
WAMOS
Benefits of dedicated hardware for microkernels

Date of last update: 24. August 2017

Daniel Schultz
Hochschule RheinMain
University of Applied Sciences

Outline Background Memory allocator Scheduling Conclusion

OUTLINE

1. Background

2. Memory allocator

3. Scheduling

4. Conclusion

2

BACKGROUND

Outline Background Memory allocator Scheduling Conclusion

MICROKERNELS

Microkernels are operating systems with less functionality in the
kernel itself.

→ Interprocess Communication
→ Scheduling
→ Memory management

sel4 was written from scratch by the NICTA group with the aim of
providing a basis for highly secure and reliable systems.

4

Outline Background Memory allocator Scheduling Conclusion

FIRMWARE

Linux covers many embedded system use cases and all
semiconductor provide kernels for their hardware.

Firmwares have only one purpose; control the hardware and
supply a interface to external components.

Firmware-controlled hardware is generally designed for one task.

5

MEMORY ALLOCATOR

Outline Background Memory allocator Scheduling Conclusion

BUDDY SYSTEM

Used by seL4 and Linux for memory management.

The buddy system is an algorithm to split one big piece of data
with the size power of 2 into smaller fragments.

When all fragments are made of size power of 2 this can be
represented as a binary tree.

7

Outline Background Memory allocator Scheduling Conclusion

BUDDY SYSTEM

Let there be data of 2k words and a depth n of the binary tree.

Each level h, with 0 ≤ h ≤ n has 2h nodes and each node Th,j
represents data of size 2k−h.

All allocatable block sizes are 2k, 2k−1, ..., 2k−n words.

For example, a tree with k = 15 and n = 8 describes data of 1
block with 32786 words (1 MB), 256 blocks with 128 words (4 kB).

Searching for data size of 2k−h requires a look into level h of the
binary tree.

8

Outline Background Memory allocator Scheduling Conclusion

HARDWARE

bit-vector 0 1 2 3 4 5

1 1 0 1 0 0L0

L1

L2

1 1 1 1 0

1 1 1

Each leaf node with size of 2k−n

will be represented by one bit.

The bit-vector has a size of N.

An OR-gate prefix logic decides,
which data is free and requested.

Each OR-gate Th,j is connected
with two gates at Th−1,j and
Th−1,j+2h−1

9

Outline Background Memory allocator Scheduling Conclusion

HARDWARE ALLOCATION

bit-vector 0 1 2 3 4 5

1 1 0 1 0 0L0

L1

L2

1 1 1 1 0

1 1 1

Searching for data size of 2k−h at
level Lh.

If a free node was found, all
accessible bits get flipped to a 1.

The accelerator returns the
physical memory address.

10

Outline Background Memory allocator Scheduling Conclusion

HARDWARE DEALLOCATION

bit-vector 0 1 2 3 4 5

1 1 0 1 0 0L0

L1

L2

1 1 1 1 0

1 1 1

Calculate the bits by a given
address and the memory size.

Flip all these bits to 0.

11

Outline Background Memory allocator Scheduling Conclusion

USAGE

Only 5 cycles are needed to find free data or 50 ns if the hardware
is driven by a 100Mhz clock.

The smallest available block size, 2k−h, is equal to a system page
size.

The accelerator can handle the same size of memory like the RAM
controller, but a barrier can shrink the OR-gate.

This hardware can handle page faults in a fast and efficient way.

12

SCHEDULING

Outline Background Memory allocator Scheduling Conclusion

CURRENT SCHEDULER

The current seL4 Kernel uses a priority-based round-robin
scheduler with lists of all threads for one priority.

The scheduler will choose all threads in sequence from head to
tail for each priority.

In a system with N threads, each thread will get 1
N of the global

CPU time.

This procedure is fair but it is not real-time capable.

14

Outline Background Memory allocator Scheduling Conclusion

REAL-TIME SCHEDULER

Instead of the time-slice, a Scheduler Context (SC) was added to
the Thread Control Block (TCB).

The SC contains information about the time budget and period a
thread.

If a thread exceeds its time budget, it will added to a so-called
release queue.

All exhaust threads are collected and ordered by the next budget
refresh.

The scheduler can choose the highest thread from either the
priority list or release queue.

15

Outline Background Memory allocator Scheduling Conclusion

REAL-TIME SCHEDULER

Introduction of passive server, which borrow time from the caller.

A thread can ask for more time to clean up or rollback data.

All event-driven threads also need available time budget,
otherwise a pending interrupt occurs.

16

Outline Background Memory allocator Scheduling Conclusion

HARDWARE

The seL4 scheduler is optimized in software can not mapped
directly in hardware. To reduce chip space it will be limited:

→ 8 priorities
→ 64 threads
→ Times greater or equal to 1 us

This reduced scope will still meet the scheduler criteria.

17

Outline Background Memory allocator Scheduling Conclusion

HARDWARE

A internal small RAM holds priority, TCB address, budget and
period for all 64 threads. The remaining time and next timestamp
will also saved as private data.

The selector will simply find the next thread by walking over each
memory structure.

A watch dog will be armed with the budget time and triggers an
interrupt to the CPU.

After the watch dog triggered, it sets a ”release queue” flag to the
thread structure.

18

Outline Background Memory allocator Scheduling Conclusion

PROBLEMS

Round-robin scheduler in hardware are common in switches for a
static count of tasks, but not in dynamic environments.

Changing the priorities of threads at run time is missing.

19

CONCLUSION

Outline Background Memory allocator Scheduling Conclusion

CONCLUSION

Interprocess communication still exists on many platforms.

The memory management accelerator can reduce page handling
to a constant time of few nanoseconds.

The real-time scheduler finds the next threads and helps the
kernel to save dynamic memory and calculation time, but it has a
lot of potential for a smaller footprint.

21

	Background
	General

	Memory allocator
	A
	B

	Scheduling
	A
	B

	Conclusion

