
Lock Holder Preemption Problem in Multiprocessor
Virtualization

Burak Selcuk

RheinMain University of Applied Sciences
Informatik Master

August 24, 2017

Burak Selcuk LHP Problem in Multiprocessor Virtualization 1 / 18



Table of Contents

1 Introduction

2 Basics
Spinlocks
Virtualization
Lock Holder Preemption

3 Solutions
Overview
Co-scheduling
Guest OS Modification

4 Solution in practice

Burak Selcuk LHP Problem in Multiprocessor Virtualization 2 / 18



Introduction

Motivation

Virtualization is widely used and the fundamental of Cloud Computing

Guest OS (should) behave like they are running on a physical machine
without knowing they are virtualized

Process synchronization techniques rely on assumptions that may not
hold when an OS is virtualized

Violating those assumptions can cause critical performance issues

Spinlock mechanism is one of them!

Burak Selcuk LHP Problem in Multiprocessor Virtualization 3 / 18



Basics Spinlocks

Spinlocks

Inside the kernel, spinlocks are the lowest-level mutual exclusion
mechanism

Spinlocks uses busy waiting whenever the lock is taken by another
thread

This wastes CPU resources, but

critical sections in kernel are usually short and fast
busy waiting is less expensive than doing a context switch

Most important: spinlocks rely on the assumption that the lock
holder is not preempted while holding the spinlock

Burak Selcuk LHP Problem in Multiprocessor Virtualization 4 / 18



Basics Virtualization

Overcommitment

Virtual machines share the hardware resources of the physical machine

A VM gets a number of virtual CPUs (vCPUs) assigned, which are
then assigned to the physical CPUs (pCPU) by the hypervisor

The total number of vCPUs is usually larger than the number of
pCPUs, this situation is called overcommitment

Whenever an overcommitment happens, there are always inactive
vCPUs

Burak Selcuk LHP Problem in Multiprocessor Virtualization 5 / 18



Basics Virtualization

Example of Overcommitment

VM 0

vCPU 
0-1

vCPU 
0-0

VM 1

vCPU 
1-0

vCPU 
1-2

HardwarepCPU 
0

pCPU 
1

pCPU 
2

pCPU 
3

vCPU 
1-3

vCPU 
1-1

CPU Scheduler

Hypervisor

Burak Selcuk LHP Problem in Multiprocessor Virtualization 6 / 18



Basics Virtualization

Scheduling

Process and CPU scheduling happens on two layers:

Guest OS scheduler assigns the process to the vCPUs like usually
Hypervisor schedules the vCPUs to the pCPUs

Each vCPU gets a time slice of execution until it gets preempted by
the hypervisor

A time slice duration is several microseconds (30-50ms)

Burak Selcuk LHP Problem in Multiprocessor Virtualization 7 / 18



Basics Lock Holder Preemption

Lock Holder Preemption Problem

vCPU 1

vCPU 2 vCPU 0

Acquire lock,
enter critical section

Preemption 
through hypervisor

Acquire lock,
start busy waiting

Leave critical section,
free lock

vCPU 0

Busy waiting

Acquire lock,
enter critical section

pCPU 0

pCPU 1

CPU wasting 
(caused by LHP)

Preemption 
through hypervisor

VM A

VM B

Burak Selcuk LHP Problem in Multiprocessor Virtualization 8 / 18



Solutions Overview

Solutions for LHP problem

Co-Scheduling / Gang-Scheduling

Guest OS modification

Monitoring through hypervisor

Burak Selcuk LHP Problem in Multiprocessor Virtualization 9 / 18



Solutions Co-scheduling

Co-scheduling

Scheduling technique for multiprocessor systems

Published by John Ousterhout in 1982

Idea: Threads that communicate should be scheduled concurrently

Transferred to virtualization for CPU scheduling

Hypervisor assigns all vCPUs of a VM simultaneously, LHP problem
can not occur

...but it can cause CPU fragmentation and priority inversion!

Burak Selcuk LHP Problem in Multiprocessor Virtualization 10 / 18



Solutions Co-scheduling

Example of Co-scheduling

vCPU 2 vCPU 4vCPU 0pCPU 0

pCPU 1

VM A VM C

vCPU 3 idle vCPU 1

vCPU 0

VM B

Time

vCPU 1

Time Slice

Burak Selcuk LHP Problem in Multiprocessor Virtualization 11 / 18



Solutions Co-scheduling

CPU Fragmentation and Priority Inversion

idle

vCPU 1vCPU 0pCPU 0

pCPU 1

VM A VM C

vCPU 2

VM B

T0 T1 T3T2

I/O

vCPU 3 idle

vCPU 0

ready at T0
ready at T1

higher priority

Burak Selcuk LHP Problem in Multiprocessor Virtualization 12 / 18



Solutions Guest OS Modification

Guest OS Modification

Hypervisor offers hypercalls to inform him about lock holding or
spinning

Source code necessary, each hypervisor may has different interface

Suitable for para-virtualization

Two possibilities:

Preemption delay (lock holder)
Notify hypervisor during long spinning (lock waiter)

Burak Selcuk LHP Problem in Multiprocessor Virtualization 13 / 18



Solutions Guest OS Modification

Preemption delay

Acquire lock,
make hypercall to 

delay preemption for 
n microseconds

Preemption point,
delay preemption,

set flag

Leave critical section,
check flag,

make hypercall to 
reschedule vCPU

at most n microseconds

pCPU 0 vCPU 0

Burak Selcuk LHP Problem in Multiprocessor Virtualization 14 / 18



Solutions Guest OS Modification

Threshold for Spinning

Stop spinning after a number of iterations

Will not avoid LHP but limit side effects of it

After n iterations, make a hypercall to inform hypervisor about long
spinning

Hypervisor decides to preempt lock waiter vCPU and schedules
another one of the same VM

Good choice: lock holder vCPU
Bad choice: another lock waiter, resulting in spinning again

Burak Selcuk LHP Problem in Multiprocessor Virtualization 15 / 18



Solution in practice

Which solution is used?

VMware vSphere:

Uses co-scheduling as customized, relaxed version
Limits LHP and CPU fragmentation

Xen and KVM:

Both hypervisor offer interfaces to notify about long spinning
Implemented in Linux spinlock code

Microsoft Hyper-V:

No co-scheduling necessary, Windows is major guest OS
Offers hypercalls for long spinning like in Xen/KVM
Probably used in Windows, usage in Linux may be possible

Burak Selcuk LHP Problem in Multiprocessor Virtualization 16 / 18



End

The End

Thanks for your attention!

Any questions?

Burak Selcuk LHP Problem in Multiprocessor Virtualization 17 / 18



End Monitoring through Hypervisor

Monitoring through Hypervisor

Approaches whenever guest OS modification is not possible

Recognize every entering and leaving of the kernel mode

Safe state: Guest OS in user mode. No spinlock is hold. Preemption
safe.
Unsafe state: Guest OS in kernel mode. Spinlock may be hold.
Preemption unsafe.

Monitor guest OS instructions, e.g. IA-32 HLT (power saving)

Use fake device driver, guest OS is in user mode whenever protocol is
handled

Burak Selcuk LHP Problem in Multiprocessor Virtualization 18 / 18


	Introduction
	Basics
	Spinlocks
	Virtualization
	Lock Holder Preemption

	Solutions
	Overview
	Co-scheduling
	Guest OS Modification

	Solution in practice

