatory and common to all
other software. The basic idea of the µ-kernel approach is
to minimize this part, i.e. to implement outside the kernel
whatever possible. [6]

For achieving this idea the microkernel provides a minimal
set of functionality while user-space programs implement the
general functionality of the operating system. In compari-
son to monolithic kernel-based operating systems this means
everything should rather be implemented in user-space than
in kernel-space. For most tasks like drivers this is achieva-
ble and in more than two decades the community managed
to implement more and more tasks in the user-space. But
some problems are still unsolved like handling fast schedu-
ling and memory management outside the kernel-space. On
the upside the minimality principle results in more flexibili-
ty and security as the processes are isolated from each-other
in the user-space and malicious software has less opportuni-
ties for inflicting damage. Furthermore, this gives developers
some opportunities like testing different implementations of
i.e. drivers on-the-fly which grants a much faster and more
dynamic testing environment where a crash of a task won’t
affect the rest of the system like in monolithic kernel-based
operating systems.

The downside is that the design of microkernel-based ope-
rating systems demands more frequent communication bet-
ween the processes which are now implemented in the user-
space. For example if a process needs to read some data from
the file system driver, two systemcalls are needed instead of
just one compared to the same situation in a monolithic ar-
chitecture. In the first systemcall the task sends a request
to the file system driver which is routed over the kernel to
the server. When the server sends the response it has also
to be routed over the kernel which results in the second sys-
temcall. For reducing the overhead of interprocess commu-
nication an operating system based on a microkernel should
avoid unnecessary IPC systemcalls by design.

In the early 1980s Liedtke developed the L3 kernel. It was
already a fully functional microkernel-based operating sys-
tem which was primarily meant for trying some new ideas.
Like every microkernel at that time the L3 kernel lacked in
interprocess communication performance which were at the
order of 100µs per single IPC call. After consequent im-
provements the latest version of L3 was finally renamed to
L4 which had 10-20 times faster IPC compared to its prede-
cessor. The ideas and improvements inspired many revisions
of the application binary interface (ABI) which altered i.e.
the way systemcalls are handled and caused several imple-
mentations of the kernel from-scratch. To this date the IPC

19

performance has made further improvements of which some
are discussed in this paper.

2. RELATED WORKS
The structure of this paper is based on the section ”IPC”
in the earlier work of [4], which alongside the work of [2],
[1] and [5] contain in-depth summary of improvements for
interprocess communication and are the main sources of in-
formation for this paper.

3. IPC IMPROVEMENTS
The communication between processes is critical for the over-
all performance of an operating system especially for micro-
kernel-based ones. Several improvements over the past de-
cades like asynchronous communication and combining IPC
systemcalls have helped to build faster and more responsive
systems. In this section some improvements for the original
microkernel-design of Jochen Liedtke will be shown.

3.1 Adding combined IPC systemcalls
In a typical IPC scenario a task is requesting some informa-
tion from a server (see also figure 1). For achieving this a
task would send a request which is delivered by the kernel
and results in the sender’s first systemcall. After the request
is sent the task triggers its second systemcall while waiting
for the reply. On the server-side the server-task is waiting
for requests and gets the message of the requesting task deli-
vered by the kernel (the servers first systemcall). The server
replies with its second systemcall which is followed by its
third by telling the kernel it is ready for the next message.
The receiving task gets its data by its third systemcall from
the kernel.

Figure 1: Combined IPC

By adding combined versions of ”send&receive” and ”rep-
ly&wait” two systemcalls can be avoided. Furthermore, af-
ter the combined ”send&receive” call is made the kernel per-
forms a direct context-switch because the task will block
anyway by awaiting its reply [4].

3.2 Adding asynchronous IPC
The original design of the L4 only had synchronous IPC
mechanisms. With this style of communication there was no
need for buffering messages in the kernel and the managing
could be kept simple. But there were also some drawbacks.
It forced the programmers to implement multi-threading
processes which added complexity of synchronization to the
task. For example separate threads per interrupt source were
necessary if a server needed to listen on IPC and interrupts
at the same time, otherwise a situation like in figure 2 could
occur.

Figure 2: Synchronous IPC without multithreading

In this example only one instance of the server’s task ’Ser-
ver z’ exists and has to be shared with every other task or
interrupt source. As the processing of interrupts is preferred
over normal tasks like ’Task x’ the processing of interrupts
will always start first. With many interrupt sources wanting
to communicate with the only server instance, this scenario
can repeat and slow ’Task x’ down and in the worst case lead
to starvation while in a multi-threaded ’Server x’ instance
every communication partner can have its own instance.

In the seL4 kernel asynchronous communication is available
to every task which makes a non-blocking communication
via endpoints possible. Some re-implementations of the L4
kernel like the OKL4 abandoned synchronous IPC comple-
tely and replaced it with virtual IRQs for handling messa-
ging, which are essentially asynchronous notifications. This
approach is even more pure in the way of targeting minima-
lism of the kernel by getting rid of more than one way for
handling IPC. When using multicore-systems the negative
aspect of blocking synchronous communication is even big-
ger when the communicating tasks are running on separate
cores. With this in mind asynchronous IPC could be the
more common way of communicating in microkernel-based
operating-systems in the future. [4]

3.3 Zero-copy & virtual registers
Traditionally, when transferring data from task ”A” to task
”B”, two copies are necessary. The first copy transfers data
from the accessible address-space part of the sender to the

20

shared address-space which is managed by the kernel. After
the data is copied to the shared address-space it is transfered
to its destination in the receiver’s accessible address-space.
The approach of single-copy reduces the transportation costs
by one copy. With this mechanism the data is transferred
directly from the source-address to its destination in the ac-
cessible address-space of the receiving task. The idea behind
the zero-copy mechanism is to go one step further: to elimi-
nate copying actions completely (see also 3).

Figure 3: Copying data in different steps, after figure
3 & 4 from [5]

As the kernel always initiates an IPC from the requesting
task, the context is switched to the receiving task without
altering the message registers so the receiving task can use
the exact same information instantly without the necessity
of copying data beforehand. To make this possible, a set of
registers have to be present which can be accessed by both
communicating parties.

As the number and size of registers are platform-dependent,
the concept of configurable virtual message registers was
introduced in a successor of the L4 kernel the L4Ka (also
known as Pistachio), developed by the University of Karls-
ruhe, germany in collaboration with the DiSy group at the
University of New South Wales, Australia. The virtual mes-
sage registers obscure the physical available registers, which
allows a better platform independency and improve the IPC
performance for messages bigger than the size of the actual
physical registers. The seL4 kernel inherited this mechanic
by mapping some virtual message registers to existing, free
physical registers and pinned the rest of the virtual messa-
ge registers to an extra per-thread space for avoiding page-

faults. The implementation obscures the difference between
the virtual registers and the physical ones via macros for a
transparent use for the programmer hence he does not need
to bother about it. [4]

3.4 Abandoning of long IPC
For sending bigger bulks of data at once, multiple buffers
could be specified in a single IPC invocation, which could be
delivered in a single copy. This approach could lead to page-
faults on the sender- and receiver-side, which made the hand-
ling of nested exceptions necessary by a page-fault-handler
which had to be implemented in the user-space. The hand-
ler had to be invoked, while the kernel is still handling the
IPC, which leads to more kernel-complexity. The benefits of
copying bigger bulks of data at once via long IPC can’t be
emulated without some overhead, but were rarely used in
practice. Instead the use of shared buffers was preferred for
the delivery of big data chunks, which lead to the decision of
abandoning long IPC from seL4 in favor of less complexity.

3.5 Abandoning of IPC timeouts
Without prevention mechanisms, a task could theoretically
block forever while awaiting a synchronous response from
a task, that never arrives. This is also a possible approach
for a malicious task to force a denial-of-service attack. For
example, such a task could send a synchronous request to
a server, without attempting to get the reply, which would
lead to an everlasting blocking on the server task. In the
original L4 kernel the prevention method were configurable
timeouts, but it was hard to find well-balanced time peri-
ods for non-trivial systems, so in reality the timeout period
was often set to infinity, which made this mechanism useless.
Furthermore, the timeout mechanism for IPC also added fur-
ther complexity to the handling of wakeup-lists. Traditional
watchdog timers showed to be a better solution for detecting
non-reacting IPC communication, i.e. resulting from dead-
locks, hence timeouts for IPC got abandoned.[4]

4. CONCLUSION
In this paper, some mechanisms of IPC improvements were
shown and described. The overall performance of microkernel-
based operating systems increased tremendously over the
past decades which was partly achieved by better hardwa-
re, but also by improvements in IPC mechanics. This redu-
ces the weight of the argument, the overhead of necessary
IPC communication would deny a fast responding operating
system. There are still some unsolved problems, like hand-
ling memory management and fast scheduling in user-space,
but the improvements in overall performance in combina-
tion with the upsides of the microkernel architecture itself,
lead to a growing number of systems, especially in safety
and security critical areas. An example of a possible usage
is described in [3], an approach of improving security for
smartphones, based on the OKL4.

21

5. REFERENCES
[1] B. Blackham and G. Heiser. Correct, fast, maintainable

- choose any three! In Proceedings of the Third ACM
SIGOPS Asia-Pacific Conference on Systems, APSys
’12, pages 13–13, Berkeley, CA, USA, 2012. USENIX
Association.

[2] B. Blackham, Y. Shi, and G. Heiser. Improving
interrupt response time in a verifiable protected
microkernel. In Proceedings of the 7th ACM European
Conference on Computer Systems, EuroSys ’12, pages
323–336, New York, NY, USA, 2012. ACM.

[3] L. Davi, A. Dmitrienko, C. Kowalski, and M. Winandy.
Trusted virtual domains on okl4: Secure information
sharing on smartphones. In Proceedings of the Sixth
ACM Workshop on Scalable Trusted Computing, STC
’11, pages 49–58, New York, NY, USA, 2011. ACM.

[4] K. Elphinstone and G. Heiser. From l3 to sel4 what
have we learnt in 20 years of l4 microkernels? In
Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, SOSP ’13, pages
133–150, New York, NY, USA, 2013. ACM.

[5] J. Liedtke. Improving ipc by kernel design. SIGOPS
Oper. Syst. Rev., 27(5):175–188, Dec. 1993.

[6] J. Liedtke. On micro-kernel construction. In
Proceedings of the Fifteenth ACM Symposium on
Operating Systems Principles, SOSP ’95, pages
237–250, New York, NY, USA, 1995. ACM.

22

Side Channel and Covert Channel Attacks on Microkernel
Architectures

Alexander Baumgärtner
Hochschule RheinMain

Wiesbaden, Hessen
alexander.b.baumgaertner@student.hs-

rm.de

Florian Schneider
Hochschule RheinMain

Wiesbaden, Hessen
florian.schneider@hs-rm.de

ABSTRACT
This paper gives an overview of side channel and covert
channel attacks on microkernel architectures. In most cases,
the seL4 microkernel [6, 8, 11] or the Fiasco.OC microker-
nel [5] is used as sample architecture. After a general in-
troduction to side channel attacks, so-called timing chan-
nels and the corresponding mitigation strategies instruction-
based scheduling and cache colouring are presented. Side
channels leak data unintentionally, whereas covert channels
are used intentionally to send and receive data [18]. Whereas
timing channels can only be dealt with empirically on the
seL4, they are a good example of a side channel attack which
cannot be addressed by formal verification. Storage chan-
nels use the storage of a system in order to perform a com-
munication between two processes which are not allowed to
communicate according to the security policy. Furthermore,
a storage channel attack on the Fiasco.OC [5] microkernel,
which exploits the implementation of the memory manage-
ment, is described. In general, it is possible to make use of
formal verification in order to prove whether such attacks
can be performed on a system. For example, it is proved
that storage channel exploits cannot be performed on the
seL4 microkernel.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection

General Terms
Reliability, Security, Verification

Keywords
microkernel, seL4, Fiasco.OC, side channel, covert channel,
timing channel, storage channel, mitigation, cache colouring,
instruction-based scheduling

1. INTRODUCTION
Side channel attacks use some kind of physical data like
power consumption, timing, sound or the heat of the device

in order to break a cryptosystem [14]. These kinds of at-
tacks do not break the algorithms of the cryptosystem, but
use additional information from at least one side channel to
get secret data. In general, it is hard to defend a system
from side channels attacks. The first side channel attacks
were timing attacks by Paul C. Kocher [9]. He measured
the time needed for computing operations in order to derive
secret data like private keys. Using this data, he managed to
break common cryptosystems and cryptographic protocols,
e.g. RSA [13] and the Diffie-Hellman key exchange [4].

In order to make a device resistant against attacks that rely
on physical access to the hardware, sensors that recognize
such attacks can be included [14]. If such a sensor recog-
nizes an attack, the device can start defending against it,
e.g. by erasing secret information like private keys. How-
ever, adding sensors to the hardware is expensive and there-
fore will not be suitable for cheap microkernel architectures.
In addition, it does not eliminate all kinds of attacks. For
example, timing attacks, which measure the time needed for
different requests sent over the network, cannot be recog-
nized by such sensors. These attacks must be mitigated by
the underlying software, e.g. by the microkernel installed on
the device. In this paper, side channels that rely on physical
characteristics of the hardware are not discussed. Instead,
the focus is on the ones caused by the microkernel imple-
mentation and possible countermeasures.

Covert channel attacks use a channel which is ”not intended
for information transfer at all” [10] for passing data between
two components of a system. The Trusted Computer Sys-
tem Evaluation Criteria (TCSEC, also known as the Orange
Book) [17] divides covert channel attacks into storage chan-
nels and timing channels. Storage channels use the internal
storage of a computer system for transferring data; whereas
timing channels transmit data by manipulate response times
between two components.

Similar to side channel attacks, it is hard to protect a system
from attacks using covert channels. Anderson [2] showed in
1972 that in a complex computer system, there is always
a risk that unknown covert channels might exist. However,
countermeasures like a secure design can minimize such haz-
ards.

In short, side channels leak data unintentionally, whereas
covert channels are used intentionally to send and receive
data [18]. However, it is sometimes difficult to distinguish

23

to which of these categories an attack belongs to. Cock et
al. [3] state that a trusted system does not leak data in-
tentionally and therefore any data leak of such a system is
a side channel rather than a covert channel. For this rea-
son, they call the timing channels on the seL4 microkernel
discussed in their paper side channel attacks. In contrast,
Peter et al. [12] state that a path of communication which is
not intended to be used that way is a purposely used covert
channel. They also apply this definition to a trusted micro-
kernel. Therefore, both groups of authors have a different
wording and opinion on whether a weakness of a microker-
nel implementation is a side channel (caused by the kernel
implementation) or a covert channel (constructed by an at-
tacker). The categorizations of the respective authors are
adopted in this paper, but one should keep in mind that an
exact categorization is usually difficult.

This paper discusses side channel attacks and countermea-
sures with regard to microkernel architectures, focussing on
the seL4 and the Fiasco.OC microkernel. The seL4 is a se-
cure version of a L4 microkernel whose functional correctness
has been formally proved [8]. Therefore, common security
and performance issues like buffer overflows or deadlocks
cannot occur with the seL4 implementation [11]. However,
timing attacks are still possible on the seL4 and therefore
require adequate countermeasures [7]. In contrast, such a
formal proof of correctness does not exist for Fiasco.OC.

Section 2 discusses timing channels and countermeasures on
the seL4 microkernel. These attacks use timing information
of different system events for transferring data. They can
be divided into two groups: Attacks which rely on local ac-
cess to the microkernel and remote timing attacks. Section 3
demonstrates a storage channel attack on the Fiasco.OC mi-
crokernel that makes use of a faulty implementation of its
storage management. Finally, section 4 summarizes the side
channel attacks discussed in this paper and suitable coun-
termeasures.

2. TIMING CHANNELS
A timing channel is used by processes or events on an op-
erating system to exchange information by bypassing the
system. The bypass is achieved by using timing information
of different events on the system, e.g. by measuring their
execution time. As mentioned in [3], they are especially a
problem in security-critical systems. Despite the fact that
the seL4 microkernel architecture has no storage channels as
proved by [11], its vulnerability to timing channel attacks
can only be dealt with empirically.

The main goal of dealing with timing channel attacks is to re-
duce the bandwidth of a timing channel between two system
events. The following section describes several exploiting
techniques and their corresponding countermeasures. Only
black box techniques are considered as they are not interact-
ing with the systems software directly. It is of great essence
to establish rules on how to deal with timing attacks which
do not lead in slowing the seL4 architecture down.

As presented in [3], the cache-contention channel is a high-
bandwidth timing channel. In this channel, a sender and
a receiver share the same amount of blocks in a processors
cache. The timing channel exists if the sender is able to

manipulate the receiver’s blocks within the cache. The cor-
relating event, which can be monitored here, is the memory
access time of the receiver. Measuring the time between such
events can be achieved by using a receiver clock. The under-
lying channel is also represented by a second clock. While
measuring the time a receiver has access to two clocks and
the sender controls the corresponding clock rates.

In general, counter measurement strategies can be divided
in three categories: 1) Only allowing the receiver to have
one clock. That means that the receiver is restricted to
its program counter and only this. Any further access, e.g.
to the wall-clock, time is restricted and all events must be
synchronized with the program counter in order to measure
event times. 2) Restricting the sender’s ability to influence
the receiver’s clock rate by avoiding the receiver to interact
with the sender’s blocks in the cache. 3) Adding noise to
the clocks so the receiver cannot calculate the clock rate so
easily.

Figure 1: Adding noise to a sender’s clock by using
anti-correlated / uncorrelated noise [3]. (b) = axis
value in bits

Figure 1 shows how much noise is needed to reduce the ca-
pacity of a 12-bit channel. Introducing noise to a clock comes
with a high price. It degrades the systems performance mas-
sively. As illustrated in figure 1, the amount of uncorrelated
noise increases asymptotically while reaching a capacity of
zero.

Due to the lack of performance that comes with adding noise
to a sender’s clock, the following mitigation measures do not
use noise-adding techniques but decrease the signal on the
channel. The considered techniques are instruction-based
scheduling and cache colouring [3]. To understand how these
techniques work, it is necessary to show how a channel can
be exploited by an attacker in practice.

Figure 2 shows a typical exploitation. Each cache consists of
several lines. A line is a byte block where each block has the
same length. A block has an equally sized memory block and
a correlating content in the memory block. The cache lines
hold a fixed subset of memory blocks and are so called set
associative. The block itself can be addressed by a unique
index bit. Furthermore, the cache lines are partitioned sets
of an identical size. The cache colour can be described as
a particular subset of the cache in which the memory block
lies. For example: The sender on the left side of figure 2 and
the receiver on the right side do not share the same memory
partitions. The arrays A and B cover the L2-cache of the
CPU. Although they are covering all cache sets, their mem-
ory is allocated from adjoining physical memory. At first,

24

Figure 2: Pseudocode of seL4 preemption tick ex-
ploitation [3]

the receiver fills the cache line with its own data. While do-
ing so, it measures its own progress of filling the cache using
the measure()-helper method. In the meantime, the sender
touches a fixed number S of lines of the cache. On the other
side again, the receiver sees the number of lines touched
within a given interval R depending on S. The example uses
the preemption tick to find the measurement interval. In
this case, it represents the sender’s clock rate. So as earlier
described, the counter measurement must prohibit that the
receiver is able to use the preemption tick to determine the
sender’s clock. The problem in this case is the round-robin
scheduler of the seL4 architecture, as it provides a real-time
clock erroneously.

As one of the two counter measurements presented in this
paper, instruction-based scheduling restricts the possibility
for the receiver to use the preemption-tick. The seL4 allows
receivers to create their own helper thread to access the pre-
emption tick. To counteract this problem, the instruction-
based scheduling needs to control kernel-scheduled tasks by
using the performance management unit (PMU) to trigger
preemptions after a fixed number of instructions executed
in the past. The PMU will generate an exception after the
fixed number of expired instructions. As stated in [3], this
would only require changing eighteen lines of the kernels
source code. The main goal of this counter measurement is
to reduce the available bandwidth.

The second counter measurement method is called cache
colouring. In contrast to instruction-based scheduling, cache
colouring does not deny the receiver to use the wall-clock
time. Instead, this method colours the caches between sender
and the receiver. Colouring takes place by dyeing physical
memory on the page level using different colours for each
disjunct partition. This directly prevents contention.

Figure 3 shows the colouring of partitions on the Exynos4412.
The least five bits (4-0) of the physical address (PA) are
indexed. Lines 15-5 select one of 2048 possible 16-way as-
sociative sets. The frame number is given by the last 20
bits from 12 to 31 of the PA. Covering a set with a certain
frame depends on its location. If two frame addresses vary
in their colour bits, they will never collide. The given phys-

Figure 3: Example of cache colouring on a
Exynos4412. Coloured bits are 15-12 as they are
marked bold. [3]

ical memory can be divided into 16 coloured pools. Each
disjunct partitions will receive its own colour from the pool.
For the seL4, not only user data and program code will be
covered, but also the kernels heap. This can be achieved by
using the kernels allocation model as described by [7]. Cur-
rently, there is a restriction to cache colouring within the
Level 1 cache. Because of their page size, most L1 caches
only have one The cache colour which means the cache needs
to be flushed on a partition switch. Otherwise, it would be
possible to create a timing channel because of the absence
of disjunct partitions.

But there are some costs of the counter measurement strate-
gies presented in this section. While the instruction-based
scheduling can be easily implemented by removing the timer
with the PMU, cache colouring has two costs. The first one
is to flush the partition at each context switch. For example
on a x86, it is very expensive, because it is not possible to
select a cache for flushing directly. The other cost depends
on the applications working set. As described in [15] it can
be neglected if it is only half the size of the cache size.

3. STORAGE CHANNELS

Figure 4: Effective isolation (left side) and ineffec-
tive isolation (right side) between two processes in
a microkernel environment. [12]

Storage channels make use of some kind of internal storage
of a system in order to pass data between two components
which are not allowed to communicate with each other.

The left side of figure 4 shows how such an isolation between
two components of a system is supposed to work: The pro-
cess shown on the left side has been compromised by mal-
ware and tries to send secret data to an attacker over the
Internet. However, the rights to access secret data and to
communicate over the Internet are restricted. This means
that the component infected by malware is able to contact

25

the attacker over the Internet, but it is unable to read the
desired secret data. In contrast, the component on the right
side has access to the secret data, but it cannot communicate
over the Internet. This module has also been compromised
and acts as a collaborator. It tries to send the secret data
to the process on the left side, which is then supposed to
forward it to the attacker using its Internet connection. As
the microkernel ensures that all processes are isolated and
therefore communication between them is impossible, the
attacker cannot get the secret data. Although an attacker
was able to compromise two separate processes, an effective
isolation by the microkernel prevents a successful attack.

In contrast, the right side of the figure shows the same attack
on a microkernel with insufficient isolation between these
two components. In this case, the attacker will successfully
receive the secret data. The collaborator process can bypass
the isolation and send secret information to the malware
infected process which forwards it to the attacker over the
Internet.

To get a high amount of security, it is helpful to keep the
trusted computing base (TCB) as small as possible. The
TCB covers all components of a system which are necessary
to provide a secure environment [16]. This implies that any
security flaw in one component of the trusted computing
base potentially affects the security of the whole system.
Therefore, the size of the TCB should be kept as small as
possible in order to avoid security issues [6].

However, this does not imply that a microkernel is always
secure just because a microkernel has a small code foot-
print. because it is a kernel consisting of a small amount of
code. For example, the Fiasco.OC consists of about 20,000
to 35,000 lines of code [6], but its security has not been
formally proved. Peter et al. [12] found out that the inter-
nal memory management of Fiasco.OC unintentionally pro-
vides a storage channel with high bandwidth and is therefore
unsuitable for ensuring strict isolation in high-security con-
texts. In terms of security, the name ”Fiasco” seems to be
a self-fulfilling prophecy. In contrast to Fiasco.OC, the for-
mal verification of the seL4 microkernel proves that storage
channels inside of the kernel are impossible [11].

The reason why a storage channel in the Fiasco.OC exists is
the implementation of its memory management. The micro-
kernel has a quota mechanism which distributes the available
kernel memory to every task and ensures that the quota is
not exceeded. In general, this technique ensures that every
task has access to its associated amount of storage, which
is independent of other tasks and their memory. However,
Fiasco.OC enables an attacking task to cause fragmentation
of kernel memory and therefore to block more kernel mem-
ory than the quota allows. This fragmentation can be used
both for blocking a large amount of memory resources and
also as a storage channel.

The memory management unit of Fiasco.OC consists of two
parts, a buddy allocator and slab allocators. The buddy al-
locator provides memory in the range of 32 bytes to 16kB,
which is not always a power of two. As this might cause frag-
mentations of the memory quickly, most of the allocations
are regulated by slab allocators, which in turn get memory

from the buddy allocator. If a task needs memory for an
object the first time, the slab allocator requests a certain
amount of memory (called a slab), which is usually much
bigger than the size of the object. One slab can only store
objects of the same type. After the slab was attached to it
by the buddy allocator, the object is stored within this slab.
If more objects are created, they are added to the existing
slab if the remaining memory of it is sufficient. Otherwise,
a new slab is allocated as needed. The quota of remaining
memory is only affected by the size of the object, regard-
less of the slab size. A slab may contain objects of different
tasks, but each task can only access its own objects.

If objects are deleted, they are removed from their corre-
sponding slab. A slab itself is only removed if it does not
contain an object anymore. In particular, objects within
different slabs cannot be rearranged by moving them to an-
other slab.

for each slab allocators do
stride = sizeof(slab)/sizeof(object)
while not quota exhausted do

if (counter mod stride) == 0 then
allocate permanent kernel object

else
allocate temporary kernel object

end
increment counter

end
free all temporary kernel objects

end
Algorithm 1: Pseudocode by [12] for memory depletion on
the Fiasco.OC kernel.

Therefore, a malicious task can allocate multiple slabs by
repeatedly allocating as many objects as possible and then
destroying all except one per slab (see algorithm 1). If all
memory storage is blocked by slabs which mostly just con-
tain one object of a rarely used type, no more slabs for ob-
jects of other types can be created. Therefore, the malicious
task can effectively occupy more memory than its quota al-
lows. In general, the amount of blocked kernel memory using
this attack depends on the total numbers of slabs available,
the number of objects each slab can store and the execution
order of allocating and freeing objects. Peter et al. managed
to block six times the amount of memory which is assigned
to a process. The unused allocations are not tracked by the
memory quota, which means the security mechanisms of the
kernel cannot control them. In addition, this behaviour can
also be used by attackers as a storage channel.

In order to do this, the kernel memory is filled with a data
structure called mapping trees. This paper does not work
out the details of this data structure in order to keep the fo-
cus on the main idea behind this covert channel attack. For
more details about mapping trees, please refer to the origi-
nal paper [12], which gives in-depth information about them
and their implementation in Fiasco.OC. In order to under-
stand how this attack works, it is sufficient to know that
mapping trees are a data structure whose size is variable.
If the size of one mapping tree exceeds a certain limit, it is
moved to a bigger slab. This makes it easier to implement a
storage channel, because instead of creating and deleting dif-

26

ferent objects repeatedly, the sender and receiver can simply
change the size of one mapping tree. The following setting
can be used to transfer one bit:

First of all, one slab is prepared for storing the data which is
transferred between sender and receiver. For that purpose,
all slots of it except one are filled with mapping trees. This
empty slot is used for transferring one bit of data each time
(see figure 5). If the sender wants to send a 1, it fills this
empty slot with another mapping tree. For sending a 0, the
empty slot remains empty. The receiver can read this data
easily by also trying to fill the slot with another mapping
tree. The return code shows if the operation is successful or
not. If this operation is successful, the receiver knows that
the slot was empty and therefore a 0 was sent. Otherwise,
if filling the empty slot fails, this means that the slot was
filled before and thus a 1 was sent.

In order to fill the last empty slot of the slab used for trans-
mitting data, both sender and receiver prepare another slab
with a smaller slot size. In this slab, one slot stores a map-
ping tree. If the size of this mapping tree exceeds a certain
size (which can easily be calculated), the microkernel moves
it to bigger slab. This bigger slab is the one that was previ-
ously prepared for transferring data.

Obviously, further optimizations are necessary in order to
realize a storage channel with high bandwidth. The main
limitation is the 1000 Hz timer used by Fiasco.OC. In order
to increase the transfer rate, multiple channels at the same
time can be used. In this case, an attacker can send many
bits at the same time using additional slabs. Each of the
slabs can be used to send one bit each time as described
before.

In order to transfer data between sender and receiver cor-
rectly, it is essential to synchronize their operations precisely.
For that purpose, a sleep mechanism of Fiasco.OC, which
accepts sleeping times in 1 ms steps, and a global clock ac-
cessible for all processes can be used. Another possibility
on x86 platforms is utilizing the time stamp counter (TSC),
which is much more precise.

However, if the system as a whole is fully loaded, there is
no guarantee that the processes for sending and receiving
data using the storage channel get enough execution time in
order to transfer their data correctly. Therefore, one should
consider to either make use of error correction or to use one
data channel for synchronizing both processes. The disad-
vantage of error correction is the reduced bandwidth, but it
also works in cases where only one data channel is available.

Using further optimization techniques, Peter et al. managed
to transfer data using the previously described side chan-
nel with bandwidths of 1000 bits per second on an AMD
and a MinnowBoard platform using the precise time stamp
counter. Even without the TSC, a remarkable bandwidth of
500 bits per second was reached.

The only reliable way to prove that no storage channel ex-
ists on a microkernel or any other system is using formal
verification. Otherwise, storage channel attacks might be
possible. In contrast to Fiasco.OC, such a formal proof ex-

ists for the seL4 microkernel [8] and therefore such attacks
cannot be performed on it.

Figure 5: Data transmission between two separated
processes using a storage channel. [12]

4. CONCLUSION
In this paper, two categories of side channel and covert chan-
nel attacks were described: storage channels and timing
channels. The former can be excluded using formal veri-
fication, whereas the latter can only be dealt with empiri-
cally. The seL4 microkernel architecture was tested using
formal methods, whereas Fiasco.OC is lacking such a proof
of correctness. Side channel attacks on microkernel archi-
tectures are still a problem on modern architectures. As
described in section 2, it is not only a local threat which
has to be evaded by restricting the attacker’s resources e. g.
using cache colouring or the access time as in instruction-
based scheduling. It is also a future task to prevent remote
channel attacks like OpenSSL attacks [3] which has to be
addressed by upcoming microkernel architectures. Because
even if the local system is save, remote vulnerabilities like
the current TLS implementation [1] require a careful system
measurement in order to prevent attackers from gathering
confidential information or realizing an ongoing attack in the
first place. The only way to prove that a microkernel makes
storage channel attacks impossible is using an appropriate
formal verification. The faulty implementation of the mem-
ory management of Fiasco.OC makes it possible to construct
a storage channel with a high bandwidth of up to 1000 bits
per second. Furthermore, the idea behind this attack can
also be used for memory depletion. In environments that
require a high amount of security, one should consider using
a microkernel whose correctness has been proved by formal
verification. Obviously, one should also consider which as-
pects are covered by this proof and how to deal with the
remaining threats.

5. REFERENCES
[1] N. J. Al Fardan and K. G. Paterson. Lucky thirteen:

Breaking the tls and dtls record protocols. In
Proceedings of the 2013 IEEE Symposium on Security
and Privacy, SP ’13, pages 526–540, Washington, DC,
USA, 2013. IEEE Computer Society.

[2] J. P. Anderson. Computer security technology
planning study. Deputy for Command and

27

Management Systems, HQ Electronic Systems
Division (AFSC), 1972.

[3] D. Cock, Q. Ge, T. Murray, and G. Heiser. The last
mile: An empirical study of timing channels on sel4.
In Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’14,
pages 570–581, New York, NY, USA, 2014. ACM.

[4] W. Diffie and M. Hellman. New directions in
cryptography. Information Theory, IEEE Transactions
on, 22(6):644–654, Nov 1976.

[5] T. U. Dresden. The fiasco microkernel - overview.
https://os.inf.tu-dresden.de/fiasco/, 2014. Accessed:
2015-07-13.

[6] G. Heiser. Security fiasco: Why small is necessary but
not sufficient for security.
https://microkerneldude.wordpress.com/2014/12/23/security-
fiasco-why-small-os-kernel-is-necessary-but-not-
sufficient-for-security/, 2014. Accessed:
2015-07-13.

[7] G. Klein, J. Andronick, K. Elphinstone, T. Murray,
T. Sewell, R. Kolanski, and G. Heiser. Comprehensive
formal verification of an os microkernel. ACM Trans.
Comput. Syst., 32(1):2:1–2:70, Feb. 2014.

[8] G. Klein, K. Elphinstone, G. Heiser, J. Andronick,
D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt,
R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and
S. Winwood. sel4: Formal verification of an os kernel.
In Proceedings of the ACM SIGOPS 22Nd Symposium
on Operating Systems Principles, SOSP ’09, pages
207–220, New York, NY, USA, 2009. ACM.

[9] P. C. Kocher. Timing Attacks on Implementations of
Diffie-Hellman, RSA, DSS, and Other Systems. In
Proceedings of the 16th Annual International
Cryptology Conference on Advances in Cryptology,
CRYPTO ’96, pages 104–113, London, UK, UK, 1996.
Springer-Verlag.

[10] B. W. Lampson. A note on the confinement problem.
Commun. ACM, 16(10):613–615, Oct. 1973.

[11] NICTA. What is proved and what is assumed sel4.
https://sel4.systems/FAQ/proof.pml, 2014. Accessed:
2015-07-13.

[12] M. Peter, J. Nordholz, M. Petschick, J. Danisevskis,
J. Vetter, and J.-P. Seifert. Undermining isolation
through covert channels in the fiasco.oc microkernel.
Cryptology ePrint Archive, Report 2014/984, 2014.
http://eprint.iacr.org/.

[13] R. L. Rivest, A. Shamir, and L. Adleman. A method
for obtaining digital signatures and public-key
cryptosystems. Commun. ACM, 21(2):120–126, Feb.
1978.

[14] B. Schneier. Secrets & Lies: Digital Security in a
Networked World. John Wiley & Sons, Inc., New
York, NY, USA, 1st edition, 2000.

[15] D. Tam. Man-
aging shared l2 caches on multicore systems in software.
http://www.ideal.ece.ufl.edu/workshops/wiosca07/P4Slides.pdf,
2007. Accessed: 2015-07-12.

[16] TechTarget. What is trusted computing base (tcb)? -
definition from whatis.com.
http://searchsecurity.techtarget.com/definition/trusted-
computing-base, 2015. Accessed:
2015-07-13.

[17] United States Government Department of Defense.
Department of Defense Trusted Computer System
Evaluation Criteria, 1985.

[18] J. Wray. An analysis of covert timing channels. In
Research in Security and Privacy, 1991. Proceedings.,
1991 IEEE Computer Society Symposium on, pages
2–7, May 1991.

28

Towards policy-free Microkernels

Olga Dedi
Hochschule RheinMain

Unter den Eichen 5
Wiesbaden, Germany

olga@dedi.de

ABSTRACT
Microkernels are aiming to be as generic and adaptable as
possible. To achieve this goal the design pattern of ”sep-
aration of mechanism and policy” is used for microkernel
development. Until now, there are policies dwelling in cur-
rent microkernel implementation. This paper aims to iden-
tify policies used in microkernels and points out a possible
existing solution.

1. INTRODUCTION
Although the concept of microkernels is not a new idea, it

got only in the late 90s serious attention, initiated through
Jochen Liedtke’s paper On µ-Kernel Construction. Liedtkes
definition of a kernel and especially a microkernel is as fol-
lowed.

Traditionally, the word ’kernel’ is used to denote
the part of the operating system that is manda-
tory and common to all other software. The basic
idea of the microkernel approach is to minimize
this part, i.e. to implement outside the kernel
whatever possible.

Jochen Liedtke [Lie95]

Therefore, the key idea is to separate policy and mech-
anism, so that the microkernel implements only the basic
functionalities which are needed to drive the system and
leaves the strategical policies to be implemented in user
space. Thus, making the microkernel less complex and the
overall system more flexible [KW07]. Nowadays microkernel
based operating systems are mainly deployed in embedded
systems and especially in safety critical applications since
the reduced complexity makes a certification according to
IEC 61508, the international standard for Functional Safety
of Electrical/Electronic/Programmable Electronic Safety-re-
lated Systems or even a formal verification possible. But
even after several implementations and further advancement
to the original L4 API there is no fully policy-free microker-
nel implementation [Sto07]. One of the main problems is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
.

the scheduler, that still remains as part of the microkernel
concept.

Section 2 will discuss CPU-scheduling and distinguish be-
tween scheduling policies and the actual assigning of CPU
time. Afterwards, an existing approach towards policy-free
microkernels will be discussed in section 3, followed by a
conclusion in section 4.

2. SCHEDULING: SEPARATION OF POL-
ICY AND MECHANISM

Generally, scheduling is used to describe the process of
granting CPU resource to a specific thread whereby the or-
der of the threads to which the CPU resource is granted is a
fixed scheduling scheme [FS96]. Schedulers are usually im-
plemented as part of the kernel, because the reassignment of
CPU resource is only possible in kernel mode. The general
definition of scheduling is inaccurate as scheduling only de-
notes the establishment of a schedule which defines the order
in which the CPU resource is assigned. The actual mech-
anism of administrating the CPU resource is managed by
the dispatcher. The dispatcher carries out context switches.
This means that the stack of the current thread has to be
saved and replaced with the stack of the new thread. As a
consequence, the dispatcher is the only necessary part that
is required to be implemented in the kernel, leaving the pos-
sibility to implement the scheduler outside the kernel. This
separation allows easily adaptation of scheduling policies to
the needs of specific applications.

3. POLICY-FREE APPROACH TO MICRO-
KERNELS

Since scheduling is the one policy still implemented in
the kernel an approach is needed to separate the dispatch-
ing mechanisms and scheduling policies, allowing scheduling
to be implemented in user space but minimize the result-
ing overhead as much as possible to justify the separation
in order to gain benefits like more generic microkernel and
easily adapting schedulers that supports multiple schedul-
ing policies in one OS. Although the need for the described
flexibility exists for some time now there is no actual imple-
mentation of such a microkernel, it remains a major research
topic, though. One popular Paper in this subject is ”CPU
Inheritance Scheduling” [FS96] by Ford and Susarla. They
introduce a scheduling Framework where threads can work
as scheduler for other threads allowing them to implement
scheduling completely in user mode and building a logical
scheduling hierarchy by stacking scheduler threads. As one

29

of the major milestones on this subject this approach will
be presented in this paper and can be looked up in detail in
[FS96].

3.1 CPU Inheritance Scheduling
”CPU Inheritance Scheduling” is a framework proposed

by Ford and Susarla that introduces an approach where
threads, implemented in user mode, can act as scheduler
for other threads. This allows the implementation of differ-
ent scheduling policies without having to adjust the kernel
code. Furthermore, it is possible to implement scheduling
hierarchies where multiple scheduling policies can be imple-
mented by stacking scheduler threads. These threads can
donate their CPU resource to client threads. Furthermore,
scheduler threads can be notified, when the client thread,
to which it donated time, does not need it anymore so that
the scheduler can give it to another thread. This happens
e.g. when a thread blocks. When a thread awakens the cur-
rently running thread is preempted and the CPU resource
is given back to the scheduler. The dispatching mechanism
does not need to know anything about CPU usage, thread
priorities, clocks and time, since this is all implemented by
the framework so the dispatcher has to switch contexts.

Figure 1 shows a exemplary scheduling hierarchy, where
the red circles represent threads acting as schedulers and the
yellow circles are ordinary threads. Each scheduler imple-
ments a different scheduling policy. Only the root scheduler
implements a fixed-priority scheduling policy and is there-
fore the only thread which can be used for scheduling real-
time threads. Besides the real-time threads there are other
client threads scheduled by the root scheduler which are
schedulers themselves. They also can schedule ”ordinary”
threads or other scheduler threads, building a logical hierar-
chy of schedulers. If a new thread is created is depends on
the purpose an the priority of the thread to which scheduler
it will be assigned.

Also the framework scales naturally with multiprocessor
architectures as shown in figure 2. This example implements
a fixed-priority scheduling policy. The red circles, which rep-
resent the scheduler threads are each assigned to a specific
CPU and can donate their CPU time to one thread from the
ready queue.

As explained in tests [FS96], made with a prototype imple-
mentation, showed that the additional scheduling overhead
caused by the framework is of no consequence and should
behave equally in many kernel environments despite of the
greater cost of context switches.

In order for the framework to work a dispatcher has to
be provided inside the kernel. The dispatcher has to pro-
vide low-level mechanisms that allow the implementation of
thread blocking, unblocking and CPU donation. The dis-
patcher itself has no notion of thread priorities and can’t
make any scheduling decisions. It is not a thread, but runs
in the context of whatever thread is currently running. The
dispatcher listens for events such as timer and other inter-
rupts and directs them to the waiting threads. This means
in a kernel supporting CPU inheritance scheduling the dis-
patcher is the only scheduling mechanism which must be
implemented in the kernel. The rest of the scheduling code
should be implemented outside the kernel. So would e.g. a
new background job be scheduled by the ”Background class”
and threads created by the users Mike and Jay would be
scheduled by their predefined schedulers.

Figure 1: Examplary scheduling hierarchy
from [FS96].

Figure 2: Examplary fixed-priority scheduler for
multiprocessor architectures from [FS96].

30

3.2 Threads
Threads are defined as virtual CPUs, whose purpose it is

to execute programs. It is not necessary for a thread to have
a real CPU assigned to it [FS96]. Is a real CPU assigned to a
thread the thread is running and can be preempted, so that
the CPU can be reassigned to another thread. Tradition-
ally threads are managed by a scheduler in the OS kernel.
Where as in [FS96] threads are scheduled by other threads.
Every thread to which a real CPU is assigned to, can choose
to donate their CPU time to other threads. This operation
is similar to priority inheritance, since a running thread can
voluntarily donate its CPU for an event. This is comparable
to priority inheritance when waiting for a shared resource.

A scheduler thread’s only task is to donate its CPU time
to its client’s threads. Client threads inherit a portion of
its scheduler’s CPU time, which becomes their virtual CPU.
Client threads can act as scheduler threads themselves and
distribute their CPU time to their own clients, forming a
scheduling hierarchy. As a consequence, the only threads
which have real CPU resource assigned to them are a set of
root scheduler threads, to be exact one root thread for each
real CPU and an assigned real CPU has to permanently
dedicate its resource to the assigned thread. Therefore the
root scheduler thread determines the base scheduler policy
for the assigned CPU.

3.3 Requesting CPU Time
Since all threads except the root scheduler has no real

CPU assigned and rely on time donation there must be a
way to request CPU resources. Therefore each thread has a
scheduler associated with them that is primary responsible
for providing CPU resources. When a thread awakens the
dispatcher wakes the responsible scheduler by notifying it,
that a client requests CPU resource. If the scheduler does
not have any CPU resource left this event will cause the next
scheduler in the hierarchy to awaken in order to provide its
client with CPU resources. In case a scheduler thread has
to be woken up, but currently donated its CPU time to a
client the client thread will be preempted and the control
is returned to the scheduler which decides either to rerun
the preempted client, to switch to the newly awoken client
or do something else. One alternative is that the wake up
event reaches an already woken thread which is preempted.
In this case the event is irrelevant for scheduling purpose at
this moment and the dispatcher resumes the currently run-
ning thread. When a threads blocks the dispatcher returns
CPU control to the scheduler thread that donated the time
to the blocking thread. The scheduler can now chose to run
another client or to give the CPU resource back to his sched-
uler thread. This can continue until some scheduler has use
for the CPU resources.

3.4 Timing and Accounting
Since the donated unit is time the system needs a notion of

time that has passed. Generally, a periodic clock interrupt is
sufficient to implement a dispatcher which than passes con-
trol to the appropriate scheduler. But besides the decision
which thread to run next a scheduler usually has to account
for CPU resources, consumed by his clients. CPU usage ac-
counting is needed for various things like billing a customer
or dynamically adjusting the scheduling policy. The CPU
inheritance scheduling framework allows the implementation
of various accounting methods. Two well known approaches

for CPU accounting are a statistical and timestamp-based
approach. Root schedulers can implement such methods
directly, however stacked scheduler threads only posses vir-
tual CPU resources, which could be used by a thread with a
higher priority without their knowledge. But as it is usual in
kernels, the time consumed by schedulers and high-priority
threads is negligible, so this inaccuracy can be ignored.

Statistical CPU Accounting.
With the statistical approach the scheduler has to wake

up with every tick. It than checks the running thread and
charges the time quantum since the last tick to thread in
question. This approach is considered very efficient, since
the scheduler usually wakes up every tick anyway. However,
it provides only limited accuracy, so a variation could be to
check threads at random points between ticks.

Timestamp-based CPU Accounting.
This timestamp-based approach provides a much higher

accuracy. The scheduler has to check the timestamp with
each context switch and charge the thread for the exactly
passed amount of time. However, this approach has also the
highest cost, because of the lengthened context switch time,
especially on systems on which it is very expensive to read
the current time.

CPU Donating.
There is one problem when a threads donates his CPU

time, willingly or not, the scheduler has to decide whom to
charge for the time. Figure 3 shows a simple example where
the high-priority thread T0 is running, but has to wait for a
resource that is currently held by T1. T0 donated his time
so that T1 can finish, but the scheduler S0 does not know
this and charges T0. At first sight this may seem unfair, but
it is actually the desired behavior, since T1 is doing work
for T0. If high-priority time is considered expensive and
low-priority time is considered cheap, then this mechanism
is needed, so T0 cannot outsource his work to a low-priority
thread.

Figure 3: CPU accounting for donated time
from [FS96].

3.5 Scheduling overhead
There are two source of overhead this framework brings in

comparison to traditional approaches. This is the overhead
the dispatcher has by computing the next thread and the
overhead of additional context switches while switching be-
tween schedulers. Both problems will be explained in detail
below.

31

Overhead caused by the dispatcher.
The computation costs caused by the dispatcher are de-

pendent on the depth of the scheduling hierarchy, since the
dispatcher has to iterate through the tree to find the appro-
priate thread. This brings a reason for concern, since there is
no limitation to the depth of the scheduling hierarchy, espe-
cially in hard real-time environments. Since the dispatcher
is always the activity with the highest priority, it can pose
a source for unbound priority inversion. Although there is
no limitation by the framework, an possible solution could
be to limit the scheduling hierarchy depth for hard real-time
systems to four or eight levels, since this is considered to be
still sufficient enough for all practical purposes [FS96].

Overhead caused by additional context switches.
The second type is the overhead caused by additional

context switches between different scheduling threads. The
overhead is dependent on the system design, so that the ac-
tual overheads does not depend on the framework, but on
the underlying system, e.g the cost of context switches would
be multiple times worse on monolithic kernels, then on mi-
crokernels since context switches in the same address space
is much cheaper. But even in microkernels, where schedul-
ing could be implemented just on user level, this would still
mean additional context switches because the directly as-
signed schedulers of a specific client thread might not have
CPU resource and has to go upwards in the scheduling hi-
erarchy causing additional context switches.

4. CONCLUSIONS
CPU inheritance scheduling is one possible approach to-

wards policy-free microkernels. This approach would allow
to implement different scheduling policies in one OS where
the scheduler can easily adapt to its applications needs,
without touching the kernel code and even allow multiple
scheduling policies in one OS. Implemented in a microkernel
environment this framework seems to presents only negli-
gible overhead, since the scheduler threads also running in
user mode, which makes the context switches cheap. Also
this framework addresses the problem of priority inversion
and presents a sufficient solution. The executed performance
tests had a sufficient outcome, but since they have been per-
formed in a test environment, a practical test is needed to
make a full evaluation of the real overhead imposed by this
framework.

APPENDIX
A. REFERENCES
[FS96] Bryan Ford and Sai Susarla. Cpu inheritance

scheduling. In In proceedings of the second
symposium on operating systems design and
implementation, pages 91–105, 1996.

[KW07] Robert Kaiser and Stphan Wagner. Evolution of
the pikeos microkernel. In Proceedings of the 1st
International Workshop on Microkernels for
Embedded Systems (MIKES), Sydney, Australia,
mar 2007. NICTA.

[Lie95] J. Liedtke. On micro-kernel construction. SIGOPS
Oper. Syst. Rev., 29(5):237–250, December 1995.

[Sto07] Jan Stoess. Towards effective user-controlled
scheduling for microkernel-based systems.
SIGOPS Oper. Syst. Rev., 2007.

32

User-level CPU Inheritance Scheduling

Sergej Bomke
Hochschule RheinMain

Fachbereich Design Informatik Medien
Unter den Eichen 5
D-65195 Wiesbaden

sergej.b.bomke@student.hs-rm.de

ABSTRACT
The concept of µ-kernel based operating system is to re-
duce the complexity of the kernel itself. Modern µ-kernels
only implement the smallest set of functionality by dividing
the system functionality into individual and isolated com-
ponents. This paper introduces a solution for user-level
scheduling based on CPU inheritance, a processor scheduling
framework, developed by Bryan Ford and Sai Susarla. The
key idea of the concept is that threads can act as schedulers
for other threads. With user-level scheduling, µ-kernels can
support a more flexible way for user applications to create
scheduling policies.

1. INTRODUCTION
The concept of µ-kernel based operating systems aims to
minimize the kernel part of the system with the goal of mod-
ularity, flexibility, reliability and trustworthiness. Modern
µ-kernels only implement the smallest set of functionality
like address spaces, threads and message-based interprocess
communication (IPC). All the other components (such as
device drivers, filesystem, memory managing, etc.) are pro-
vided by processes (also called servers) in user-level. Servers
run in separate protected address spaces and communicate
via IPC.

The scheduler is also implemented as a part of the kernel and
uses a fixed scheduling scheme to share the CPU resources
among threads. For example seL4 µ-kernel uses a preemp-
tive round-robin scheduler with 256 priority levels [7]. A
modern µ-kernel scheduler has a wide range of application
scenarios, where the scheduler should deployed successfully.
But there is no single scheduler that works well for all re-
quirements at the same time.

This paper describes the design of µ-kernel that export schedul-
ing from kernel to user space. The key idea of the approach
is that threads can act as schedulers for other threads by
donating their CPU time to a selected thread while waiting
on events of interest, such as timer interrupts. The thread

which gets the time from the scheduler can also act as a
scheduler thread. The concept is known as CPU inheritance
scheduling [4].

This allows to build environments with different scheduling
requirements (e.g. real-time, priority-driven, user-controlled)
in a single system and provide sufficient scheduling flexibil-
ity for applications. It also removes the policies from the
kernel and makes the system more generic and flexible.

The rest of this paper is organized as follows. Section 2 dis-
cusses related approaches, Section 3 presents general concept
for user-level CPU inheritance scheduling in a µ-kernel, Sec-
tion 4 analyzes some issues and overhead produced by user-
level scheduling and Section 5 gives a conclusion about the
work.

2. RELATED WORK
The general idea of exporting the scheduler from kernel to
the user-level in not new, there existing several approaches
and implementations for this issue [4, 6, 1, 8].

Two-level scheduling scheme is one of the approaches to ex-
port scheduler to user-level. They implement both a kernel
and a user-level scheduler. That combines together the func-
tionality of kernel threads with the performance and flexi-
bility of user-level threads [6, 1, 2].

Another solution for user-level scheduling based on CPU in-
heritance. CPU inheritance scheduling is a processor schedul-
ing framework in which user-level threads can act as sched-
ulers for other threads in existing operating system. In this
model the threads wait for events and schedule each other
by using a time donation. The scheduler threads can imple-
ment different scheduling policies, so that one system sup-
ports different policies at once [4].

This paper presents general design principles to export sched-
uler of a µ-kernel to the user-level based on solution of the
CPU inheritance framework.

3. USER LEVEL SCHEDULING
Generally, threads are an abstraction of CPU execution con-
text in the operating system. A thread includes some state
information and flags required by the CPU to continue run-
ning a thread. A running thread can be blocked or pre-
empted and the scheduler selects the next thread to run.
The idea of CPU inheritance scheduling is that threads are

33

scheduled by other threads. That means threads have the
ability to donate and request CPU time to and from other
threads [4].

A root scheduler is a thread that owns real CPU time. That
can donate its available time to other threads and other
threads can run if the root scheduler transfers CPU time to
them. For each real CPU on the system, there exists one
root scheduler thread.

A client thread is a thread that inherits some CPU resources.
If a client thread has its own clients and spends most of its
time to donates own CPU resources, the client acts as a
scheduler thread. This allows to build a logical hierarchy of
schedulers as illustrated in Figure 1.

CPU 0

CPU 1

Root Scheduler
(real-time fixed-

priority
RR scheduler)

Scheduler
Server

Server 1

Waiting
thread

port

Server 2

Root Scheduler
(lotery scheduler)

Scheduler Thread
(FIFO scheduler)

Scheduler Thread
(BSD scheduler)

Scheduler Thread
(RR scheduler)

Scheduler Thread
(BSD scheduler)

Thread

Thread

Real-Time
Threads

Threads

Scheduler Thread
(FIFO scheduler)

Figure 1: Example for a scheduling hierarchy

Each root and scheduler thread can implement different schedul-
ing policies, such as rate monotonic, fixed-priority, lottery
or other. The root scheduler of a CPU determines the base
scheduler policy for the assigned CPU [4].

For CPU inheritance scheduling the kernel must provide an
interface that implements functionality like thread blocking,
unblocking and CPU donation. This low-level mechanism is
called dispatcher [4]. This is the only scheduling component
that is implemented in the kernel. The dispatcher also di-
rects events (synchronous or asynchronous) to the threads
that are waiting for those. But the scheduling decisions are
made by the scheduler itself.

The operation that donates the current CPU time from the
scheduler thread to the client requires a destination thread
and a port on which to wait for messages from other clients.

After CPU donation, the scheduler thread sleeps on the
specified port. If a message arrives, the donation cancels
and the control of the CPU is returned back to the sched-
uler thread [4]. When no other tread is runnable, the sched-
uler relinquishes the CPU while waiting for messages. This
allows to switch to the low power mode of the processor.

3.1 CPU Inheritance
As already described, no thread (except the root scheduler
thread) can run unless another thread donates some CPU
resources to it. In that case when the newly-created or wo-
ken thread becomes state ready, the dispatcher notifies the
scheduler thread to wake it up through an IPC message. If
a notified scheduler is already donating its CPU time then
the currently running thread will be preempted and the con-
trol is given back to its scheduler. If the scheduler doesn’t
have any CPU time left notified scheduler send message to
its scheduler and so on. This leads to a chain where different
scheduler threads are woken up. When the notified sched-
uler is awake but actually preempted, then the dispatcher
knows that the event is irrelevant at the moment and the
currently running thread is resumed immediately [4].

CPU S0

S1 S2

T0

T1T2

T3

Figure 2: CPU donation chain

Figure 2 illustrates an example for scheduler donation, where
the thread T3 is woken up and requests some CPU time
from its responsible scheduler S2. As S2 has no CPU time
available, S1 will be notified. S1 is currently being supplied
some CPU time but already donating it to the thread T2.
The current running thread T2 will be preempted and control
is immediately given back to scheduling thread S1. In that
case, S1 can decide to run preempted thread T2 or switch to
the client of the scheduler thread S2.

When a thread blocks and waits for an event, the dispatcher
returns control of the CPU to its scheduler thread. The
scheduler is now capable to choose another thread to run or
return control of the CPU to its scheduler. Alternatively,
the blocked thread can donate the rest of its CPU time to
another thread while waiting on an event of interest and the
scheduler can directly switch to this thread. If an event of
interest occurs, the donation ends and CPU is passed to the
donator thread again [4]. It is also possible that a thread
inherits CPU time from more than one source. In this case
the thread can use the time of its donor threads to finish its
work and release the event of interest.

3.2 Priority Inversion
An operating system that uses a priority-based scheduling
must deal with the priority shared resources (Figure 3). In
principle, a priority-based preemptive scheduler is execut-
ing at all times the high-priority thread. However, it can

34

CPU S0

T0
(high-priority)

T1
(medium-priority)

T2
(low-priority)

Figure 3: Priority inversion during a resource con-
flict

happen that a high-priority task is blocked while waiting
on a resource that a lower-priority thread holds. This sit-
uation is called priority inversion and is illustrated in Fig-
ure 4. Thread T2 has low priority and acquires a lock on
a shared object. It gets preempted by thread T0 with the
high-priority, which then blocks trying to acquire the same
resource. Before T0 reaches the point where it releases the
lock, it gets preempted by T1, which has medium priority.
T1 can run for an unbounded amount of time, and effectively
prevents the higher-priority T0 from executing [5].

resource lock

preemt block

preemt

release done

T0

T1

T2

blocks

Figure 4: Example of priority inversion [5]

A solution to the priority inversion problem called priority
inheritance. When a thread blocks attempting to acquire a
resource, the task that holds the resource inherits the pri-
ority of the blocked task. The task that holds the locked
resource cannot be preempted by a thread with lower pri-
ority than the one attempting to acquire the resource [5].
Figure 5 shows an example for priority inheritance from a
high-priority thread to a low-priority thread during a re-
source conflict. Scheduler thread S0 has inherited the CPU
time to high-priority thread T0. After a certain runtime T0

needs some resources hold by T2. The high-priority thread
T0 sends an IPC to a low-priority thread T2. By donating
the CPU time to T2, the priority of T2 is increased to that of
T0 and the scheduler can directly switch from the T2 without
checking for the existence of ready threads with priorities be-
tween the T0 and the T2, such as the medium-priority thread
T1.

resource lock

preemt

priority of T0

block release
done

T0

T1

T2

done

Figure 5: Example of priority inheritance [5]

3.3 Timing
Many scheduling algorithms need to have a measurable knowl-
edge of time to implement preemptive scheduling. A peri-
odic timer interrupt is accurate enough for most cases. A
way is needed for a scheduler thread to be woken up after
an amount of time has elapsed. When a timeout occurs an
IPC message is sent to the corresponding scheduler port and
wakes the scheduler thread. There are two well-known ap-
proaches for accurate measurement of execution time of a
thread: statistical and timestamp-based [4].

Statistical accounting sets a timer register to the standard
time quantum value at the start of a thread execution. At
a known rate the clock generates interrupt and wakes the
scheduler to subtract the tick length from the remaining
value of time quantum. When the result of quantum is less
than zero, the thread execution will be preempted. This
method often suffers from accuracy problems for short in-
tervals [3].

Timestamp-based accounting increases the precision and ac-
curacy of time measurements compared with statistical ac-
counting. On every context switch the scheduler reads the
current time of the timer and accumulates time accordingly
since the last context switch. Thus impose costs much higher
than by statistical accounting, because of lengthened context
switch time, especially on systems on witch it is expensive
to read the current time [4].

The root scheduler can directly use one of these methods.
The CPU accounting becomes a little more complicated when
the scheduler uses inherited time. Because the inherited
time cannot be measured accurately by the timer [4].

4. ANALYSIS
Up to this point the concept of user-level scheduling was
considered. As next some issues and overhead produced
by user-level scheduling compared to traditional scheduling
algorithms will be analyzed.

4.1 Scheduling Overhead
As the evaluation in the [4] shows, there are two sources
witch cause additional overhead: dispatcher and context
switch.

Dispatcher costs are caused by the dispatcher itself while
specifying the thread to switch after an occurred event. As
the scheduler has a logical hierarchy structure, the dispatcher
must iterate through trees. These costs depends on the
depth of hierarchy. In practice there is no need to support a
unlimited depth, so a limited depth of the scheduling hierar-
chy to four or eight levels should be sufficient for almost any
purpose. Table 1 shows that 4-level scheduling would cause
about twice as much processing overhead compared to only
root scheduler. 8-level scheduling causes an overhead even
three times as much.

The other type of overhead is the cost of additional context
switches. These costs occur when the scheduler switches be-
tween several scheduler threads by saving one thread and
loading another one. Due to the fact that scheduling over-
head heavily differs from system to system, the design con-
cept can be more or less expensive.

35

Scheduling Hierarchy Depth Dispatcher Time (µs)

Root scheduling only 8.0
2-level scheduling 11.2
3-level scheduling 14.0
4-level scheduling 16.2
8-level scheduling 24.4

Table 1: Dispatching const [4]

4.2 Avalanche Effect
While in the implementation it is possible that a single
thread inherits CPU time from more than one source at
a given time, it can happen that consumption of CPU time
from multiple donators will produce an ”avalanche effect”
[4]. In this case every time a thread is preempted or woken
the dispatcher sends multiple scheduling requests at once to
donator threads and each produces more scheduling requests
by wake up intermediate-level schedulers. But in practice it
is unusual that a thread inherits from more than one or two
different threads at once.

Also a high depth of the scheduling hierarchy structure can
cause a large number of requests. But as already described,
there is no need to support an unlimited depth in practice.

5. CONCLUSION
In this paper the concept of CPU inheritance scheduling as
one possible solution for user-level scheduling was shown.
This solution allows to implement different scheduling poli-
cies for applications in a single system. In comparison to the
traditional approaches CPU inheritance brings two source of
overhead: dispatcher and context switch. The reduction of
the scheduling hierarchy depth should minimize dispatcher
overhead and the system remains sufficient for all practical
purposes. And since the scheduler threads run in the same
address space so the context switches is cheap. Therefore the
CPU inheritance scheduling allows to implement user-level
scheduling with low overhead in comparison to traditional
approaches.

6. REFERENCES
[1] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and

H. M. Levy. Scheduler activations: Effective kernel
support for the user-level management of parallelism.
ACM Trans. Comput. Syst., 10(1):53–79, Feb. 1992.

[2] J. Appavoo, M. Auslander, D. DaSilva, D. Edelsohn,
O. Krieger, M. Ostrowski, B. Rosenburg, R. W.
Wisniewski, and J. Xenidis. Scheduling in k42. White
Paper, Aug, 2002.

[3] D. L. Black. Scheduling and resource management
techniques for multiprocessors. PhD thesis, Citeseer,
1990.

[4] B. Ford and S. Susarla. Cpu inheritance scheduling. In
Proceedings of the Second USENIX Symposium on
Operating Systems Design and Implementation, OSDI
’96, pages 91–105, New York, NY, USA, 1996. ACM.

[5] E. A. Lee and S. A. Seshia. Introduction to embedded
systems: A cyber-physical systems approach. Lee and
Seshia, 2011.

[6] B. D. Marsh, M. L. Scott, T. J. LeBlanc, and E. P.
Markatos. First-class user-level threads. SIGOPS Oper.

Syst. Rev., 25(5):110–121, Sept. 1991.

[7] NICTA-National Information and Communications
Technology Australia. seL4 Reference Manual, April
2015.

[8] J. Stoess. Towards effective user-controlled scheduling
for microkernel-based systems. SIGOPS Oper. Syst.
Rev., 41(4):59–68, July 2007.

36

USB in a microkernel based operating system

[Extended Abstract]

Daniel Mierswa
RheinMain University of Applied Sciences

Erlenweg 22
Taunusstein, Germany

impulze@impulze.org

Daniel Tkocz
RheinMain University of Applied Sciences

Schiffergasse 15
Wiesbaden, Germany

daniel.tkocz42@gmail.com

ABSTRACT
This paper provides an introduction in using USB in a mi-
crokernel operating system. This paper also contains a small
introduction in USB and microkernels for better understand-
ing. Problems that might occur are described and solutions
are presented.

Keywords
USB, microkernel, data sharing, driver development

1. INTRODUCTION
When the market for personal computers started to open
up, programmers all over the world started developing op-
erating systems. Some operating systems (e.g. UNIX) were
using monolithic kernels, so a lot of code was working in ker-
nel mode. Developers saw problems with this architecture
and started the counter movement using microkernel based
operating systems. Those kernels have small code footprint
and pass messages to underlying services which facilitate the
hardware for programmers. In the late 1990s microkernel de-
velopment had its peak and todays work with microkernels
is mostly based on the architectures of this era.

In 1996, the Universal Serial Bus (USB) was developed. USB
was an attempt to standardize communication components
of computer peripherals and the protocols involved. The
underlying communication bus is shared amongst devices
and poses a problem in a microkernel based operating system
due to the separation of functionality in tasks.

This paper presents a design, which will show how to support
USB in microkernel based operating systems. In sections 2
and 3, the relevant parts of USB and microkernels are de-
scribed to understand the terminology used in this paper.
Section 4 describes problems that may occur in a microker-
nel environment using USB and the following section 5 will
provide a design which is capable of solving those problems.

Table 1: USB 1.x/2.0 standard pinout
Pin Name Wire color Description
1 VBUS Red (or orange) + 5 V
2 D- White (or gold) Data-
3 D+ Green Data+
4 GND Black (or blue) Ground

Table 2: USB 1.x/2.0 mini/micro pinout
Pin Name Wire color Description
1 VBUS Red + 5 V
2 D- White Data-
3 D+ Green Data+
4 ID Detect which connector is connected
5 GND Black Ground

2. USB
Universal Serial Bus (USB) is a serial bus. With USB it is
possible to connect a lot of different types of devices to a
host. Today, the most common USB devices are keyboards
and mice. But also external storage, mobile phones and
gadgets like a small rocket launcher can be connected to a
host by USB. USB supports hot plugging of USB devices.
That means connecting, disconnecting and detecting a USB
device to/from a running host.

2.1 Hardware
There is a large amount of different USB connectors (Type
A, Type B, Mini A, Mini AB, Mini B, Micro AB, Micro B,
Type C [2]). They vary in size, profile, durability, compat-
ibility and usability [13]. The pins used in USB 1.x/2.0 in
each of the connectors are nearly the same. Small differences
of pin configurations can be seen in table 1 and table 2.

Only USB 3.x varies a lot. But some USB 3.0 connectors are
backward compatible. VBUS and GND supply the connected
device with power varying (depending on specification) from
0.5 A to 3 A at 5 V in general [16]. The wires in a USB cable
are twisted to reduce noise. The communication in USB
1.x/2.0 is half duplex, USB 3.x is full duplex. Depending
on the USB version the transfer rate is 1.5 Mbit/s up to 10
Gbit/s. USB 2.0 has a transfer rate of 480 Mbit/s [16].

2.2 Software
2.2.1 Device Descriptor

37

The device descriptor specifies a couple of informations about
a device. All information can be printed on the console of a
Linux system by entering lsusb -v in a terminal. The device
descriptor is only one descriptor from a small group. This
group consists of configuration descriptors – which describe
how much power the device needs and which power mode is
used (sleep, self powered, etc.) – , the endpoint descriptor
– described later – , the interface endpoint – which bundles
a group of endpoint descriptors – and string descriptors –
which contain a single string instead of hex numbers [16].

USB version The device descriptor also holds the used
USB version. By manipulating this field in the device
descriptor, a USB 2.0 device can connect to a host as
USB 1.1 device [16].

Device class Class codes are used to specify the function-
ality of a device. They are communicated to the host
to determine if the device is supported and if so decide
which driver should be used for it. For example, a de-
vice identifying itself with the class code 0Eh should be
treated as a webcam providing a video signal. By way
of comparison, a device sending 03h should be treated
as a human interface device (keyboard, mouse, etc.).
If no device specific driver exists, a generic driver will
try to control the device. If the manufacturer thinks
none of the device classes matches the functionality,
the manufacturer can decide to use a vendor specific
class: FFh [1]. This might be a good idea for a USB
rocket launcher.

Device subclass The subclass specifies in detail what kind
of device it is.

Device protocol The protocol field defines a protocol which
should be used to communicate with it.

IDs & numbers The device descriptor contains a vendor
id to identify the manufacturer of a device. To identify
the product of a manufacturer, a product id is used. A
device release number and a serial number can be set
additionally to specify the hardware configuration.

2.3 Endpoints
Endpoints are used for communication. Each communica-
tion is directed to a specific endpoint. A device/host might
have multiple endpoints for different purposes. There are
four different types of endpoints. The integrity of a trans-
fer is secured by a CRC sum for each endpoint. To end
a transfer, each message needs to be acknowledged except
those from interrupt endpoints. Endpoints are configured in
an endpoint descriptor. In general the communicated data
can be split in three parts [16]:

• Token Packet

• Data Packet

• Handshake Packet

Token packets specify the direction of the communication
relative to the host. IN means, the host receives data from
the device, OUT means the host sends data to the device.

Data packets contain the data. The passive side of the com-
munication can send a STALL or not respond within a few
milliseconds [16]. Figure 1 shows which flags can be send
during an interrupt transfer.

Figure 1: Protocol of an interrupt transfer [16]

Control endpoint Control endpoints are applied for con-
trol transfers and device configuration. With them the
device is configured. Every device has a control end-
point (endpoint zero). [4]

Bulk endpoint Bulk endpoints are used for bulk transfers.
These non-time-critical transfers are applied for trans-
ferring large data in read/write operations on external
storage devices. [4]

Isochronous endpoint Isochronous endpoints are used for
isochronous transfers. Isochronous transfers are used
if a specific transfer rate is required. [4]

Interrupt endpoint Interrupt endpoints are used for in-
terrupt transfers. Surprisingly this endpoint does not
really work with interrupts in USB 2.0 or earlier ver-
sions. Interrupt endpoints are polled each x millisec-
onds. They are often used for human interface devices.
[4]

2.4 Packets
For the whole communication packets are used. Each mes-
sage sent from an endpoint and received from an endpoint
is based on a simple USB packet. The packet overhead is
only a few bytes depending on the used USB version. The
type of a packet determines what kind of data it contains.

Sync All packets start with a sync field. This field is used
to synchronize the timing of transmitter and receiver.
[4]

PID To specify the content of a packet each sync field of a
packet is followed by a PID field. It contains a 4 bit
information about the content. To ensure integrity,
the PID field contains twice the information to detect
bit errors.

38

ADDR The ADDR field specifies a device to communicate
with. [4]

ENDP The ENDP field specifies an endpoint which should
receive the packet. Other Endpoints will not notice the
packet at all. [4]

Data The data field contains up to 1 KB of custom data.
[4]

CRC The CRC field contains a CRC sum of the data field
only to ensure integrity of the data. [4]

EOP The EOP field indicates the end of the package and
is always the last in field in each package. [4]

3. MICROKERNEL
A microkernel (µ-kernel) as opposed to a monolithic kernel
has fewer code running in supervisor mode (kernel mode).
The architecture of microkernel based operating systems

Figure 2: The microkernel architecture as provided
by Minix [7]

separates basic hardware functionality from other layers of
hardware access (as seen in Figure 2). The modularization,
if strictly executed, makes it easier for developers to support
new platforms, since they only have to port the machine-
dependent code for basic hardware functionality [3]. The
code for system specific functionality (services) runs in user
mode and as such is not capable of interfering directly with
hardware. This demonstrates a challenge for driver devel-
opers and requires a well-defined kernel API. Due to the
separation and indirection, it is believed that microkernels
cannot perform as fast as monolithic kernels. However, most
of the performance issues of first generation microkernels
were based on poor design and faulty implementations [11].
Furthermore, device drivers implemented as services on mi-
crokernel operating systems can achieve almost the same
performance as monolithic drivers [6].

3.1 Generations
The idea of a microkernel was introduced in the late 1980s,
however, at this point Unix [8] was already widely used and
adopted. The concepts of Unix worked good enough around
that time and BSD [14] adoption of Unix started the era
of big kernels through adding filesystems and a complete
TCP/IP stack. The amount of code in kernels grew fast and
with each new code fragment, the possibility of freezing a
system because of a faulty driver implementation increased.

Supporters of microkernel based operating systems argued
that user-level implemented TCP/IP drivers would simply
restart the driver and leave the other OS functionality un-
damaged. The Mach [15] microkernel was developed as a
replacement to the mentioned BSD Unix. It was developed
from 1985 to the mid 90s at Carnegie Mellon University and
is considered to be the system that defines the first genera-
tion of microkernels.

Mach’s external pager [12] manages physical and virtual
memory in a way that allows user-level code to map files
and databases into their address space without using the
filesystem driver. It also allows the usage of multiple sys-
tems simultaneously. Another early idea was to implement
Interrupt handling via Inter Process Communication (IPC).
IPC is the core component of any microkernel based oper-
ating system. User-level servers can send/receive messages
to/from the kernel or other user-level servers through the
kernel. As one can see the implementation of the communi-
cation protocol is a bottleneck and optimization is necessary
to meet the requirements of todays applications. Analysis
of performance problems [12] showed that user-kernel-mode
switches, address-space switches and memory penalties also
contributed to a bad performance.

In the mid 90s, development of new microkernels started.
They were written from scratch rather than evolving from
the present monolithic kernels. One of them was L4 [10].
L4 has three abstraction layers: address spaces, threads and
IPC. Based on tests on a 486-DX5 machine, the L4 micro-
kernel RPC was twice as fast as a UNIX system call and
20 times faster than first generation IPC [12]. The address
space concept removed another limitation of first generation
microkernels. Basically it allows to construct address spaces
recursively outside the kernel. Memory management con-
cepts used in the L4 kernel interface were an extension of
the external pager mechanisms presented in Mach kernels.

4. USB IN MICROKERNELS
Earlier we presented the basic architecture of USB and how
communication works on the serial bus. In the previous
chapter we’ve seen that microkernels are capable of access-
ing shared resources (e.g. a bus) through APIs. The obvi-
ous simple approach to support USB in a microkernel based
operating system would be to provide a service for the in-
teraction with the Host Controller (HC) and let USB device
drivers use the HC service. If another USB device driver
uses the HC service the USB Request Block (URB) coming
from this device driver would be blocked or queued. This
approach would work in a simple 1-to-1 relation when an op-
erating system would just interact with one USB device. In
real world scenarios however, we often face situations where
one application (client) uses one or more devices (interfac-
ing with one or more device drivers), several applications
use one or more devices or devices communicating with each
other (data transfer between mass-storage devices). A sim-
ple ”blocking” approach does not suffice and another com-
ponent has to be provided to create a working environment
for USB device drivers. It has to

• Create URBs based on certain scheduling parameters
to avoid blocking

39

• Fragment data so devices can be polled during huge
data transfers

• Prevent unauthorized bus access by other drivers

In this paper we try to present a separated USB service
which will encapsulate this functionality.

5. USB SERVICE
We will look at the Linux USB driver architecture to get an
understanding of how to separate concerns in the handling
of the USB protocol and introduce terms we will be using
when describing the design of the USB service. Figure 3

Figure 3: Main components of the Linux USB driver

shows how the operating system USB functionality can be
split up into major components. The 3 components are:

• Driver for the Host Controller

• USBCore support library

• Drivers for USB devices

The Host Controller is the physical component which pro-
vides raw hardware access to devices. The USBCore library
is used to abstract functionality of the Host Controller with-
out knowing the details of the platform like handling inter-
rupts, memory access and configuration. An interface is
provided for device drivers to manage memory and transfer
data. In addition, it provides the URB for the specific imple-
mentation and ways to communicate them. Specific drivers
for USB devices can use this library to access hardware and
manage data flow.

An USB service would have to implement the USBCore func-
tionality, so specific userspace USB drivers can be imple-
mented without wrestling with too many problems. If we
consider the 3 functionalities to provide a working USB en-
vironment, we will see the 2 main problems: deciding which
URBs to send and authorize access. Not providing a so-
lution to either one of these problems could result in data
loss, data corruption or even broken hardware. We can solve
one of these problems by providing a queue for each driver,
which will hold the URBs for this driver and capability based
access control.

5.1 Scheduling
Looking at URBs in a queue and deciding which URB to
pick and send to the bus is called scheduling. While there
are scheduling algorithms in hardware which can even be
configured [17], we will not consider those in the solution
provided, since it should be possible to implement the de-
sign on any microkernel. There are scheduling algorithms
which decide based on the priority of a task (such as fixed
priority scheduling). These are not very helpful in this sce-
nario. Every device driver should be handled equally and
thus have the same priority. If a system is statically config-
ured and/or embedded one could argue that the priorities
of the system are known (e.g. URBs from human interac-
tion devices have a higher priority than mass storage URBs).
Since the execution time of the operation (transmitting an
URB over the bus) should not change, algorithms such as
Shortest Job First (SJF) are not looked at in this solution.
If the URBs would be scheduled with a First In first Out
(FIFO) scheduler, a faulty driver or a long operation could
block all other drivers from accessing the bus. Instead, the
service will have a round-robin approach and will check if
any device has URBs ready to be transmitted. Scheduling
of own work is done by the driver itself. A mechanism is pro-
vided by the service to create a queue in the address space
of the service. This results in IPC between the service and
device driver for every URB that is created by the driver.
Another solution would be the isolation of the URB queue in
the address space of the device driver. However, this results
in an IPC, even if the device driver has nothing to transmit
at the time the service checks for ready URBs.

5.2 Access control
One may not want to allow any application to access devices
using USB. One scenario might be that an external data
storage is fully loaded by a low priority task (e.g. writing
log files) while a high priority task tries to access the device
(e.g. storing data during emergency shutdown), but can not
due to the low priority task. To handle such scenarios, access
rights management is required. Both mechanisms that will
be introduced are reliable and represent an access matrix for
objects in domains.

Capabilities. A mechanism to enforce access control is us-
ing capability lists. Capability lists are object right pairs
which belong to a domain d. Every time an USB operation
would try to access object o in a domain d (or applica-
tion/task) it would need a capability to do so.

Access Control List. Access Control List (ACL) is another
mechanism to enforce access control. ACL is a list of domain
right pairs which are attached to an object o. In contrast,
ACLs belong to an object o. If an application/task (domain
d) is trying to access object o, it is checked (in the ACL) if
the operation is allowed for this application.

As shown in table 3 both mechanisms work on access ma-
trices. Capabilities are a view of the columns of the access
matrix (they are bound to the domains) while an ACL rep-
resents a view of the rows of the matrix (they are bound to
the objects). While ACLs can be isolated in the USB ser-
vice and controlled easily via lookup tables, capabilities can

40

Table 3: ACL and capabilities in an access matrix
d1 d2 d3

o1 read readwrite none
o2 read none readwrite
o3 read read read

be stored in a task or application and be reused to reduce
overhead. We decided to use capabilities to grant access to
drivers to generate URBs for the USB service to look up.
Some operating systems like seL4 microkernel based ones
[9] use capabilities and are therefore a good example of how
capabilities can be used in a microkernel environment. In a
capability based system the mere possession of a capability
entitles the user to generate URBs and there is no need for
the USB service to check any rights during operations. An
owner of a device, probably the driver which opens the de-
vice first, is allowed to change the USB capabilities for this
device in the system. It may also exclusively block the de-
vice. This may be relevant in USB adapters for terminals for
example. The owner may also specify a default capability
which is given to any application by default when opening
the device. In a USB device driver an ACL could be used to
select which applications can access the managed devices. It
is not part of the USB service to decide which application is
allowed to access devices as it’s sole purpose is to send and
receive URBs via the host controller attached to the system.

5.3 Architecture
Users will access USB components via a service library API
of the USB service. In forwarding direction, the application
uses the library to send specific data over USB in which case
the call is merely forwarded to the USB device driver (e.g.
keyboard, mouse, etc.). The device driver will then create
URBs and queue them in the device driver. In figure 4 you
can see (in red) a periodic task of the USB service which will
check each device driver queue for URBs and put them on
the host controller. This will be done in a round robin fash-
ion to prevent devices to spam URBs. A device driver will

Figure 4: Scheduling of the USB service

therefore provide an API with appropriate data structures

and interfaces to send/receive specific data. Initially each
driver will install a handler in the USB service which will
be called back once URBs for the driver are available. The
driver buffers incoming URBs until a data structure specific
for the driver (e.g. mouse click etc.) is ready. Depending
on the nature of the call (sync/async) by the user of the
driver it will either call the user back or simply return the
data. To allow different device drivers, interfaces have to be
provided which must be implemented by device drivers so
that the service can send/receive URBs to/from the queue.
To allow reusing of code, a USB library can be created to
abstract most of USB facilities for drivers and applications
(e.g. libusb on Linux systems).

Figure 5: Architecture of the USB in microkernels
design

Figure 5 shows an overview of all components for this design
proposal. In this scenario, in order to gain access to USB
devices, an application uses the library to open it. It is
then considered as owner of that device. An owner may
then use this ownership to change access restrictions for any
other accessing application. If there is no such restriction
for an application, a default access will be granted which
doesn’t allow any operation for that application. How those
restrictions may actually look like in a real world application
is out of the scope of this paper. An application could be
identified by the process name or functionality.

6. CONCLUSIONS
While designing the USB service, it seemed the problems
mentioned earlier (shared resources and access restrictions)
to be solved are not specific to the domain of microkernels
The solution presented in this paper designs a single task
that is responsible to grant access and manage data flow of
USB request blocks. Therefore even the Linux device drivers
can be ported to microkernels by sending the URBs to the
service and not to the Linux kernel itself.

The USB service considers all device drivers and URBs to
have an equal priority which is not really real world applica-
ble. Future work should provide a parameter to the schedul-
ing system which gives the service a hint which URB queues
to check more often. This would result in a scheduler that’s
no longer completely fair, but which may be better suited
for real time systems or systems with lots of user interaction
(keyboards, etc.).

7. ACKNOWLEDGMENTS
We’d like to thank Daniel Ernst and Matthias Jurisch of
RheinMain University of Applied Science for their design

41

proposal [5] which originated from the same ideas we have.
Besides specifics our ideas were triggered by their paper.

8. REFERENCES
[1] J. Axelson. USB Complete: The Developer’s Guide.

Lakeview Research, 4th edition, 2009.

[2] P. Berg. Usb-if developers area.
http://www.usb.org/developers.

[3] D. L. Black. Microkernel operating system architecture
and mach. http://zoo.cs.yale.edu/classes/cs422/
2014fa/readings/papers/black92microkernel.pdf.

[4] I. L. M. N. P. Compaq, Hewlett-Packard. Universal
serial bus specification. online, April 2000.

[5] M. H. F. J. Daniel Ernst. A design proposal for a
sharable usb server in a microkernel environment. In
WAMOS 2014 First Wiesbaden Workshop on
Advanced Microkernel Operating Systems, pages
11–15, 2014. http://www.cs.hs-rm.de/~kaiser/
wamos14-proceedings.pdf.

[6] K. Elphinstone and S. Götz. Initial evaluation of a
user-level device driver framework. In P.-C. Yew and
J. Xue, editors, Advances in Computer Systems
Architecture, volume 3189 of Lecture Notes in
Computer Science, pages 256–269. Springer Berlin
Heidelberg, 2004.

[7] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S.
Tanenbaum. Minix 3: A highly reliable, self-repairing
operating system. SIGOPS Oper. Syst. Rev.,
40(3):80–89, July 2006.
http://doi.acm.org/10.1145/1151374.1151391.

[8] D. R. Ken Thompson et al. The unixÂő system.
http://www.unix.org/.

[9] G. Klein, K. Elphinstone, G. Heiser, J. Andronick,
D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt,
R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and
S. Winwood. sel4: Formal verification of an os kernel.
In Proceedings of the ACM SIGOPS 22Nd Symposium
on Operating Systems Principles, SOSP ’09, pages
207–220, New York, NY, USA, 2009. ACM.
http://doi.acm.org/10.1145/1629575.1629596.

[10] J. Liedtke. The l4 µ-kernel family.
http://os.inf.tu-dresden.de/L4/.

[11] J. Liedtke. On micro-kernel construction. In
Proceedings of the Fifteenth ACM Symposium on
Operating Systems Principles, SOSP ’95, pages
237–250, New York, NY, USA, 1995. ACM.
http://doi.acm.org/10.1145/224056.224075.

[12] J. Liedtke. Toward real microkernels. Commun. ACM,
39(9):70–77, Sept. 1996.
http://doi.acm.org/10.1145/234215.234473.

[13] S. McDowell and M. D. Seyer. USB Explained.
Prentice Hall PTR, Upper Saddle River, NJ, USA,
1999.

[14] M. of the Berkeley University of California. Berkeley
software distribution. http://www.bsd.org.

[15] M. of the Carnegie Mellon University. The mach
project. http://www.cs.cmu.edu/afs/cs/project/
mach/public/www/mach.html.

[16] C. Peacock. Usb in a nutshell.
http://www.beyondlogic.org/usbnutshell.

[17] V. J. M. I. Pramote Kuacharoen, Mohamed

A. Shalan. A configurable hardware scheduler for
real-time systems. http://codesign.ece.gatech.
edu/publications/pramote/paper/chs-ERSA03.pdf.

42

User–mode device driver development

Annalena Gutheil
Wiesbaden University of applied sciences

Department DCSM
Unter den Eichen 5

Wiesbaden, Germany
annalena.b.gutheil@student.hs-rm.de

Benjamin Weisser
Wiesbaden University of applied sciences

Department DCSM
Unter den Eichen 5

Wiesbaden, Germany
benjamin.b.weisser@student.hs-rm.de

ABSTRACT
Faulty device drivers have proved to be the reason for most
crashes in monolithic kernel based operating systems. Keep-
ing device driver code in monolithic kernels increases kernel
footprint and the risk of getting more error–prone and un-
stable. The approach of user–mode device drivers used in
microkernel systems provides a nearly complete removal of
device drivers from kernel space, leaving only a small part for
the most necessary kernel functionalities in the kernel. This
paper presents the development of user–mode device drivers
by introducing concepts in monolithic systems, especially
Linux. By examining and comparing their performances,
the usefulness of these concepts is shown.

Keywords
device driver, user–mode, microkernel, performance

1. INTRODUCTION
Common modern operating systems are still using mono-
lithic kernels since the past decades. Their architectural de-
sign concept – keeping device drivers, memory and process
management in the same address space – guaranteed good
performance. But in fact, this architecture offers a huge er-
ror potential, because sharing address space in combination
with faulty device drivers suffices often to crash an entire
operating system. Several studies showed, that drivers are
causing 27% of all Windows 2000 crashes [26] and roughly
85% of all Windows XP crashes [25, 1]. Unfortunately, keep-
ing device driver code in kernel also results in bloated ker-
nels, for instance nearly 70% of the Linux kernel is made up
of drivers [22, 4], which additionally have a three to seven
times higher bug frequency than the rest of the Linux kernel
code [3].
Furthermore, device drivers have to comply with complex
hardware device interfaces and also – in the case of Linux –
with a rapidly changing kernel API. Because hardware and
driver developing is often done by complete independent and
different teams or even companies, bad interaction between

both sides, faulty documented hardware or insufficient spec-
ified operating system interfaces can worsen code quality of
common drivers [23]. As a consequence thereof, stability,
reliability and maintainability of drivers and consequently
of a monolithic kernel is affected negatively.
On the contrary, the microkernel architecture only allows
code in the kernel, if it needs to be in privileged mode. Ac-
cording to this principle the main functionality of micro-
kernels is to provide fundamental functions for memory re-
spectively process management and for communication [11].
The idea is to move all device driver code out of microker-
nels and leave only a simple and small interface. The goal
is to get smaller and less error–prone kernels than both the
Linux and the Windows kernel. The drivers are implemented
in unprivileged user-mode and are called user–mode device
drivers (UD). In comparison to their counterpart kernel–
mode device drivers (KD) they have important advantages.
Driver developers can make use of sophisticated program-
ming tools with standard debugging and profiling function-
ality for developing UDs. Additionally, there is no restriction
to a specific programming model or to stick to the program-
ming language C, so it is even possible to develop UDs with
Python [18]. While KDs have to be deployed within the
release schedule of kernel revisions (or via patches), UDs
are decoupled from this schedule by maintaining only a sim-
ple and mostly non–changing interface within kernel revi-
sions [18, 17]. Furthermore, running drivers isolated in un-
privileged mode allows easy restarting after a crash, as it
is done by the microkernel based operating system MINIX
3 [15], and therefore improves system stability and reliabil-
ity [5, 18], but also causes a loss of performance. Recent
microkernel architectures like seL4 [30] try to minimize the
performance loss.

When porting the concept of UDs to the Linux kernel, early
versions of pure UDs suffered from poor performance, be-
cause of the necessary context switch from unprivileged to
privileged mode, or the lack of interrupt handling [7]. These
disadvantages of early UDs are nearly insignificant in recent
UD frameworks [18], because performance–critical code and
interrupt handling stays within the kernel [10], as it is shown
in section 4, where some of these UD frameworks will be in-
troduced. But first, this paper initially provides a short
introduction about device drivers and their requirements in
section 2, followed by section 3, in which device drivers and
performance in microkernel environment is presented. The
results of porting UDs to Linux are summarized in section 5.

43

2. DEVICE DRIVERS
Device drivers are specific computer programs which inter-
act with and manage a particular type of hardware device
in a computer. In general, driver development should con-
sider following the separation of mechanism and policy [29,
5], to be as flexible as possible — that means policy free.
Therefore, a device driver only has to make the hardware
devices and its functionality available, without dealing with
certain restrictions. These restrictions, e.g. how a particular
hardware device is used, should be the matter of user–mode
applications. As a result, the main tasks a device driver has
to accomplish are accessing a device’s memory and manag-
ing data transfer.

2.1 Accessing device memory
The first step of developing a device driver is to access the
device’s memory. This can be accomplished by two main
approaches.

Port–mapped I/O. The first approach called port–mapped
I/O allows accessing a device’s registers via so called I/O
ports, which are specific addresses in a separated reserved
address space (I/O space). This logical separation leads to
extra complexity and the need of special CPU instructions
for reading and writing (in and out) [24].

Memory–mapped I/O. The concept of associating a de-
vice’s memory to address values in physical memory is called
memory–mapped I/O. In fact, there is no distinction be-
tween physical or device memory and accessing this shared
address space can be done with a common CPU instruction
set. While the first approach is forced by Intel and therefore
very common on personal computers, memory–mapped I/O
gained more importance since the 64bit era and the large ad-
dress space. The basis work for this approach is done by the
device, which monitors the address bus to respond on access
requests corresponding the device’s addresses, and connects
the data bus to the desired hardware registers [24].

2.2 Managing data transfers
A device driver is controlled by reading and writing its reg-
isters, so it is important to pay attention to the signaling for
data transfer between device and main memory. This pa-
per introduces programmed I/O, interrupt driven I/O and
Direct Memory Access (DMA).

Programmed I/O. Programmed I/O describes a data trans-
fer which is initiated by the CPU. It is associated with the
concept polling, because the CPU repeatedly checks the sta-
tus of the device. For getting input data, the CPU first waits
until the device is ready and then until all bytes are read.
For writing output data, the procedure is similar. The ob-
vious disadvantage is that asynchronous events can not be
handled [24].

Interrupt driven I/O. The opposite of this approach is in-
terrupt driven I/O, whereas a hardware device emits signals
called Interrupt Requests (IRQs). An IRQ is used to inform
the CPU about a new event like incoming data or about
its status, so the CPU can initiate a data transfer with the
device. In general, the CPU needs to pause its current ac-
tivities in order to deal with these interrupts by the help of

a so called interrupt handler or an Interrupt Service Rou-
tine (ISR). In contrast to programmed I/O, asynchronous
interrupt handling is served [24].

Direct Memory Access. The third concept called DMA
provides a data transfer of an amount of data without par-
ticipation of the CPU. Instead of that, a DMA controller
assumes control to release the CPU. The DMA controller is
a special hardware which manages the fast file transfer via
the bus system [5].

3. USER–MODE DRIVER DEVELOPMENT
IN MICROKERNEL ENVIRONMENT

As already mentioned, microkernel drivers are user–mode
drivers by definition and had the reputation to be slow in
contrast to drivers of monolithic systems in former times.
Looking at MINIX 3, which is a free POSIX–compliant,
open–source UNIX–like operating system based on its own
tiny microkernel, offers a short summary of device driver ar-
chitecture in a microkernel context. MINIX 3 is made up of
several layers, displayed in figure 3.

Figure 1: The structure of MINIX 3 [27].

The lowest layer contains the microkernel running in kernel–
mode, whereas the remaining layers completely run as user–
mode processes. The layer straight upon the microkernel
includes the device drivers. Encapsulated in independent
processes, the drivers communicate with the kernel by ker-
nel calls and with other processes by message passing [27].
The kernel API provides several kernel calls for obtaining
kernel services, for example to perform I/O operations, time
management or moving data between address spaces. The
third layer includes the servers, which are also independent
processes. Via the message passing system the drivers com-
municate with server processes like the file server. Hardware
interrupts are passed to the driver by notifications.
Developed for IA–32 architectures, MINIX 3 provides data
access by writing and reading I/O ports via kernel calls
SYS_DEVIO(), SYS_VDEVIO() and SYS_SDEVIO(). The func-
tions differ in whether a single value or several values are
read or written. For each driver, the kernel has a bit map of
kernel calls which defines the legitimate kernel calls of the
driver. For every call, the kernel checks whether a driver is
authorized or not. This increases the costs for a kernel call
and among others lead to poorer performance than mono-
lithic kernels or other microkernels like representatives of
the L4 mirokernel family, following introduced. However,
Herder et al. [13] claim that MINIX 3 drivers in user space
only produce a performance loss of 5% to 10% in contrast to

44

having the drivers in kernel space. For this study they use
their base system with drivers inside the kernel.
MINIX 3 also provides high–level interfaces for different
types of drivers, namely for block–oriented drivers, generic
character–oriented drivers, drivers communicating with the
input server and network device drivers. Additionally, DMA
is supported. A special, reliability increasing feature of
MINIX 3 is the so called Reincarnation Server, which can au-
tomatically detect and restart crashed or stucked drivers [28].

The seL4 microkernel belongs to the L4 microkernel family,
which provides high performance microkernels. Compared
to former microkernels like Mach or the L4 predecessor L3,
the L4 microkernels increased efficiency. seL4 contrasts with
some other members of the L4 microkernel family by its re-
source management model, which includes explicit memory
management, which means that memory is allocated from
user space [6].
During development of seL4, security and safety are focused,
so UDs fit to this concept of avoiding unverified code in ker-
nel space. A central design feature are capabilities. For
all operations, an application has to hold the appropriate
capability. Therefore, capabilities control communication
between components and ensure that software components
are authorized. seL4 provides Inter–Process Communication
(IPC) which is used for communication between threads as
well as for kernel–provided services [6, 16].
Interrupt handling is implemented as IPC messages, whereby
seL4 provides synchronous IPC and also asynchronous no-
tifications. A so called asynchronous endpoint notifies the
driver of an interrupt event. A thread launches the kernel to
send a message to an asynchronous endpoint if an interrupt
occurs. seL4_IRQHandler_SetEndpoint() specifies the im-
plied asynchronous endpoint and for which an IRQHandler
capability is required. By calling the function seL4_Wait()

on that asynchronous endpoint, the driver waits for inter-
rupts. After processing the interrupt, the kernel will be
informed that new interrupts can be processed by invoking
seL4_IRQHandler_Ack() which unmasks the interrupt [30].
The access to device registers depends on the hardware, so
memory can either be mapped into the virtual address space,
or can be accessed using I/O ports (Intel x86 hardware). For
using I/O ports, IO Port capabilities are required, which
each define a range of accessible ports. The read and write
functions, which also determine the data size, expect the
port and an IO Port capability [30].
Supporting DMA harbors security risks, because the Mem-
ory Management Unit (MMU) is bypassed during memory
access. Malicious device drivers can force memory access of
not appropriated address space, because DMA provides the
access of any addresses. To avoid this, seL4 supports the
I/O Memory Management Unit (IOMMU) on Intel IA–32–
based platforms, which maps virtual addresses to physical
addresses like a MMU and constrains the regions of system
memory for the device [30].

In general, the performance of microkernels and therefore
UDs depends on a fast IPC architecture, because interrupts
are handled as IPC messages [12]. Although it has been
shown that a ported user–mode network driver on top of a
Mach system is able to reach comparable performance like
an UNIX system with traditional KDs [21], former micro-
kernels suffered from high IPC costs. In contrast to L3 and

Figure 2: One–way IPC cost of various L4 ker-
nels [6].

Mach, the L4 microkernel already had an optimized IPC
architecture [19] and was able to deliver a nearly equal per-
formance with only a performance loss of 5% to 10% [12].
However, recent microkernels like seL4 or Fiasco further im-
proved IPC performance and reduced the costs by the factor
10 as it is presented in figure 2, in which the first L4 kernel is
labeled as Original. In comparison to MINIX 3, whereby a
system call used for I/O operations costs on average 1µs [14],
performance improvement is also measurable. As a result,
the performance of UDs in the context of seL4 or Fiasco
approximately comparable to appropriate KDs.

4. USER–MODE DRIVER DEVELOPMENT
IN LINUX ENVIRONMENT

The problem of pure UDs is the lack of interrupt handling
in contrast to pure KDs. To eliminate this problem and to
reach the performance of pure KDs, at least a small compo-
nent of a device driver has to be placed in kernel space to
succeed to this task. Following this approach, several frame-
works and architectures have been developed to port the UD
concept to the Linux kernel, either supporting the splitting
of a pure KD into KD component and UD component or
providing a library to develop UD components. However,
specific concepts for device–memory access, data transfers
and communication are always required.

4.1 User–mode device driver tasks
As stated in section 2, device drivers have to realize two
main tasks: Accessing a device’s memory and managing data
transfer.
The first task is easy to accomplish. Linux provides access to
physical memory via /dev/mem, so device drivers can call
mmap() to map a section of /dev/mem into their address
space. As a result, a fast and simple access to a device’s
memory is possible [2].
Managing data transfers can be accomplished via interrupt
handling or via DMA. While DMA is easy to realize in
user space, interrupt handling can only be done in kernel
space. The following paragraphs introduce three possibili-
ties to manage IRQs by UD components with the help of a
KD component.
The first method allows UD components to wait for an inter-
rupt by executing a file system call like read() on a special
device file, which can be located in the proc–filesystem or
in /dev. This is realized by a KD component in form of
registering an ISR, which listens on this special device file,
so the file system call gets blocked. As a result, as soon as

45

the device sends an IRQ, the file system call gets unblocked
and the UD component can handle the IRQ properly, e.g.
writing some acknowledging status codes into a sysfs file.
The second IRQ handling approach uses the system call ioctl,
which has the advantage of being available under all POSIX
compliant operating systems like Linux or microkernel op-
erating systems such as MINIX. The system call estimates
a device handle, a request code and a data argument. After
calling the function from within user space, it blocks until
a request code dependent message from the device is avail-
able. In this case, the function returns and the message can
be received in user space.
The last method called Netlink is a successor of the ioctl
approach and therefore a socket–style Linux kernel inter-
face, which provides blocking and non–blocking send and
receive–functions in user space. In kernel space, Netlink
provides a callback function, which is called when a packet
arrives. Netlink has the advantage of a message queue for
asynchronous processing of messages [2].

4.2 Frameworks
This sections will introduce several Linux frameworks, which
can be used for UD development. In general, most ap-
proaches aim at isolating possible driver bugs from the ker-
nel to improve stability or reliability. Another goal is to
decrease kernel footprint and therefore to enhance main-
tainability. Furthermore, some architectures focus on an
automatic transformation and splitting of a pure KD into
KD component and UD component.

Microdriver
The concept of pure KDs is altered by the Microdriver archi-
tecture introduced by Ganapathy et al. [9], which splits pure
KDs into KD component and UD component, following the
separation of mechanism and policy [29, 5]. This is done by
a refactoring tool consisting of a splitter, which determines
critical functions, and a code generator, which produces nec-
essary code for the communication between UD component
and KD component.
The KD component implements time– and performance–
critical functionality like interrupt handling, whereas the UD
component implements non–critical functionality, e.g. de-
vice initialization, configuration and error–handling. Both
driver components communicate using an LRPC–like mech-
anism. Because the Microdriver architecture and the follow-
ing approach have a smiliar testing arrangement, the evalu-
ation of both follows in form of a comparison.

U2MDF
Based on the previous Microdriver architecture, the Unified
User–Mode Driver Framework (U2MDF) [20] also reduces
the effort of splitting a pure KD into KD component and
UD component, by providing a unified programming frame-
work with high compatibility and introducing a simplified
development process.
Each KD component and UD component consists of a com-
munication part (–COM) and a core part (–CORE), whereas
the CORE parts have the same functionality as described
in the Microdriver architecture. The communication is real-
ized via an enhanced context–switch reducing Netlink socket
based on requests and responds, instead of system calls, ioctl
or the proc–filesystem. Accessing a device’s memory can be

achieved by using the iopl() system call to authorize the UD–
CORE to access and operate on the I/O ports or by mapping
the device’s memory into UD–CORE’s address space with
mmap(). For further performance optimization, U2MDF also
implements a Zero–Copy DMA–like technology, which al-
lows storing data directly from hardware devices in user
space. In case of synchronization and locking, memory is
directly shared between kernel and user space, whereas a so
called Read–Copy–Update mechanism preserves the consis-
tency of this shared data.
As already stated, the previous evaluation of the microdriver
approach [9] is very similar to the evaluation of U2MDF,
because they were done by running UD and KD in kernel–
mode and simulating the context switch with fixed delays.
In addition, both used common metrics like CPU utilization
and network throughput. U2MDF’s performance is a tiny
bit slower than the first approach, e.g. having a 10µs delay
results in an equal CPU utilization, whereas the network
throughput is about 5% lower. With smaller fixed delays
than 10µs there is only a insignificant amount of perfor-
mance difference between both, however, performance loss
with fixed delays higher than 10µs is less when using the
Microdriver architecture. In short, the overall performance
is quite identical, although the performance degradation of
U2MDF drivers is starting earlier.

UIO
Userspace I/O (UIO) is another driver–splitting framework
approach [17], which focuses on high performance and easy
driver development. Most of the UIO driver functionality
is covered by the UIO framework in kernel space, so the
KD components minimal functionality is to provide a sim-
ple ISR, that only confirms and disables an interrupt. The
rest of a driver’s work can be achieved within the UD com-
ponent, like accessing a device’s memory with a modified
implementation of mmap(), which aims at preventing other
user space drivers or programs to map foreign device mem-
ory. The communication between both parts respectively
the interrupt handling is accomplished via a device file in
/dev/uioX and an additional set of directories and attribute
files in sysfs, which is the successor of the proc filesystem.

PDA
Another approach to develop UDs especially for PCI devices
is the Portable Driver Architecture (PDA) in terms of a C
library [8]. While using its predecessor Baracuda [2] as a ba-
sis, the PDA library focuses on two main goals — support-
ing high–throughput respectively low–latency devices and
improving maintainability. Latter is shown in figure 3, as
the PDA library only needs 128 loc to extend compatibility
to 27 kernel revisions.

Figure 3: Needed code changes to maintain compat-
ibility of the PDA library to 27 kernel revisions [8].

46

Additionally, the library provides device functions like in-
terrupting, programmed I/O, DMA and a so called kernel
adapter. By using the PDA library, driver developers have
the advantage to write only a UD component without both-
ering about writing a KD component. The kernel adapter
is responsible for memory allocation via DMA and interrupt
handling, which is partially based on the already introduced
UIO approach. Like U2MDF, PDA realizes a DMA–like
Zero–Copy approach to store a device’s data directly in user
space.
PDA drivers are claimed to be as fast as pure KDs. Using
a high–throughput PCI device, which is likely a network in-
terface cards for fiber–links, a PDA driver in user space is
able to reach 98% of the theoretical 3.5GiB/s throughput.
Therefore there is no reason to test an equivalent pure KD
to gain the insignificant 2% of performance. Another tests
deals with the amount of served IRQs and shows, that a
PDA driver and a pure KD can serve the same IRQ rate.

5. CONCLUSIONS
Former microkernels like L3 or Mach suffered from a bad
performance, because of high IPC costs. Even recent mi-
crokernels like the introduced MINIX 3 struggle with the
same problem, but there are also representatives of the L4
microkernel family, e.g. Fiasco or the presented seL4, which
improved their IPC performance and showed, that UDs are
a good alternative to pure KDs. As a consequence thereof,
several early approaches ported the concept of UDs to mono-
lithic kernel based operating systems, without reaching the
performance of pure KDs.
In contrast, evaluations of several recent UD frameworks for
Linux pointed out, that the criticism about bad performance
is obsolete and insignificant. Current UD drivers consist of a
KD–component, which implements time– and performance–
critical functionality like interrupt handling and an UD–
component, which handles non–critical code like device ini-
tialization and configuration. Additionally, the concept of
microkernels shows that minimizing the kernel, especially by
removing device drivers, has advantages like enhanced sta-
bility and reliability while delivering approximately the per-
formance as monolithic systems. The evaluations of the pre-
sented UD approaches used fast network interface cards or
hard–drive disks for measuring common metrics like through-
put, CPU–utilization or the IRQ rate. One of the introduced
driver architectures – the Portable Driver Architecture [8]
– was developed for and evaluated with a special high–
throughput and low–latency PCI hardware device. This
poses in general a particular challenge for UDs, but the PDA
driver nearly reached 100% bandwidth throughput.
Another benefit from developing UDs for Linux is the greatly
improved maintainability. The authors of PDA presented a
diagram, which illustrates the very small amount of needed
code changes in the kernel interface to preserve compati-
bility to 27 kernel revisions [8]. Although other frameworks
did not show such illustrations, their common UD concept of
separating kernel–mode interface and user–mode part sug-
gests similar effort for preserving compatibility. In contrast,
pure KDs underlie the rapidly changing kernel API, which
causes pure KD development to be a very time consuming
challenge.
Driver developers have the ability to decide, which frame-
work or approach should be used for UD development. This
decision depends on whether pure KDs exist, or if an UD

should be developed new from scratch. If KDs exist, it may
be reasonable to use a framework like the Microdriver archi-
tecture or U2MDF to transform KDs nearly automatically
into KD component and UD component. On the other hand,
developing an UD from scratch is comfortable to accomplish
by using UIO or PDA, which provide an existing kernel li-
brary or KD component and only the UD component has to
be implemented. However, as both concepts of developing
UDs provide a similar performance, developers only need to
focus on the decision how to develop an UD in Linux and the
easiest way of reaching this goal. As a result, the concept of
UDs is a very pleasing approach and the little performance
loss is easily compensated by the improved maintainability
and stability.

6. REFERENCES
[1] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer,

M. E. Fiuczynski, D. Becker, C. Chambers, and
S. Eggers. Extensibility safety and performance in the
SPIN operating system, volume 29. ACM, 1995.

[2] A. Brinkmann and D. Eschweiler. A microdriver
architecture for error correcting codes inside the linux
kernel. In Proceedings of the Conference on High
Performance Computing Networking, Storage and
Analysis, page 35. ACM, 2009.

[3] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler.
An empirical study of operating systems errors,
volume 35. ACM, 2001.

[4] P. Chubb. Get more device drivers out of the kernel!
In Ottawa Linux Symposium, Ottawa, Canada, jul
2004.

[5] J. Corbet, A. Rubini, and G. Kroah-Hartman. Linux
device drivers. ” O’Reilly Media, Inc.”, 2005.

[6] K. Elphinstone and G. Heiser. From l3 to sel4 what
have we learnt in 20 years of l4 microkernels? In
Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, pages 133–150. ACM,
2013.

[7] J. Elson and L. Girod. Fusd: A linux framework for
user-space devices. Online at http://www. circlemud.
org/˜ jelson/software/fusd, 2003.

[8] D. Eschweiler and V. Lindenstruth. The portable
driver architecture. In Proceedings of the 16th
Real-Time Linux Workshop, Open Source Automation
Development Lab (OSADL), 2014.

[9] V. Ganapathy, A. Balakrishnan, M. M. Swift, and
S. Jha. Microdrivers: A new architecture for device
drivers. Network, 134:27–8, 2007.

[10] V. Ganapathy, M. J. Renzelmann, A. Balakrishnan,
M. M. Swift, and S. Jha. The design and
implementation of microdrivers. ACM SIGOPS
Operating Systems Review, 42(2):168–178, 2008.

[11] D. B. Golub, D. P. Julin, R. F. Rashid, R. P. Draves,
R. W. Dean, A. Forin, J. Barrera, H. Tokuda,
G. Malan, and D. Bohman. Microkernel operating
system architecture and mach. In In Proceedings of the
USENIX Workshop on Micro-Kernels and Other
Kernel Architectures, pages 11–30, 1992.

[12] H. Härtig, M. Hohmuth, J. Liedtke, J. Wolter, and
S. Schönberg. The performance of µ-kernel-based
systems, volume 31. ACM, 1997.

[13] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S.

47

Tanenbaum. Construction of a highly dependable
operating system. In Dependable Computing
Conference, 2006. EDCC’06. Sixth European, pages
3–12. IEEE, 2006.

[14] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S.
Tanenbaum. Minix 3: A highly reliable, self-repairing
operating system. ACM SIGOPS Operating Systems
Review, 40(3):80–89, 2006.

[15] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S.
Tanenbaum. Failure resilience for device drivers. In
Dependable Systems and Networks, 2007. DSN’07.
37th Annual IEEE/IFIP International Conference on,
pages 41–50. IEEE, 2007.

[16] G. Klein, K. Elphinstone, G. Heiser, J. Andronick,
D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt,
R. Kolanski, M. Norrish, et al. sel4: Formal
verification of an os kernel. In Proceedings of the ACM
SIGOPS 22nd symposium on Operating systems
principles, pages 207–220. ACM, 2009.

[17] H. J. Koch and H. Linutronix Gmb. Userspace i/o
drivers in a realtime context. In The 13th Realtime
Linux Workshop, 2011.

[18] B. Leslie, P. Chubb, N. Fitzroy-Dale, S. Götz,
C. Gray, L. Macpherson, D. Potts, Y.-T. Shen,
K. Elphinstone, and G. Heiser. User-level device
drivers: Achieved performance. Journal of Computer
Science and Technology, 20(5):654–664, 2005.

[19] J. Liedtke, K. Elphinstone, S. Schonberg, H. Härtig,
G. Heiser, N. Islam, and T. Jaeger. Achieved ipc
performance (still the foundation for extensibility). In
Operating Systems, 1997., The Sixth Workshop on Hot
Topics in, pages 28–31. IEEE, 1997.

[20] W. Liu, X. Chen, X. Li, and Y. Gao. U 2 mdf: A
unified user-mode driver framework. In Computer
Science and Service System (CSSS), 2011
International Conference on, pages 922–925. IEEE,
2011.

[21] C. Maeda and B. N. Bershad. Networking
performance for microkernels. In Workstation
Operating Systems, 1992. Proceedings., Third
Workshop on, pages 154–159. IEEE, 1992.

[22] Y. Padioleau, J. L. Lawall, and G. Muller.
Understanding collateral evolution in linux device
drivers. In ACM SIGOPS Operating Systems Review,
volume 40, pages 59–71. ACM, 2006.

[23] L. Ryzhyk, P. Chubb, I. Kuz, and G. Heiser. Dingo:
Taming device drivers. In Proceedings of the 4th ACM
European conference on Computer systems, pages
275–288. ACM, 2009.

[24] W. Schiffmann, H. Bähring, and U. Hönig. Technische
Informatik 3: Grundlagen der PC-Technologie,
volume 3. Springer-Verlag, 2011.

[25] M. M. Swift, M. Annamalai, B. N. Bershad, and H. M.
Levy. Recovering device drivers. ACM Transactions on
Computer Systems (TOCS), 24(4):333–360, 2006.

[26] M. M. Swift, S. Martin, H. M. Levy, and S. J. Eggers.
Nooks: An architecture for reliable device drivers. In
Proceedings of the 10th workshop on ACM SIGOPS
European workshop, pages 102–107. ACM, 2002.

[27] A. Tanenbaum, R. Appuswamy, H. Bos, L. Cavallaro,
C. Giuffrida, T. Hrubỳ, J. Herder, and E. VAN DER.
Minix 3: status report and current research. ; login::

the magazine of USENIX & SAGE, 35(3):7–13, 2010.

[28] A. S. Tanenbaum. Modern operating systems. Pearson
Education, 2009.

[29] A. S. Tanenbaum, A. S. Woodhull, A. S. Tanenbaum,
and A. S. Tanenbaum. Operating systems: design and
implementation, volume 2. Prentice-Hall Englewood
Cliffs, NJ, 1987.

[30] N. Trustworthy Systems Team. sel4 reference manual.
https://sel4.systems/Docs/seL4-manual.pdf. API
version 1.3.

48

Notes

WAMOS 2015 Program

Thursday, August 6th 2015
9:00 – 9:15 Introducion
9:15 – 10:15 Keynote talk: AUTOBEST: A microkernel-based system (not only) for automotive applica-

tions
Alex Züpke

10:15 – 10:30 Coffee Break

10:30 – 11:30 Session 1: Kernel Design Principles
Session Chair: Daniel Mierswa

Unikernels
Kevin Sapper

Shared libraries for the seL4 Kernel
Andreas Werner

11:30 – 11:45 Coffee Break

11:45 – 12:45 Session 2: IPC Performance and Security
Session Chair: Olga Dedi

Improvement of IPC responsiveness in microkernel-based operating systems
Steffen Reichmann

Side Channel and Covert Channel Attacks on Microkernel Architectures
Florian Schneider and Alexander Baumgärtner

12:45 – 14:00 Lunch

14:00 – 15:00 Session 3: Microkernel Scheduling
Session Chair: Annalena Gutheil

Towards policy-free Microkernels
Olga Dedi

User-level CPU Inheritance Scheduling
Sergej Bomke

15:00 – 15:15 Coffee Break

15:15 – 16:15 Session 4: Device Drivers and I/O
Session Chair: Andreas Werner

USB in a microkernel based operating system
Daniel Mierswa and Daniel Tkocz

User-mode device driver development
Annalena Gutheil and Benjamin Weißer

16:15 – 16:30 Discussion and Closing Remarks

© 2015 HSRM. All rights reserved.

	Foreword
	Program Committee
	Keynote Talk
	Session 1: Kernel Design Principles
	Unikernels
	Shared libraries for the seL4 Kernel

	Session 2: IPC Performance and Security
	Improvement of IPC responsiveness in microkernel-based operating systems
	Side Channel and Covert Channel Attacks on Microkernel Architectures

	Session 3: Microkernel Scheduling
	Towards policy-free Microkernels
	User-level CPU Inheritance Scheduling

	Session 4: Device Drivers and I/O
	USB in a microkernel based operating system
	User-mode device driver development

	Program

