Lock Holder Preemption Problem in Multiprocessor
Virtualization

Burak Selcuk

RheinMain University of Applied Sciences
Informatik Master

August 24, 2017

Burak Selcuk LHP Problem in Multiprocessor Virtualization 1/18

Table of Contents

@ Introduction

© Basics

@ Spinlocks
@ Virtualization
@ Lock Holder Preemption

© Solutions
@ Overview
@ Co-scheduling
@ Guest OS Modification

@ Solution in practice

Burak Selcuk LHP Problem in Multiprocessor Virtualization

2/18

Introduction

Motivation

@ Virtualization is widely used and the fundamental of Cloud Computing

@ Guest OS (should) behave like they are running on a physical machine
without knowing they are virtualized

@ Process synchronization techniques rely on assumptions that may not
hold when an OS is virtualized

@ Violating those assumptions can cause critical performance issues

@ Spinlock mechanism is one of them!

Burak Selcuk LHP Problem in Multiprocessor Virtualization 3/18

S
Spinlocks

@ Inside the kernel, spinlocks are the lowest-level mutual exclusion
mechanism
@ Spinlocks uses busy waiting whenever the lock is taken by another
thread
@ This wastes CPU resources, but
e critical sections in kernel are usually short and fast
e busy waiting is less expensive than doing a context switch
@ Most important: spinlocks rely on the assumption that the lock
holder is not preempted while holding the spinlock

Burak Selcuk LHP Problem in Multiprocessor Virtualization 4 /18

Overcommitment

@ Virtual machines share the hardware resources of the physical machine

@ A VM gets a number of virtual CPUs (vCPUs) assigned, which are
then assigned to the physical CPUs (pCPU) by the hypervisor

@ The total number of vCPUs is usually larger than the number of
pCPUs, this situation is called overcommitment

@ Whenever an overcommitment happens, there are always inactive
vCPUs

Burak Selcuk LHP Problem in Multiprocessor Virtualization 5/18

Example of Overcommitment

VMO0 VM 1
vCPU vCPU vCPU vCPU
0-0 0-1 1-1] 1-3
T T I I
et t—t=t—+t
: : CPU Scheduler : :
|* | |* |
t t t t
: : Hypervisor : :
| | | |
A4 v v v
pCPU pCPU Hardware pCPU pCPU
0 1 2 3

Burak Selcuk

LHP Problem in Multiprocessor Virtualization

6/18

el
Scheduling

@ Process and CPU scheduling happens on two layers:
e Guest OS scheduler assigns the process to the vCPUs like usually
o Hypervisor schedules the vCPUs to the pCPUs

@ Each vCPU gets a time slice of execution until it gets preempted by
the hypervisor

@ A time slice duration is several microseconds (30-50ms)

Burak Selcuk LHP Problem in Multiprocessor Virtualization 7 /18

Basics

Lock Holder Preemption Problem

Preemption Preemption
through hypervisor through hypervisor
Acquire lock, Leave critical section,
enter critical section free lock

‘ pCPUO ‘ ‘ vCPUO vCPU 2 vCPUO
‘ pCPU 1 ‘ ‘ VCPU 1

Busy waiting

CPU wasting
(caused by LHP)
Acquire lock, Acquire lock,

start busy waiting

Burak Selcuk LHP Problem in

Itiprocessor Virtualization

enter critical section

8/ 18

Gty
Solutions for LHP problem

@ Co-Scheduling / Gang-Scheduling
@ Guest OS modification

@ Monitoring through hypervisor

Burak Selcuk LHP Problem in Multiprocessor Virtualization 9 /18

el
Co-scheduling

Scheduling technique for multiprocessor systems
Published by John Ousterhout in 1982
Idea: Threads that communicate should be scheduled concurrently

Transferred to virtualization for CPU scheduling

Hypervisor assigns all vCPUs of a VM simultaneously, LHP problem
can not occur

@ ...but it can cause CPU fragmentation and priority inversion!

Burak Selcuk LHP Problem in Multiprocessor Virtualization 10 / 18

Solutions

Example of Co-scheduling

Time Slice
1
pCPU 0 VCPU 0 VCPU 2 vCPU 4 VvCPU 0
pCPU 1 VCPU 1 VCPU 3 idle VCPU 1
—————————————— Time—————————————»
VM A VM B VM C

Burak Selcuk LHP Problem in Multiprocessor Virtualization 11 /18

Solutions

CPU Fragmentation and Priority Inversion

ready at T1
ready at TO higher priority
I 1T 1
pCPUO vCPU O vCPU 1 1/0 vCPU O
pCPU 1 idle VCPU 2 VvCPU 3 idle
TO T1 T2 T3
VM A VM B VM C

Burak Selcuk LHP Problem in Multiprocessor Virtualization 12 /18

Guest OS Modification
Guest OS Modification

@ Hypervisor offers hypercalls to inform him about lock holding or
spinning

@ Source code necessary, each hypervisor may has different interface

@ Suitable for para-virtualization

@ Two possibilities:

o Preemption delay (lock holder)
o Notify hypervisor during long spinning (lock waiter)

Burak Selcuk LHP Problem in Multiprocessor Virtualization 13 /18

Solutions

Preemption delay

Acquire lock, . . Leave critical section,
make hypercall to Preemption point, check flag,
delay preemption for delay preemption, make hypercall to
n microseconds set flag reschedule vCPU
pCPUO vCPU O

at most n microseconds

Burak Selcuk LHP Problem in Multiprocessor Virtualization 14 / 18

Susdcelieliarey
Threshold for Spinning

@ Stop spinning after a number of iterations

@ Will not avoid LHP but limit side effects of it

@ After n iterations, make a hypercall to inform hypervisor about long
spinning

@ Hypervisor decides to preempt lock waiter vCPU and schedules
another one of the same VM

e Good choice: lock holder vCPU
e Bad choice: another lock waiter, resulting in spinning again

Burak Selcuk LHP Problem in Multiprocessor Virtualization 15 / 18

Solution in practice

Which solution is used?

@ VMware vSphere:

o Uses co-scheduling as customized, relaxed version
e Limits LHP and CPU fragmentation

@ Xen and KVM:

e Both hypervisor offer interfaces to notify about long spinning
e Implemented in Linux spinlock code

@ Microsoft Hyper-V:

e No co-scheduling necessary, Windows is major guest OS
o Offers hypercalls for long spinning like in Xen/KVM
e Probably used in Windows, usage in Linux may be possible

Burak Selcuk LHP Problem in Multiprocessor Virtualization 16 / 18

End

The End

Thanks for your attention!

Any questions?

Burak Selcuk LHP Problem in Multiprocessor Virtualization 17 / 18

End Monitoring through Hypervisor

Monitoring through Hypervisor

@ Approaches whenever guest OS modification is not possible
@ Recognize every entering and leaving of the kernel mode

o Safe state: Guest OS in user mode. No spinlock is hold. Preemption
safe.

o Unsafe state: Guest OS in kernel mode. Spinlock may be hold.
Preemption unsafe.

@ Monitor guest OS instructions, e.g. 1A-32 HLT (power saving)

@ Use fake device driver, guest OS is in user mode whenever protocol is
handled

Burak Selcuk LHP Problem in Multiprocessor Virtualization 18 / 18

	Introduction
	Basics
	Spinlocks
	Virtualization
	Lock Holder Preemption

	Solutions
	Overview
	Co-scheduling
	Guest OS Modification

	Solution in practice

