

WAMOS 2017

Third Wiesbaden Workshop on
Advanced Microkernel Operating Systems

Editor / Program Chair: Robert Kaiser

RheinMain University of Applied Sciences
Information Science
Unter den Eichen 5

65195 Wiesbaden
Germany

Technical Report July 2017

Contents

Foreword 3

Program Committee 3

Keynote Talks and Award Presentation 5
Praxisnahe Entwicklung anhand des V-Modells

Corinna Schaub, ITK Engineering GmbH . 5
Vorstellung ITK Engineering GmbH und Infos uber Student Award

Markus Hirsch, ITK Engineering GmbH . 7

Session 1: Performance, Safety and Security 9
Solution approaches towards verified µ-Kernel

Danny Ziesche . 9
Benefits of dedicated hardware for microkernels

Daniel Schultz . 13

Session 2: Kernel Design Principles 17
Single Address Space Operating Systems

Fabian Kopatschek . 17
Towards policy-free µKernels

Bernhard Görtz . 21
Lock Holder Preemption Problem in Multiprocessor Virtualization

Burak Selcuk . 25

Program 32

© Copyright 2017 RheinMain University of Applies Sciences (HSRM).
All rights reserved. The copyright of this collection is with HSRM. The copyright of the individual articles
remains with their authors.

Foreword

Welcome to HSRM and to WAMOS 2017, the third edition of the Wiesbaden Workshop on Advanced Microkernel
Operating Systems.

This workshop series was conceived to provide a forum for students of the advanced operating systems
course at Wiesbaden University of Applied Sciences to present the results of their work.

Besides submitting papers themselves, students also serve as members of the program comittee and are
involved in the peer-reviewiewing process. The intention, besides the presentation of interesing operating system
papers, is to provide hands-on experience in organizing and running a workshop.

The authors were given the opportunity to revise and re-submit final versions of their papers based on the
reviews. The papers contained herein are the final versions submitted just before the workshop.

I’d like to thank all participants for their enthusiasm.
I’d like also to thank our guest speakers Corinna Schaub and Markus Hirsch from ITK Engineering who

provided interesting insights into the practical side of automotive software design applying the V-Model and
-last but not least- awarded this year’s ITK Student Award to one of our students, Andreas Werner.

The Workshop Chair,

Robert Kaiser
RheinMain University of Applied Sciences

Wiesbaden, Germany

Program Committee

Olga Dedi, Wiesbaden University of applied sciences
Bernhard Görtz, Wiesbaden University of applied sciences
Fabian Kopatschek, Wiesbaden University of applied sciences
Daniel Schultz, Wiesbaden University of applied sciences
Burak Selcuk, Wiesbaden University of applied sciences
Andreas Werner, Wiesbaden University of applied sciences
Danny Ziesche, Wiesbaden University of applied sciences
Alex Züpke, Wiesbaden University of applied sciences

RheinMain University of Applied Sciences, Wiesbaden, Germany

3

Praxisnahe Entwicklung anhand des V-

Modells

– öffentlich – Seite 1 von 1

©
 I
T
K

 E
n

g
in

e
e
ri

n
g

 G
m

b
H

,
V

o
rl

a
g

e
 F

6
A

4
8
5
0
9

,
v

2
.1

.2
,
g

ü
lt

ig
 a

b
 1

5
.0

2
.2

0
1
7

Praxisnahe Entwicklung anhand des V-Modells

1 Abstract
Mit steigendem Stellenwert von Softwarekomponenten in der Automobilindustrie und zunehmender

Komplexität dieser Komponenten steht die Softwareentwicklung vor großen Herausforderungen. Um in

großen Projekten möglichst qualitativ, effizient und sicher Software entwickeln zu können, kommen

Entwicklungsmodelle zum Einsatz. Diese werden als Vorgehensweisen für Entwicklungsprozesse

verstanden. Der Prozess wird in einzelne verbindliche Phasen, also Arbeitsabschnitte, gegliedert. Des

Weiteren werden Ergebnistypen und Qualitätskriterien definiert, welche den Phasenabschluss

charakterisieren.

Eines der in der Praxis am häufigsten verwendeten Entwicklungsmodelle ist das V-Modell:

Umsetzende (linker Ast des Vs) und prüfende Aktivitäten (rechter Ast des Vs) sind voneinander getrennt.

Im umsetzenden Teil wird in jeder Entwicklungsstufe das zu spezifizierende Anforderungsdokument

verifiziert, indem es inhaltlich aus dem vorherige Eingangsdokument erstellt wird. In dem prüfenden Teil

gibt es zu jeder Entwicklungsstufe eine korrespondierende Teststufe, um die Software gegen das

entwicklungsstufenspezifische Anforderungsdokument zu testen und zu valideren.

Das V-Modell bietet dem Anwender somit einen sequentiellen Prozess der Softwareentwicklung, der die

Prüfaspekte Verifikation und Validierung vereint (Vgl. Abbildung 1). Zurzeit gilt es in Deutschland als

Entwicklungsstandard.

Abbildung 1: Allgemeines V-Modell

Quelle: http://softwarekompetenz.de/servlet/is/10125/?print=true

Vorstellung ITK Engineering GmbH und Infos uber Student Award

Markus Hirsch, ITK Engineering GmbH

Bereits zum vierten Mal verleiht ITK Engineering den Student Award, eine Auszeichnung für besonders
leistungsstarke Studierende. Bis Ende des Jahres werden rund 40 Studierende technischer Studiengänge an
Universitäten und Hochschulen in ganz Deutschland prämiert. Der Preis beinhaltet ein Treffen der Award-
Gewinner mit ITK Kolleginnen und Kollegen bei einem gemeinsamen exklusiven Fahrtraining unter Anleitung
motorsporterfahrener Instruktoren.

About ITK engineering GmbH:
Our company strives to form good partnerships, with our customers as well as our employees. And for us, the
basis of a good partnership is Confidence, Security and Respect. These values inspire our strong customer focus,
which distinguishes ITK as a medium-sized business, development partner and solution provider with a family
feel. Transparent, structured development processes and open communication are likewise expressions of this
philosophy. Meeting high Quality Standards is mandatory for all our employees who are characterized by an
extraordinary degree of Flexibility, Commitment and Motivation.

7

Solution approaches towards verified µ-Kernel

Danny Ziesche
Hochschule RheinMain

Wiesbaden, Germany

dannyziesche@student.hs-rm.de

ABSTRACT

This survey paper will present methods and ideas towards
verified microkernels. First and foremost the motive behind
verification shall be clarified follow what the general strategy
is about. For this purpose a number of already existing at-
tempts of microkernel verification will be evaluated. In detail,
it will be researched how this process of formal specification
and checking was achieved for each individual kernel. Based
on the prior research a general-purpose strategy will be de-
veloped and how to accomplish a verified microkernel can
be tackled. This paper discusses approaches towards verified
µ-Kernel

KEYWORDS

Formal Verification, Microkernel, Formal Methods

ACM Reference format:

Danny Ziesche. 2017. Solution approaches towards verified µ-
Kernel. In Proceedings of , Wiesbaden, Germany, August 2017
(WAMOS2017), 4 pages.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

There are papers addressing the problem of verified operating
systems. They used formal methods and verified parts of some
microkernel. For example the RUBIS, Fluke or seL4 kernel[5,
2, 12].

These papers also mention that verification of an operating
system is not the common case. According to the authors
there are many reasons to this. It may be true today, that it
is not very common to verify low level applications like an
operating system yet. Despite that, the seL4 kernel claims in
being one of the first complete verified microkernel. Which is
also successfully deployed in many applications.

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
WAMOS2017, August 2017, Wiesbaden, Germany
© 2017 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

The seL4 kernel, which originated from the L4 kernel, may
have a long history, but is itself one of the younger projects
unlike RUBIS or Fluke. Nevertheless all three shall be taken
into consideration. The idea itself of a verified codebase is for
sure not new and all the projects had similar approaches but
differ in the scope. It will be shown which strategies worked
out, which one had issues. With this one can phrase a general
strategy to tackle this kind of problems.

2 MOTIVATION

It may be controversial whether formal verification process is
worth the effort[3]. After all it’s not an easy task to formulate
an abstract and/or concrete model of the system which is
sufficient to apply a verification to it.

Proving the absence of bugs or correctness of behavior is
desirable for every piece of software but not necessary for a
lot those. For example a lot of userspace software does not
have high requirements in safety or reliability. Such software
can be improved the usual way and tests, regression tests
and bug reports are sufficient. But it’s a different story for
kernels. A kernel is usually a single point of failure because it
is such a fundametal part of the software architecture. This
makes it a good candidate for formal verification.

Tanenbaum et al. mentioned in [10] that it may be impossible
to have guarantees about the reliability of modern operating
systems. Reason for that are the monolithic kernels or hybrid
kernels, where a large amount of services and device drivers
run in supervisor mode. This large amount of codebase is just
too big and verification becomes cumbersome. If one could
cut done the amount of code and parts to be verified, it may
be possible.

This is where microkernels come into play. These kernels are
much smaller and have a reduced feature-set to the at most
minimum[6]. Typical tasks of a microkernel are:

∙ Interrupt handling

∙ Process management

∙ IPC

∙ Scheduler

∙ I/O Supervisor

Especially device driver are separated from the kernel.

9

WAMOS2017, August 2017, Wiesbaden, Germany Danny Ziesche

With such a reduced codebase it may not be impossible to
verify the correctness of some or all parts of the microkernel.

For comparison the seL4 kernel consists of about 10000 lines
of code, in contrast the linux kernel has several million lines
of code. It’s obvious that million lines of code seem to be
impossible to verify. Not only that but future versions of the
same codebase hast to be verified again and again every time
new code makes it into the kernel.

IPC is one of the key features of a microkernel. That’s why
it seems quite obvious to prove reliability and functional
correctness of the IPC mechanisms. Which is indeed the case
for at least the kernels which where analysed in this paper.

3 FORMAL METHODS

Formal methods are techniques which utilize theoretical com-
puter science and math for the specification and verification
of software. This chapter will shortly explain some formal
methods which where utilized by the verification approaches.
This will let us give a better understanding about the differ-
ences in the upcoming approaches (or similarities).

3.1 Theorem Prover

A Theorem prover or proof assistant or interactive theorem
prover is a software tool, which aims to assist in formalising
proofs. It can check generalized and infinite state models.

It is in no way an automated process. Human guidance and
skill are necessary for all non-trivial proofs. It can be seen as
a collaboration between human and the machine to seek for
a proof. The high skill requirements is why theorem provers
are not user-friendly[7].

An example theorem prover is Isabelle. It’s main proof meth-
ods are resolutions based on higher-order unification, term
rewriting and tableaux prover[7].

3.2 Linear Temporal Logic

Linear Temporal Logic is a variation of logic with the concept
of time. Formulations and expressions can be made which
checks a predicate with a time restriction (state)[8]. Often
requirements of a system are formulated with LTL and are
also a fundamental part in model checkers.

It is derived from FOPL with new temporal operators.

∙ □ Always

∙ ○ Next

∙ ♢ Eventually

An example could look like this:

(□(♢(𝑝⇒ (○𝑞))))

This can be read as: It always applies that eventually if 𝑝 is
true that in the next time 𝑞 is true.

3.3 Model Checkers

Tests possible models and checks reachability of threads in
these models (LTL).

A model checker can Checks for deadlock which is no progress
at all or search for livelocks which is when the system is not
a deadlock but also make no real progress.

It is easy to define LTL rules for deadlocks or livelocks[2].

One disadvantages is that possible states can grow very fast
and verification may become impossible. Typical workarounds
is to abstract more and more details from the model.

Model checkers are known to be much more user-friendly
than theorem prover[12].

One well-known model checker is the SPIN model checker
with the specification language PROMELA[12].

3.4 Programming Language

One other thing one must take into consideration is in which
programming language the codebase should be encoded.

One choice is to restrict ourselves to a specific subset of well-
established language like C. Such a subset is often easier to
map to a specification language like PROMELA.

Or even a programming language especially developed for the
purpose of better formal verification like BitC[11], SPARK
or LiquidHaskell.

4 VERIFICATION APPROACHES

The process of verification can be seen from two perspectives
or to phrase it in a more straightforward way, the starting
point can be different.

For instance, you plan to verify your code from the very
beginning. No line of code exists and you start from zero.
Then again one can have already an existing project with
a lot of code and now the demand of verification occurs.
In the following paragraphs, where existing approaches are
discussed, both sides of already existing codebase as also
none already existing codebase was verified.

4.1 RUBIS

This kernel implementation was mostly written with C and
ASM. The RUBIS Kernel defines two levels of abstraction.
The first one is the abstract model which defines a users point
of view how the system should work. It is derived directly
from the specification. There is no kind of any implementation
detail, yet [2].

10

Solution approaches towards verified µ-Kernel WAMOS2017, August 2017, Wiesbaden, Germany

The second model is the more detailed model, which does take
the implementation into account. Thus it is derived from the
C code and the specification. Because the C implementation
already exists by the time verification was considered, for
RUBIS a set of transformation rules helped to transform the
C code to the detailed model[2].

The focus of the RUBIS verification process was the commu-
nication between tasks, either with asynchronous or synchro-
nous messages. All kind of scenarios and situations were build
and properties and safety requirements were formulated[2].

To encode all these properties linear temporal logic was used.
Typical liveness properties were checked with PROMELA
and SPIN[2].

So only a very small part of the microkernel was verified
with formal methods. The paper does not state, why only
such a small part was verified. Nevertheless bugs and errors
were found. One in the error return code handling and some
memory management[2].

4.2 Fluke

The Fluke microkernel is already a small kernel but just like
the RUBIS verification also the verification process of Fluke
has its focus at the interprocess communication mechanisms
of the kernel[12].

The code in question for verification is the IPC mechanisms
with about 3000 lines of code. It is not written in C but a sub-
set of C. It denies usage of function with variable arguments
and no recursion. Also every function returns a well-defined
error code. One interesting thing to be mentioned is, that
this was not intended but it makes verification easier. In
particular the no recursion rule makes things alot easier[12].

Also this verification is about an existing system but spares
the high-level mode. The model was written in PROMELA
and the model checker SPIN. One forth of this was reimple-
mented in PROMELA and the rest were translated from the
source code[12].

With the models they abstracted from the sourcecode they
begun to search for deadlocks in various IPC scenarios. They
also searched for livelock but only in a few scenarious[12].

The Fluke project was successful and SPIN revealed some
serious bugs. For example in one scenario an infinite loop of
page-faults occurred[12].

A different bug involved a missing mutex unlock. Another
one was a typical race condition. With no much effort this
bug could be fixed[12].

4.3 seL4

The seL4 kernel is the third-generation microkernel based
on the L4 kernel. The implementation consists of multiply
layers.

The abstract specification was done with the theorem prover
Isabelle/HOL[4]. An example was taken from this paper[5]:

Listing 1: Isabelle code for scheduler

schedu le ≡ do
threads ← a l l_act ive_tcbs ;
thread ← s e l e c t threads ;
switch_to_thread thread

od OR switch_to_idle_thread

In the above Listing one can see the very abstract implementa-
tion of a scheduler. It picks a thread from the set of runnable
threads or switch to the idle thread. It should be mentioned
that the OR is a non-deterministic choice by Isabelle.

What one can see is that this code is very abstract with
almost no detail but it encodes the fundamental concepts of
a scheduler[5].

A protoype in haskell generates the executable specification
and describes how the kernel works[1]. Naturally this requires
much more details. For example the scheduler code in the
haskell protoype implements the function which choose the
next threads by a priority based round-robin algorithm. The
code actually represents this[5].

The production kernel is manually reimplemented[1]. The
paper mentioned that automated translation from Haskell
would be possible but for reasonable performance they wanted
to optimize the kernel by-hand.

In the context of formal methods a refinement is a trans-
formation of a formal description of a program into a more
low-level representation also satisfying that specification. So
with seL4 a set of refinement proofs ensures that all properties
from the abstract specification also hold for the executable
specification and also that the executable specification holds
all properties the C implementation does[7, 9].

One thing the seL4 kernel has done to accomplish a full veri-
fied microkernel is to move the policy of memory allocation
from the kernel to the userspace. This means, that if needed,
memory allocation can be proven separately[5].

The seL4 project has proven over 150 invariants of the ker-
nel[5].

At the end an amount of 200000 lines of Isabelle code was
needed to prove around 75000 lines of C code. Also the proof
revealed about 140 Bugs in the kernel code and 150 problems
within the specification[5].

5 GENERAL STRATEGY

With this general startegy some hints shall be given and
howto accomplish a verified codebase.

The first hint may be obvious but nonetheless very important.
Keep the codebase small. All three projects only verified some

11

WAMOS2017, August 2017, Wiesbaden, Germany Danny Ziesche

thousand line of C code. This is of course caused by the scaling
problem. So if one can relocate lots of code out of the kernel,
chances are higher to achieve a more sound kernel. That was
best shown by the seL4 kernel.

Restrict yourself to a sound and easier to proof subset of
system programming language. No features which may lead
to impossible invariants checks. An example here may be
C and its order of evaluation in function calls, which is not
guaranteed by the standard.

A manual implementation is still necessary for the sake of
performance. So either analyse which parts must be as fast
as possible and generate an amount of other parts or just
implement it full by-hand and proof that the by-hand imple-
mentation is semantically identical to the abstracter model
and specification.

6 CONCLUSIONS

All projects addressed similar problems with verification.
First is the scale of the software to be verified. Of course it is
much less of a problem for microkernels but still a problem.

A different problem is the maintenance problem, with the
codebase of efficient system language code and the mod-
els specified within a model checker. Both worlds must be
maintained which is a huge cost factor.

All projects mentioned that a subset of a system programming
language, was not only helpful but also necessary. Maybe a
better system language with builtin formal specifications like
SPARK etc. could be used to help the translation and or
abstraction process in a more automated way but was not
thematised in this paper.

Important here is, that in all three attempts, by verifying the
kernel or parts of it, bugs were found and could be fixed. It
indicates that formal verification has relevance iff it is worth
the effort. For some application the importance of reliable
systems is high enough to outweigh the effort.

7 REFERENCES

[1] J. Andronick et al. “Large-scale formal verification in
practice: A process perspective”. In: 2012 34th Inter-
national Conference on Software Engineering (ICSE).
2012 34th International Conference on Software En-
gineering (ICSE). June 2012, pp. 1002–1011. doi: 10.
1109/ICSE.2012.6227120.

[2] Gregory Duval and Jacques Julliand. “Modeling and
Verification of the RUBIS µ-Kernel with SPIN”. In: In
Proceedings of the First SPIN Workshop. 1995.

[3] S. King et al. “Is proof more cost-effective than testing?”
In: IEEE Transactions on Software Engineering 26.8
(Aug. 2000), pp. 675–686. issn: 00985589. doi: 10.1109/
32.879807. url: http://ieeexplore.ieee.org/document/
879807/ (visited on 07/03/2017).

[4] Gerwin Klein. “From a Verified Kernel towards Verified
Systems”. In: Programming Languages and Systems.
Ed. by Kazunori Ueda. Red. by David Hutchison et al.
Vol. 6461. DOI: 10.1007/978-3-642-17164-2_3. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010, pp. 21–
33. isbn: 978-3-642-17163-5 978-3-642-17164-2. url:
http://link.springer.com/10.1007/978-3-642-17164-
2_3 (visited on 07/03/2017).

[5] Gerwin Klein et al. “seL4: Formal Verification of an OS
Kernel”. In: Proceedings of the ACM SIGOPS 22Nd
Symposium on Operating Systems Principles. SOSP ’09.
New York, NY, USA: ACM, 2009, pp. 207–220. isbn:
978-1-60558-752-3. doi: 10.1145/1629575.1629596. url:
http://doi.acm.org/10.1145/1629575.1629596.

[6] Jochen Liedtke. “On micro-kernel construction”. In: In
SOSP. 1995, pp. 237–250.

[7] T. Murray et al. “seL4: From General Purpose to a
Proof of Information Flow Enforcement”. In: 2013
IEEE Symposium on Security and Privacy. 2013 IEEE
Symposium on Security and Privacy. May 2013, pp. 415–
429. doi: 10.1109/SP.2013.35.

[8] M. Rodriguez, J.-C. Fabre, and J. Arlat. “Formal spec-
ification for building robust real-time microkernels”. In:
IEEE, 2000, pp. 119–128. isbn: 978-0-7695-0900-6. doi:
10.1109/REAL.2000.896002. url: http://ieeexplore.
ieee.org/document/896002/ (visited on 07/03/2017).

[9] Thomas Arthur Leck Sewell, Magnus O. Myreen, and
Gerwin Klein. “Translation Validation for a Verified
OS Kernel”. In: Proceedings of the 34th ACM SIG-
PLAN Conference on Programming Language Design
and Implementation. PLDI ’13. New York, NY, USA:
ACM, 2013, pp. 471–482. isbn: 978-1-4503-2014-6. doi:
10.1145/2491956.2462183.

[10] A. S. Tanenbaum, J. N. Herder, and H. Bos. “Can
we make operating systems reliable and secure?” In:
Computer 39.5 (May 2006), pp. 44–51. issn: 0018-9162.
doi: 10.1109/MC.2006.156.

[11] Towards a Verified, General-Purpose Operating System
Kernel - Semantic Scholar. url: /paper/Towards-a-
Verified-General-Purpose-Operating-Syste-Shapiro-
Doerrie/24f53ce591e14981471659c80819fd9eeadc79a3
(visited on 07/03/2017).

[12] P. Tullmann et al. “Formal methods: a practical tool for
OS implementors”. In: Proceedings. The Sixth Workshop
on Hot Topics in Operating Systems (Cat. No.97TB100133).
Proceedings. The Sixth Workshop on Hot Topics in
Operating Systems (Cat. No.97TB100133). May 1997,
pp. 20–25. doi: 10.1109/HOTOS.1997.595176.

12

Benefits of dedicated hardware for microkernels
Daniel Schultz

RheinMain University of Applied Science
Wiesbaden, HESSEN, Germany

ABSTRACT
Microkernels with real-time capability are good candidates for
firmwares with security and safety aspects. Previous badly imple-
mented microkernels have suffered in benchmarks with monolithic
kernels and left this image for all microkernels. This paper presents
two ways of accelerating seL4 functions on dedicated hardware.
How memory pages can be received or released in a constant time
of 5 clock cycles and how the priority-based round-robin scheduler
can find the next thread completely in hardware under 1ms.

KEYWORDS
seL4, hardware acceleration, scheduling, memory management

ACM Reference format:
Daniel Schultz. 2017. Benefits of dedicated hardware for microkernels. In
Proceedings of ACM Conference, Washington, DC, USA, July 2017 (Confer-
ence’17), 3 pages.
https://doi.org/0000001.0000001_2

1 INTRODUCTION
Micokernels are operating systemswith less functionality in the ker-
nel itself. Most of them have only implemented necessary functions
such as Interprocess Communication (IPC), scheduling or memory
management. All other functions were moved to user applications.
For example, a simple hardware driver can exist as a server and
clients can communicate with it by using the kernel. In the past,
several microkernels have suffered under performance problems in
competition with monolithic kernels like Linux because the differ-
ent architectures are not comparable at this point.
As a formal verified microkernel of the L4-Family, seL4 has only
specified the IPC and scheduling policies, memory management
also were moved to the user space. This paper will focus on the
memory management and scheduling policies in combination of
dedicated hardware because the acceleration of these two policies
will eliminate all discussions about poor performance on microker-
nels. In fact, not all microkernels will run on dedicated hardware
but instead on common platforms. The firmware already does and
extra components can easily integrated on those chips.
The next chapters will cover memory management and scheduling
in combination with dedicated hardware in a simple way. IPC will

ACM acknowledges that this contribution was authored or co-authored by an em-
ployee, or contractor of the national government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to allow others
to do so, for Government purposes only. Permission to make digital or hard copies for
personal or classroom use is granted. Copies must bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. To copy otherwise, distribute, republish, or post, requires prior
specific permission and/or a fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/0000001.0000001_2

be ignored since it is already implemented on some System on
Chips (SoCs).

2 MEMORY ALLOCATOR
Dynamic memory is one of the biggest demands of operating sys-
tems and applications. Therefore, algorithms for fast and efficient
memory allocation are very important. This chapter will explain the
buddy memory allocator, how it can be implemented as hardware
and in which way it could be used in the seL4 kernel.

2.1 Buddy System
The buddy memory allocation is a widely implemented algorithm
that split a chunk of data in smaller ones and is used in the seL4
and, more specifically, in Linux. The idea behind this algorithm
is to represent data, which is always power of 2, as a binary tree
with each nodes and all his descendants nodes for chunks of this
data. So, let there be data of 2k words and a depth n of the binary
tree. All allocatable block sizes are 2k , 2k−1, ..., 2k−n words. For
example, a tree with k = 15 and n = 8 describes data of 1 block with
32786 words, 256 blocks with 128 words or possible combinations
between these.
Each level h, with 0 ≤ h ≤ n has 2h nodes and each node Th, j ,
with 0 ≤ j ≤ 2h − 1 represents data of size 2k−h . Searching for
data size of 2k−h requires a look into level h of the binary tree. If
no node is available - all nodes are marked as requested - an error
will be reported. Otherwise, if a free nodes were found, this node,
all predecessors and descendants have to be marked as requested
[Puttkamer 1975].

2.2 Hardware
Mapping this simple algorithm could be done with n + 1 bit-vectors
of length 1, 2, ..., 2n bits. A better and more efficient way is to build
a bit-vector for all minimum blocks and a OR-gate prefix logic to
request and free data with power of 2.
The bit-vector is length of N bits, with N as the number of mini-
mum block, and the prefix logic tree has log2 N levels, each tagged
as Lh , with 0 ≤ h ≤ log2 N . A level contains 2h−1 OR-gates, expect
L0 which is the bit-vector. Each OR-gateTh, j is connected with two
gates at Th−1, j and Th−1, j+2h−1 [Cam et al. 1999].
An allocation for free space size of k is a lookup for the highest free
node in level Llog2 k . The simplest case is a lookup in L0. This will
return the data address by multiplying the bit-vector position to
the block size with an addition to the offset address. For data sizes
greater than the minimum block size, a lookup in the corresponding
level log2 k has to be done. After a hit for one node, all bits of the
bit-vector, which are accessible by this node, get inverted and the
data address will be returned. To release memory, only the last step
of the allocation procedure is necessary. All bits in the bit-vector
get inverted by a given address and length.

13

Conference’17, July 2017, Washington, DC, USA Daniel Schultz

bit-vector 0 1 2 3 4 5

0/1 0/1 0/1 0/1 0/1 0/1
L0

L1

L2

Figure 1: Structure of OR-gate prefix circuit

This technique can only manage memory power of 2. A Algorithm
to handle all various sizes of memory is given in [Karabiber et al.
2008], but to show the benefits of hardware acceleration, this ex-
ample enoughs.

2.3 seL4
In combination with kernels, this hardware acceleration can speed
up the very slow page handling. When an application is about to
start, free space in the memory has to be found, which is often
done by buddy allocators. These are straightforward but produce
a huge latency and need many operations on lists. Kernels could
benefit from a configurable hardware acceleration, with minimum
block sizes depending on the page size and a dynamic memory
size. The first parameter depends on the architecture and will be
hardware-coded to the logic. A RAM controller can only handle a
specific size of memory. Consequently, the second parameter could
be a barrier to shrink the OR-gate prefix to an given size.
A better start-up time for applications is not the actual benefit
of this hardware, it is just a side effect. One of the most critical
situations is an access to the heap or stack if they are empty. This
leads to an interrupt and has to be managed by a higher privileged
instance with organizing free memory, which is made of searching
in some kind of data-structures. [Karabiber et al. 2008] showed that
only 5 clock cycles are necessary to find free memory power of 2. If
the hardware accelerator is driven by a 100Mhz clock, it will lead
to 50 ns or just a delay of few instructions.

3 SCHEDULING
The current seL4 Kernel uses a priority-based round-robin sched-
uler with lists of all threads for one priority. They will be processed
as invariant with preemption on overruns of their time slice. [Lyons
and Heiser 2016] introduced a way to make the existing scheduler
real-time capable, which will be presented in this chapter. Addition-
ally, a way of mapping some scheduler functionality in hardware
will be presented.

3.1 Real-time
Scheduling threads with a priority-based round-robin is an efficient
way, because it is easy to implement and has a low overhead. In a
system with N threads, each thread will get 1

N of the global CPU
time. The scheduler will choose all threads in sequence from head
to tail, starting with the highest priority list and will end at the
lowest one. This procedure is fair for all threads because they all
get the same time slice but it is not real-time capable. If one thread
needs more time than it is provided with, the system will certainly
crash.
[Lyons and Heiser 2016] implemented a real-time capability with
only small changes on the existing scheduler. Each time-slice was
removed from the Thread Control Block (TCB) and replaced by a
Scheduler Context (SC). This SC contains information about the
time budget and period of a thread. These values describe how long
a thread will work and in what time period it has to be rescheduled.
If it exceeds its time budget, which will be ensured by a timer time-
out, the thread will be added to a so-called release queue, which
is a newly introduced list. All exhaust threads are collected and
ordered by the next budget refresh. So, the scheduler can choose
the highest thread from either the priority list or release queue.
Another change is concerned with how kernel time is handled. If
one thread enters the kernel, it calculates the needed time and com-
pares it with the remaining time. To avoid possible timeouts, it can
pretend an exceeded budget. To all event-driven threads, called by
interrupts, also the time budget rules apply, which leads to pending
interrupts, if no time budget is available.
There is one point where time budgets may exceed. When a thread
has timed out, the corresponding event handler will be called. Af-
terwards, it can give a thread extra time to clean or rollback data. A
new concept, where this could be needed, are passive servers. They
borrow time budgets from client threads but should not leave with
an unclean state.
Like other real-time schedulers, all threads have to communicate
about their execution. When a thread finishes its work, it calls
yield() and communicates an end-of-execution until the next pe-
riod.

3.2 Hardware
The origin seL4 scheduler has 256 priorities with one list for each.
This data structure is optimized in software by only holding list
with existing threads and can not mapped in hardware because it
would cost too much space on a chip. Therefore, only 8 priorities
with 64 threads can be managed by the accelerator and only times
greater or equal to 1ms are usable. This reduced scope will still
meet the scheduler criteria because CPUs of common SoCs are
not usually powerful enough to handle more than 64 threads and
scheduling in time slices of nanoseconds is not efficient compared
to the scheduling overhead.
Like the memory management hardware accelerator, this one could
also be connected to themain bus and communicate throughmemory-
mapped registers. Each thread will be registered with its priority,
TCB address, budget and period. All this data will saved on a mem-
ory ordered by priority. An internal selector will walk over each
thread structure in memory and picks the highest one, which pe-
riod expired or still has budget remaining. If a thread was started,

14

Benefits of dedicated hardware for microkernels Conference’17, July 2017, Washington, DC, USA

a watch dog will be armed with the budget time and triggers an
interrupt to the CPU. This will completely remove timer handling
in the kernel. When a watch dog triggers, it sets a ”release queue”
flag to the thread structure. For internal usage, ther are also two
bit-vectors. One to save the remaining time of a thread when it
was interrupted and another one to hold a timestamp of the next
schedule time of a thread.
This accelerator will work with the new real-time scheduler for
the seL4 kernel but lacks in changing priorities of threads and
manipulating the queues.

4 CONCLUSION
Both presented chapters show huge potential to speed up micro-
kernels. The memory management accelerator might possibly be
exist twice, one for the kernel page handling and one for user ap-
plications. Second one have to save and load the memory-mapped
registers with each task switch. The real-time scheduler can save
dynamic memory in the kernel and reduce the scheduling over-
head.
Because the idea for these two techniques were never tested in
combination with microkernels, in the next step they have to be
implemented on tested. Furthermore, would it be possible to map a
whole mircokernel in hardware and supply a kernel API in a ROM
code?

REFERENCES
H. Cam, M. Abd-El-Barr, and S. M. Sait. 1999. A high-performance hardware-efficient

memory allocation technique and design. In Proceedings 1999 IEEE International Con-
ference on Computer Design: VLSI in Computers and Processors (Cat. No.99CB37040).
274–276. https://doi.org/10.1109/ICCD.1999.808436

Fethullah Karabiber, Ahmet Sertbaş, and Hasan Cam. 2008. A FAST AND EFFICIENT
HARDWARE TECHNIQUE FOR MEMORY ALLOCATION. ResearchGate (2008).

Anna Lyons and Gernot Heiser. 2016. It’s Time: OS Mechanisms for Enforcing Asym-
metric Temporal Integrity. CoRR abs/1606.00111 (2016). http://arxiv.org/abs/1606.
00111

E. Von Puttkamer. 1975. A Simple Hardware Buddy System Memory Allocator. IEEE
Trans. Comput. C-24, 10 (Oct 1975), 953–957. https://doi.org/10.1109/T-C.1975.
224100

Received August 2017

15

Single Address Space Operating Systems
Short Research Survey Paper

Fabian Kopatschek
RheinMain University of Applied Sciences

Unter den Eichen 5
Wiesbaden, Germany 65195

fabian.b.kopatschek@student.hs-rm.de

ABSTRACT
Giving each application the imagination that they own the whole
memory makes it easy to run a single process. The tradeoff for
this concept is recognizable in performance issues when it comes
to context switches and the difficulty with shared data. Different
concepts of single address space operating systems have shown
how these downsides could be handled and further problems could
be solved. There were, for example, some university projects like
Angel [19] or even some commercial operating systems with a
single address space like [3]. Another concept also involves other
challenges. This paper will give an overview over the concepts of a
global virtual address space compared to a process based concept
with private address spaces used by operating systems on general
purpose computers.

KEYWORDS
operating system, address space, microkernel
ACM Reference format:
Fabian Kopatschek. 2017. Single Address Space Operating Systems. In Pro-
ceedings of WAMOS, Wiesbaden, Germany, August 2017 (WAMOS’17), 4 pages.

1 INTRODUCTION
In the field of embedded systems the concept of a single address
space is a common concept. However, these devices often do not
need a lot of data or memory, because they usually serve a specific
purpose. Such as controlling the washing machine or handling an
automatic teller machine (ATM). In these functions they are often
a single process application. Therefore this paper will focus on
traditional computer systems.

The widely used general-purpose computer systems are using a
process based concept. In a time-shared basis each application is
running with the "imagination" that they own the whole memory.
The process lives in a private address space and doesn’t even have
to care about boundaries. The downside of this concept is, when
another process gets computation time all virtual addresses loose
their meaning. With the concept of a single address space operating
system this is one of the problems which could be obsolete. In the

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
WAMOS’17, August 2017, Wiesbaden, Germany
© 2017 Copyright held by the owner/author(s).

following chapters we will have a look at the potential advantages
of a single address space operating system (SASOS).

2 SINGLE ADDRESS SPACE COMPARED TO
TRADITIONAL SYSTEMS

In contrast to embedded systems, which usually handle a limited
amount of data for their specific scope, a general-purpose computer
has to deal with more and more increasing amounts of data. These
systems are using operating systems with the concept of private
address spaces. The next subsection will recap what a private ad-
dress space is and point out some downsides of it, which would
possibly not affect a single address space concept.

2.1 Private address space
An operating system for traditional systems uses the concept of
virtual memory. The msdn database [14] fromMicrosoft© describes
the virtual address space as follows: "The virtual address space for
a process is the set of virtual memory addresses that it can use. The
address space for each process is private and cannot be accessed by
other processes unless it is shared." The linux-mm community starts
describing the user space virtual memory [9] with: "Every process
in linux is able to address 4 gigabytes of linear address space." As
mentioned in the introduction, an application can allocate all of
the existing virtual memory in a private virtual address space. This
is necessary because the address space is a scarce resource. With
a 32-bit architecture processor there are 232 addresses which can
be used to address a space of 4 Gigabyte. For the most single ap-
plications this may be enough, but most of the systems nowadays
run multiple processes simultaneously. This concept brings, along-
side the larger accessible space, another benefit with it: Protection
through isolation. What are the downsides of this privacy?

Context switches are expensive in the aspect of computation
time. Having an individual mapping for each process means if an-
other process gets to run, the page table needs to load another
page to present the mapping of the now active process. Along-
side with that the translation lookaside buffer (TLB) needs to be
flushed, which also results in a loss of potential performance. On
top of that sharing between processes is really difficult. [16] Shar-
ing information across different contexts requires either a shared
address space or the use of a mechanism for transferring data. A
shared address space has to be at the same location for all members
of this sharing, if they exchange pointers for accessing this data.
Otherwise these would likely point to the wrong data used from a
process with a different context, without putting further effort in
using these pointers differently, like adding a context specific offset.

17

WAMOS’17, August 2017, Wiesbaden, Germany Fabian Kopatschek

Copying or moving data between processes is called flattening. It
means converting pointers or even complex data into a position
independent or storable or communicable format. Once a process
has received this data there is also the effort for the deserialization
of these information again.

There are two other problems with private address spaces in the
context of virtually indexed caches. Synonymes or aliases, where
the same physical address maps to different virtual addresses. And
there are the homonyms: having one virtual address mapped to
different physical addresses. In a SASOS using a global naming,
each physical address is mapped to exactly one virtual address.

2.2 Single address space
The basic idea of a single address space is running all processes in
the same address space. With this one big global address space each
page table entry (PTE) would be unique, context independent and
therefore always, or at least for the systems uptime, valid. So there
is no need for flushing or remapping. What does this mean for the
problem of sharing information? If a process has a legitimate right
to access a specific space it’s enough to have the knowledge where
to look.

What has changed in the world of information technology to
make a SASOS an attractive alternative to general purpose systems?
The answer is the availability and affordability of 64-bit processors.
IBM already used a flat, singlelevel, 64-bit virtual address space
with the System/38 (commercially available in August 1979) almost
a decade before that.

Figure 1: System/38 Virtual Address Space

Figure 1 is an extraction from the book [13] and shows that the
System/38 hardware supported 48-bit physical addresses, which
were extended by 16 Bit from the microcode when an object was
created. Without the concept of secondary storage and an high-
level interface for all addressable objects even non-volatile memory
it implemented one of the basic SASOS concepts. It was a hardware
capability based system which differs from the MMU based models
of the hardware which is used in todays traditional systems. A few
years later in 1991 a native 64-bit processor was available on the
market: theMIPS R4000. Andwith it the idea of single 64-bit address
space more tangible. Although modern processors have a 64 virtual
address space, they only use a 48 bit address space, e.g. the ARMv8
processor [8]. That’s still enough to address 256 TB of memory. An
bbc articel from may 2017 [4] says that the largest single-memory
computer system was built by Hewlett Packard Enterprise with 160
terabytes of memory. This brings us the non-volatile information.
As pointed out before, we have enough address space for mapping.
Additionally to the memory it could be used with persistent data,
which then could be accessed like the memory. This would remove
the necessity of special mechanisms, e.g. for file handling. Data on
this mediums could be access by their physical addresses. If there is
only one way of accessing resources it’s called uniform addressing.

This term is used in the paper [5], where its first introduction is
cited to [15].

Some projects consider this potential of the 64-bit addressing
to be used even on another level. For example the Mungi project
[11] mentions the possibility of stretching the global virtual ad-
dress space over multiple distributed systems. Strict hypothetically
thinking about this suggestion, it sounds feasible, but then there
are other hurdles to take. For example, if the performance of the
network connecting these systems could provide enough speed to
keep up with their performance or would it be a bottleneck? This
is not in the scope of this paper.

Let’s revisit the argument of data sharing. Besides the easiness
of accessing common information there might pop one concern
directly into mind: Is there still a protection in place, if any process
could just access any data with just the right address? The short
answer is: yes, there is. Microware’s OS-9 is supporting the optional
use of memory protection units (MPU) and memory management
units (MMU) for restricting access. The university projects provide
security through protection domains. The paper [18] explains: "Do-
mains are used to specify what a process can access and in what
way."

In 1992 Chase, the co-author of the paper [5], was also co-author
of the paper [12], which addresses these domains. It evaluates two
protection models for protection domains that support single ad-
dress space systems. One uses a hardware structure, implementing
protections domains, that is called protection lookaside buffer (PLB)
and works with a per-page, per-domain basis. The other is a model
implemented in the Hewlett-Packard (HP) PA-RISC1 architecture
and offers protection on a page-group basis. It is pointed out, al-
though hardware based memory protection exists, the protection
domains control the process access to the virtual memory.

The PLBmodel separates protection from address translation and
offers caching of protection mappings on a per-domain, per-page
basis. It holds the following information: virtual page number (VPN),
protection domain ID (PD-ID) and the Rights. If three domains have
access to the same page, this means three entries in the PLB. The
VPN is the same as in the cache. None of them is dependent on the
other and therefore parallel searches in cache and PLB are possible.

The second model controls the access to one ore more page-
groups for each protection domain. It is a variation of HP’s PR-RISC
architecture, an 64-bit instruction set architecture introduced in
1986. The TLB in the page-group model holds: Rights, the access
identifier (AID) and the translation information. The AID contains
the page-goup number. A page can only be member of a single
group. The four page-group registers (PIDs) in this architecture
limit the amount of accessible groups for the domains. All domains
within the same page-group can access the same TLB entries.

Further in the paper [12] the two models are compared in differ-
ent operating tasks. In this comparison they were using the virtual
segments2 in the OPAL system. The domain-page solution offers
a very granular protection model. Furthermore it handles domain
switches more easily, because only the PD-ID register in the pro-
cessor must be changed. On the other hand, detaching segments
requires either inspecting each entry in the PLB or flushing it.

1see also [17]
2Virtual segments are contiguous blocks of one or more pages

18

Single Address Space Operating Systems WAMOS’17, August 2017, Wiesbaden, Germany

The page-group solution has to purge each corresponding entry
in the TLB and page table entries, in case of unmapping a virtual
page. Domain switches require purging the PID registers and the
group cache of the previous domain and reloading the page groups
of the current domain. At the end they conclude, that it was hard
to tell which model would perform better and which would ben-
efit most from the single address space characteristics, without
building these systems. Both models have their advantages and
disadvantages in different situations.

3 EXAMPLES FOR SINGLE ADDRESS SPACE
OPERATING SYSTEMS

In the late 80’s and early 90’s some interesting projects appeared for
the concept of a SASOS. There were Angel [19], OPAL [7], Mungi
[11] and OS-9 [3]. All of those above mentioned operating systems
have in common that they run on standard hardware and don’t
need additional protection hardware.

3.1 Project Angel
The Angel operating system was a cooperation project by Imperial
College and City University of London. An extended Abstract [19]
about Angel was published in the book "European Workshop on
Parallel Computing 1992". The goal was to improve the OS efficiency
by simplifying data communications, storage and kernel structure. It
is designed for 64 Bit processors and the fundamentals are four basic
building blocks: objects, capabilities, processes and synchronisation
primitives. A few years after the first paper, in 1996, an evaluation
paper [18] was published about the prototype system that was based
on the basis of a 80486 platform. Angel has no explicit protection
mechanism. It offers a user-level protection server which could be
implemented as any protection model as needed. The first public
release of the Angel operating system was scheduled for April 1996.
However, within the research for this abstract, it was not traceable
online, which leads to the assumption that it probably never was
available for public access. Angel is designed as a microkernel with
a set of services constructed in layers. The garbage collector cleans
up objects without references. The authors of the second mentioned
paper concluded that they demonstrated the possible efficiencies
of a SASOS and in future work they would seek to evaluate further
the distributed aspects of the system.

3.2 Project Opal
The Opal project was exploring a new operating system structure,
where a number of cooperating programs manipulate a large shared
persistent database of objects. This project was executed by the
University of Washington and the first paper [5] was published in
1992. The prototype analysed in the papers about Opal was build
on top of the Mach 3.0 microkernel and uses protection domains for
security. Opal is dividing the global address space into segments.
When a segment is created, it has a variable number of virtual pages
that contain respective data. These allocate a fixed range of virtual
addresses, which are disjoint from other segments. The smallest
possible segment is one page, but the authors from [7] expected
segments were to be large to allow growth of the structures they
contain. A protection domain, as an execution context for threads,
can attach segments for restricting access at a particular instant

in time and is defined by capabilities. A memory reference to an
unattached segment is reflected back to the domain as a segment
fault to be handled by a standard runtime package. With each attach
and detach Opal implicitly updates the reference counts. Segments
with no references can be garbage collected. A user program can
register a persistent segment that continues to exist even when
it is not attached to any domain. Recoverable segments are per-
sistent segments that are saved on non-volatile storage and can
survive system restarts. The conclusion of [7] was that it is not
only possible to work with a large single address space, but, by
continuing with traditional operating systems structures, modern
systemwill have an unnecessary complexity because of the need for
emulating small-address-space structures on top of large-address
architectures. More detailed information about Opal can be found
in Chase’s dissertation [6].

3.3 Project Mungi
In 1997 the paper [10] about the Mungi project was released that
mentions the above projects Angel and Opal implementations as
proof-of-concepts, which could not fully show the full potential
of the advantages of a SASOS. The possibility to run on an off-
the-shelf 64-bit workstation was an important goal for this project.
Mungi uses a version of the L4 microkernel, which they modified
within the project. This was necessary because there were no 64-bit
implementation of L4 available at the time. Mungi has no system
calls to support I/O, instead I/O devices have to be mapped into
the virtual address space and are handled by user-level page fault
handlers and memory mapping operations. It is designed with five
basic abstractions: capabilities, objects, tasks, threads and protection
domains. Objects consist of a contiguous range of pages and are
protected by capabilities. In Mungi, protection domains are defined
via capabilities, which confer rights to their holders to perform
specific operations on objects. The management of these protection
domains is done via the address space and the IPC of the L4.

The system for the paper [10] was build with a MIPS R4600 CPU,
which could outperform a commercial UNIX system in the research
benchmarks. Except the papers [10] and [11] there is no official
content to this project anymore. As a conclusion the paper [10]
states that a SASOS can be implemented effectively on off-the-shelf
hardware and with the use of a well-designed microkernel.

3.4 Microware OS-9
Microware’s OS-9 is a commercial real time operating system, which
was originally build for the 8-Bit Processor 6809. The first version
with the name OS-9 Level One was released in 1979 and all processes
ran in a single 64 KB address space. The second version of OS-9
kept optional support for memory mapping units, only for handling
access rights of processes. In the change of the technical manual for
OS-9 from version 2.2 [2] to version 3.0 [1] for the MMUs supported
by the standard system security module (SSM) the following hint
was added: "This SSM module only provides protection functions".

Around 1989 it was rewritten in C for extended portability and
was initially called OS-9000. Later on Microware went back calling
the operating system just OS-9. It uses a software memory man-
agement system which has a single memory map containing all
memory. This implies that all user tasks share a common space.

19

WAMOS’17, August 2017, Wiesbaden, Germany Fabian Kopatschek

Microware’s technical manual [1] recommends that each section
should be arranged in contiguous reserved blocks to facilitate future
expansion. All unused RAM is assigned to a free memory pool, the
user memory. The operating system loads programs, and allocates
data in the memory map, wherever enough free space is allocatable.
The compilers for OS-9 produce reentrant and position independent
code. Programs, device drivers, and I/O managers are all ’modules’,
which can be loaded and unloaded at runtime. The latest version of
Microwares OS-9 is 6.0 and was released in Q4 2015. There is an
ARM version which could be run on a raspberry pi [3].

4 CONCLUSIONS
Most of the single address space operating systems for general
purpose computers being found during the research of this paper
were developed as study projects. All of the mentioned projects
have at least been able to build a running prototype. Besides these,
there were also some commercial systems like Microware OS-9
and System/38 (later AS/400). A system with a large unified ad-
dress space offers possible concepts for easier sharing and better
performance. On the other hand it goes along with many possible
drawbacks. One point, which should be mentioned, is the POSIX
compability. Most of the projects either don’t provide the UNIX
fork or at least developed an own fork-like method. So why aren’t
there more SASOS? In my opinion there are two big factors. One
factor is convenience. A switch to a SASOS would mean, in the
most shown cases, that applications would have to be build position
independent. A definition for the address space boundaries would
be necessary. For example: Is a SASOS just one system or multiple
systems? If multiple, how many would be pooled together? And
if these challenges or questions would be taken, then there would
be the point of: how and when to make a switch? We have seen
this with IPv6. Although the ’new’ address scheme is a formalized
protocol for almost 20 years now, there are a lot of networks using
the former IPv4 standard. The other obstacle is the current devel-
opment in the IT sector. There is a trend moving away from big
solutions, like one system handling a lot of tasks, to microservice
solutions. Not to forget the uprising amount of internet of things
(IOT) systems which will have a part in this sector. So my con-
clusion is that the main target for SASOS will be small embedded
devices, like they are already in use.

REFERENCES
[1] 2000. OS-9 for 68K Processors Technical Manual Version 3.0. http://rab.ict.pwr.

wroc.pl/dydaktyka/supwa/os9/MWARE/pdf/68k_tech.pdf. (september 2000).
[2] 2000. OS-9 Technical Manual Version 2.2. http://rab.ict.pwr.wroc.pl/dydaktyka/

supwa/os9/MWARE/pdf/os9k_tech.pdf. (may 2000).
[3] 2015. Microware OS-9. http://www.microware.com/. (2015). Accessed: 2017-08-

02.
[4] BBC. 2017. HPE unveils ’world’s largest’ single memory computer. http://www.

bbc.com/news/technology-39936975. (2017). Accessed: 2017-08-14.
[5] Jeff Chase, Hank Levy, Miche Baker-Harvey, and Eld Lazowska. 1992. Opal: a

single address space system for 64-bit architecture address space. In Workstation
Operating Systems, 1992. Proceedings., Third Workshop on. IEEE, 80–85.

[6] Jeffrey Scott Chase. 1995. An operating system structure for wide-address architec-
tures. Ph.D. Dissertation. University of Washington.

[7] Jeffrey S Chase, Henry M Levy, Michael J Feeley, and Edward D Lazowska.
1994. Sharing and protection in a single-address-space operating system. ACM
Transactions on Computer Systems (TOCS) 12, 4 (1994), 271–307.

[8] Linux Memory Management Community. 2017. ARM Architecture Reference
Manual ARMv8, for ARMv8-A architecture profile. https://static.docs.arm.com/
ddi0487/b/DDI0487B_a_armv8_arm.pdf. (2017). Accessed: 2017-08-16.

[9] Linux Memory Management Community. 2017. VirtualMemory. https://
linux-mm.org/VirtualMemory. (2017). Accessed: 2017-08-16.

[10] Gernot Heiser, Kevin Elphinstone, Jerry Vochteloo, Stephen Russell, and Jochen
Liedtke. 1997. Implementation and performance of the Mungi single-address-space
operating system. Technical Report. UNSW-CSE-TR 9704, University of New
South Wales, School of Computer Science, Sydney 2052, Australia.

[11] Gernot Heiser, Kevin Elphinstone, Jerry Vochteloo, Stephen Russell, and Jochen
Liedtke. 1998. The mungi single-address-space operating system. Software:
Practice and Experience 28, 9 (1998), 901–928.

[12] Eric J Koldinger, Jeffrey S Chase, and Susan J Eggers. 1992. Architecture support
for single address space operating systems. Vol. 27. ACM.

[13] Henry M Levy. 2014. Capability-based computer systems. Digital Press.
[14] Microsoft. 2017. Virtual Address Space. https://msdn.microsoft.com/de-de/

library/windows/desktop/aa366912(v=vs.85).aspx. (2017). Accessed: 2017-08-16.
[15] Michael L Scott, Thomas J LeBlanc, and Brian D Marsh. 1990. Multi-model

parallel programming in Psyche. In ACM SIGPLAN Notices, Vol. 25. ACM, 70–78.
[16] Andrew S Tanenbaum and Herbert Bos. 2014. Modern operating systems. Prentice

Hall Press.
[17] John Wilkes and Bart Sears. 1992. A comparison of protection lookaside buffers

and the PA-RISC protection architecture. Hewlett-Packard Laboratories, Technical
Publications Department.

[18] TimWilkinson and Kevin Murray. 1996. Evaluation of a distributed single address
space operating system. In Distributed Computing Systems, 1996., Proceedings of
the 16th International Conference on. IEEE, 494–501.

[19] TimWilkinson, Tom Stiemerling, Peter Osmon, Ashley Saulsbury, and Paul Kelly.
1992. Angel: A proposed multiprocessor operating system kernel. In European
Workshop on Parallel Computing. 316–319.

20

Towards policy-free µKernels
Short Research Survey Paper

Bernhard Görtz
RheinMain University of Applied Sciences

Unter den Eichen 5
65195 Wiesbaden

bernhard.b.goertz@student.hs-rm.de

ABSTRACT

Microkernels are supposed to be small trusted code bases which
move all functionalities, which do not necessarily have to be
implemented inside of the kernel, out into user level. Additional-
ly Liedtke introduced principles for the design and construction
of microkernels, and one of it is Policy Freedom [SOSP’95]. The
microkernel should only implement core mechanisms and no
policies at all. Most of today’s kernels still implement one policy:
scheduling. This paper will take a look at recent work towards
policy-free microkernels.

KEYWORDS
microkernel, operating system, policy-free, scheduling, wamos

ACM Reference format:

B. Görtz, 2017. Towards policy-free µKernels. In Proceedings of
WAMOS, 3rd Wiesbaden Workshop on Advanced Microkernel
Operating Systems, Wiesbaden, Hessen Germany, August 2017
(WAMOS’17), 4 pages.

1 INTRODUCTION

One of the microkernel principles introduced by Liedtke is
Policy Freedom [SOSP’95]. This means we only implement core
mechanisms inside a microkernel and move all services outside
of the kernel – into the user level. Separating policies from core
mechanisms isolates the microkernel completely from the
operating system - the kernel provides mechanisms for whatever
operating system is placed atop – and the operating system can
define its own policies wihout having to adapt to an underlying
policy. The problem is that most microkernels still implement a
scheduling policy in kernel mode. This makes it complicated, if it
is necessary to have a complex scheduling policy or even more
than one scheduling policy. For example, in the L4 specification
a round-robin (RR) scheduler is specified and this RR scheduling
policy runs in the kernel. It is a (classical) priority-driven
scheduling, that gives non-priority threads an equal amount of
computation time, but it allows scheduling with priorities too,
e.g, to give a sufficient high priority to a thread with temporal
requirements and thus grant it the possibility to access to the
CPU first. However this leads to a general problem with high
priority programs, as they are able to block all other programs
indefinitely, as stated in [MIKES’07], [Ruocco’06] and
[Ruocco’08]. This behaviour may not be wanted and would

require a customization of the kernel scheduling policy. If the
microkernel would provide an interface of some kind for a user
level scheduler to connect to, it might be possible to easily
switch between scheduling policies. In the last years it became
more prevalent to look into this problem and several approaches
towards a policy-free microkernel have been made.

2 RELATED WORK

Stoess introduced a User-Level Scheduling for µ-Kernels in
[Stoess’07]. The basic idea is a microkernel that, instead of
scheduling, only has an execution state. The currently running
thread will be executed unconditionally, until a blocking event or
operation occurs. The kernel then treats the blocking operation
as transfer of processor time and control. Even for multiple
threads, in-kernel events, such as an interrupt or exception, can
be resolved, but for every user-initiated operation we need the
operating system (or user level) to make the decision, which
thread to run next.

In the second Wiesbaden Workshop on Advanced Micro-
kernel Operating Systems (WAMOS) in 2015, Dedi already did
take a look into attempts towards policy-free microkernels
[WAMOS’15]. At that time one policy was still remaining within
the kernel mode of a microkernel: scheduling. Dedi pointed out
that only the mechanism of context switching is required as a
functionality within the kernel. The decision when and which
context switch should be made is to be handled by a scheduler
outside of the kernel. This would allow to (completely) move the
scheduling policy outside of the kernel and make it policy-free at
last. Dedi then showed a possible approach with CPU In-
heritance Scheduling. The idea was a scheduling framework. A
thread is used for implementing a separate scheduling policy.
This scheduler thread schedules other threads and builds a
hierarchical structure. This way it is possible to implement
scheduling in user level, but with stacking overhead costs for
each hierarchy level. In this paper we want to take a look at two
other, different approaches towards policy-free microkernels:

 SPeCK introduced in [SPeCK’15]

 Temporal Capabilities introduced in [T C aps’17]

In the next section, we want to take a look into these two
approaches. Both are based on Composite, a brief introduction to
this operating system will help to understand, where SPeCK and
TCaps start off. Then both microkernels are introduced and we

21

WAMOS’17, August 2017, Wiesbaden, Hessen GERMANY B. Görtz

want to find differences between the approaches and what
they may have in common.

3 APPROACHES

As already mentioned, we want to take a look into two
approaches towards poliy-free µ-kernels. Before we look into
each concept, the basis, Composite, is briefly introduced.
Then, we will take a look at SPeCK, a Composite Kernel that
aims for scalable predictability, and then TCaps is introduced,
another Composite kernel that uses an extended form of
capabilities for time slices. At last, a discussion of both
approaches shall give us an impression, on how each of them
implements user-level scheduling.

3.1 Composite: a component-based operating
system for predictable and dependable
computing

Parmer introduced Composite in his Doctoral Dissertation
[Composite’10]. It is an operating system that focuses on fault
tolerance. Resource management policies are abstracted to re-
placeable user-level components. This results in a component-
based control and isolation of system properties (e.g. time and
memory). Each component can define policies, e.g. scheduling
decisions and fault-isolation barriers, by itself. This way it is
possible to isolate an application fault from others and push
the scheduling policy to user-level.

3.2 SPeCK: a Kernel for Scalable Predict-
ability

SPeCK stands for Scalable Predictability-enabled
Composite Kernel. Its primary goal is scalable predictability
[S P eCK’15] but also – which is more interesting in the
context of this paper – the extraction of the resource ma-
nagement policy, and with it the scheduling policy, from the
kernel to user level to provide a component-based control
over all kernel scalability properties. It is the next generation
of Composite OS with a strong focus on consistency
guarantees on shared data structures and resources. The
increase in cores has no impact on the predictability bounds,
which are determined on a single core, they remain constant.

Implementation. Each component is defined via resource
tables. These tables index and control access to system
resources. Since SPeCK is designed for multi-core environ-
ments, it also has special higher-order resource tables that
allow delegation of - and access to - resources throughout
the system and especially for shared kernel objects as in
contrast to seL4, where this delegation can be done via IPC.
Another special resource table for kernel objects is the
Liveness Table. It is a structure that tracks the liveness of
kernel objects which is necessary in the multi-core context.
Scheduling is performed in the user level components by
using the direct dispatching support for thread kernel objects
and asynchronous end-points for interrupts. Every core has
its own kernel stack and each core is tagged as one of two
types: real-time or best-effort. To avoid interference, the data

structures used by a real-time task cannot be modified by
best-effort flagged cores. The SPeCK kernel provides a
dispatch() operation that allows scheduling components to do
a context switch between threads. The resource tables only
allow that referenced threads can be dispatched to the owner
core which keeps the strict thread partitioning that SPeCK
wants to have.

SPeCK implements several system guarantees. The
modification of kernel data structures is synchronized. The
latency and interference of component-controlled modifi-
cations are bounded (such as capabilities are not given out
and modifications on shared cache-lines are only allowed, if
access to higher-order resource tables is granted). The
execution time of all paths in the kernel are bounded (only
very few loops and all of them have bounded latency).
Memory frames typed as kernel memory are inaccessible to
user-level and no kernel object can be deallocated (which
guarantees memory safety). References to kernel memory are
never removed (the API only allows moving memory between
structures and on deactivation of a resource table a scan
ensures that it has no references to other kernel structures).
And last, with the direct dispatching support for thread
kernel objects, and asynchronous end-points for interrupts,
scheduling is per-formed in user-level components. The
authors evaluate SPeCK by benchmarking core-local and
cross-core IPC, Memory Mapping and Unmapping, Ca-
pability Activation and Deactivation, and Response Time of
hard Real-Time sub-systems against Fiasco. The tests show
that on the average, in single or dual-core environments
SPeCK is slightly more cost efficient than Fiasco. On
increasing number of cores - up to 39 cores were tested -
SPeCK indeed keeps an almost constant performance
(whereas Fiasco drops in performance).

3.3 Temporal Capabilities: Access Control for
Time

Temporal Capabilities (TCaps) introduce an access control
system based on capabilities integrated into the CPU
management and allow distribution of authority for
scheduling [TCaps’17]. A TCap is an abstraction that enables
user level control over processing time and processing access.
With this abstraction the responsibilities for time mana-
gement can be distributed and restricted between isolated
subsystems. The scheduling decision (what to compute at
time x) is separated from the ability to take time (if a
computation is required and can be done now). Composite
OS is the base of TCaps and thus there is no scheduler within
the kernel, only a dispatch operation to provide the operation
for context switches to user level scheduling. TCaps
implement a delegation pattern that allows a direct vectoring
of timers and interrupts to subsystems. And each subsystem
can have separate TCaps within their parts. This way each
subsystem can delegate to another subsystem or they can
activate each other.

TCaps describe a slice of time and the priorities for this
time-slice for each scheduling policy involved in the manage-

2

22

Towards policy-free µKernels WAMOS’17, August 2017, Wiesbaden, Hessen GERMANY

ment of the time. This way TCaps enable preemption deci-
sions made based on all schedulers involved. The scalar size of
the time slice (of processing cycles) is called budget, which
provides a cycle-accurate tracking. This budget can be
delegated between TCaps and there is no other mechanism
for something like replenishment of budget. In a trusted
subsystem exists one single TCap called Chronos, which is
activated once all other TCaps have expended their budget.
Chronos has infinite amount of budget and with (pro-
grammatic) delegation appropriately replenishes budgets of
the other TCaps. In addition to the budget each TCap has a
quality which indicates the importance of the time slice. This
metric is a set of priorities for each subsystem and a scalar
priority is assigned to a TCap’s quality using the subsystems
own semantics – so each subsystem using the TCap adds one
more priority to the quality of the TCap. The quality is only
used in the decision making of preemptions and not for the
scheduling decision. A decision is always made only if all
schedulers agree that a preemption should be made. An
asynchronous event that triggers TCap t1 with quality q1
should only preempt the current thread in execution if the
quality q2 of TCap t2 (owner of the thread) is lower than
that of t1 (q2 > q1). The quality of the delegation is
degraded to the lesser priority for each subsystem. This
prevents undue interference and ensures that temporal
priorities are maintained for a subsystem’s scheduler. This is
also used for preemption decisions across transitive
delegations (to other subsystems). The allocation of pro-
cessing time within a subsystem is not coupled to its
consumption of processing time. This maintains fine-grained
control in schedulers and enables a distribution of the
scheduling guarantees in the system.

TCaps are implemented in the kernel and handle the
delegation part of the capability system. Revocation would
imply the removal of time from a TCap and this would
compromise the design part for guaranteed time slices.
Budget limits execution time and quality limits preemptions.
TCaps are designed for single-core usage since processing
time cannot be shared via cores. They still allow the use of a
global scheduler. An increase in the number of subsystems
results in an increase in overhead (for TCaps). This cost
increase is linear.

3.4 Discussion

Composite first introduced a mechanism to grant each
component access to processing time. The focus was set on
fault-isolation and tolerance. It set the cornerstone for later
research. SPeCK extended Composite with focus on scalable
preditability, allowing the system to be predictable, even for
multiple cores. TCaps now extends the SPeCK kernel further,
to allow fully customized user-level scheduling for both hard
real-time systems and best-effort systems. Composite was not
designed as a microkernel. SPeCK and TCaps on the other
hand are both microkernels. SPeCK is designed to fit multi-
core environments and it is non-preemptive, whereas TCaps
is optimized for single-core environments and it allows
preemption. In Comparison to older approaches, like User-
Level Sche-duling for µ-Kernels [Stoess’07] or the discussion
about Inheritance Scheduling in [WAMOS’15], both

approaches implement kernel mechanisms rather than
building a sche-duling system atop the kernel scheduler. This
way, they achi-eve Policy Freedom for their kernels.

4 CONCLUSION

The long standing Problem of moving the scheduling
policy out of the kernel seems to be solved. This paper has
focussed on how scheduling is realized in two approaches
towards policy-free microkernels (and has omitted a lot of
details on each kernel and operating system itself). Both use
Composite as a baseline for their microkernels. SPeCK uses
the non-preemptive kernel of Composite as an advantage for
scalability. It may not have been the main focus of SPeCK,
but they realized user-level scheduling. TCaps, also imple-
mented on the component based Composite, focuses on a
capability based system, which allows to delegate time
between subsystems and each subsystem is allowed to have
its own scheduling policy for its own subsystem threads.
TCaps seem to be a breakthrough in the long standing
challenge for policy-free microkernels. It allows a con-
figurable and isolated user level definition of computation
time management policies and is even efficient. It allows
real-time subsystems with strict timing requirements
combined with best-effort subsystems. It integrates fine into
capability-based operating systems.

REFERENCES

[SOSP’95] J. Liedtke. On micro-kernel construction. In SOSP ‘95
Proceedings of the fifteenth ACM symposium on Operating
systems principles (Pages 237-250) Copper Mountain,
Colorado, USA – December 03 – 06, 1995.
DOI>10.1145/224056.224075

[WAMOS’15] O. Dedi. 2015. Towards policy-free Microkernels. In
Proceedings of the second Wiesbaden Workshop on
Advanced Operating Systems (WAMOS) 2015, p. 29–32.

[MIKES’07] R. Kaiser, S. Wagner 2007. Evolution of the PikeOS
Microkernel. In Proceedings of the First International
Workshop on Microkernels for Embedded Systems (MIKES)
2007. p. 50 ff. National ICT Australia. 223 Anzac Parade.
Kensington NSW 2052 Australia. ISSN 1833-9646

[TCaps’17] P. K. Gadepalli, R. Gifford, L. Baier, M. Kelly, G. Parmer.
Temporal Capabilities: Access Control for Time. The
George Washington University. Washington, DC. 2017

[Ruocco’06] S. Ruocco. 2006. Real-Time Programming and L4
Microkernels. In Proceedings of the 2006 Workshop on
Operating System Platforms for Embedded Real-Time
Applications, Dresden, Germany, July 2006.

[Ruocco’08] S. Ruocco. 2008. A real-time programmer’s tour of
general-purpose l4 microkernels, in EURASIP Journal on
Embedded Systems, 2008. doi>10.1155/2008/234710

[Stoess’07] J. Stoess, Towards effective user-controlled scheduling for
microkernel-based systems, ACM SIGOPS Operating
Systems Review, v.41 n.4, July 2007.
doi>10.1145/1278901.1278910

3

23

WAMOS’17, August 2017, Wiesbaden, Hessen GERMANY B. Görtz

[SPeCK’15] Q. Wang, Y. Ren, M. Scaperoth, and G. Parmer. Speck: A
kernel for scalable predictability, in RTAS, 2015.

[Composite’10] G. Parmer. 2010. Composite: A Component-Based
Operating System for Predictable and Dependable
Computing. Ph.D. Dissertation. Boston University,
Boston, MA, USA. Advisor(s) Richard West. AAI3382544.
ISBN: 978-1-109-43571-9

4

24

Lock Holder Preemption Problem in Multiprocessor
Virtualization
Short Research Paper

Burak Selcuk
RheinMain University of Applied Sciences

Wiesbaden, Germany
burak@burakselcuk.de

ABSTRACT
Process synchronization on kernel level is usually realized with
spinlocks, which cause that another thread performs a busy waiting
until he can acquire the lock. Spinlocks rely on the assumption,
that the lock holder is not preempted until he releases the lock.
This assumption does not hold when the OS is virtualized, because
the hypervisor can preempt virtual CPUs of the guest OS at any
time. This situation is called lock holder preemption problem, in
which the lock holder is preempted by the hypervisor and other
virtual CPUs, acquiring the lock, waste CPU resources with busy
waiting without any progress. A common solution is co-scheduling,
where every virtual CPU of the guest OS has to run simultaneously.
Though, co-scheduling can lead to CPU fragmentation and limit
the possibilities of scheduling algorithms. Other approaches are
based on guest OS modification ormonitoring through the hypervisor.
The paper presents several solutions to avoid or limit the effects
of lock holder preemption and gives an overview which approach
common hypervisors use.

KEYWORDS
Virtualization, Hypervisor, Multiprocessor, Spinlock, Lock Holder
Preemption
ACM Reference format:
Burak Selcuk. 2017. Lock Holder Preemption Problem in Multiprocessor Vir-
tualization. In Proceedings of Wiesbaden Workshop on Advanced Microkernel
Operating Systems, Wiesbaden, Germany, 2017 (WAMOS), 6 pages.

1 INTRODUCTION
There are several synchronization techniques for multicore or mul-
tiprocessor architectures to ensure that a critical section is entered
by one process only, e.g. mutex, locks or semaphore. On kernel
level, spinlocks are the lowest-level mutual exclusion mechanism
[3]. If a thread acquires a spinlock, which is hold by another thread,
it performs a busy waiting. To wait actively for the lock relies on
two arguments: that the critical section in the kernel is short and
busy waiting is less expensive than making a context switch and
flushing TLB and caches. Furthermore, the implementation of spin-
locks in Linux kernels are based under the assumption, that the lock
holder is not preempted while his execution. This assumption can
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
WAMOS, 2017, Wiesbaden, Germany

not be satisfied, if the operating system is running inside a virtual
machine.

Systems, that offer virtualization, are in use of multicore or mul-
tiprocessor architecture. They have several physical CPUs (pCPU),
which execute processes of their virtual machines. In fact, each
virtual machine gets a number of virtual CPUs (vCPU) assigned,
which are then assigned to the pCPUs for a time slice. The vir-
tual machine or guest OS is only aware of its assigned vCPUs, on
which his processes are scheduled on. A preemption of a process
can happen on two layers. First, the scheduler of the guest OS can
preempt a process based on its scheduling algorithm and second, a
preemption of a vCPU can be performed by the hypervisor because
its time slice is ending or another vCPU has a higher priority.

The preemption on guest level does not violate the spinlock as-
sumption, because the lock holder is not preempted in his execution
by the kernel. Though, the preemption by the hypervisor results
in the lock holder preemption (LHP) problem, which is the main
topic of this paper. The lock holder preemption problem happens if
the vCPU, holding the lock, is preempted and one or more other
vCPUs are acquiring the lock with busy waiting. Those vCPUs
are wasting CPU resources without any progress and they can not
take the lock until the lock holding vCPU is scheduled again. Lock
holder preemption problem with focus on virtualization was first
analyzed and discussed by Uhlig et. al. [15] and was researched
in several other papers [2, 5, 7, 8, 14, 17]. Those researches also
include approaches based on detection by hardware or with focus
on real-time operating systems.

The paper is structured as follows: The next section gives an
overview about spinlocks, scheduling and overcommitment in vir-
tualization, follows by an explanation of the lock holder preemp-
tion problem. In Section 3, several solutions like scheduling tech-
niques, OS kernel modification or hypervisor implementations are
explained. At the end of the section, some examples how common
hypervisor solves the problem are presented. Other research work,
which is not explained in detail here, are given in Section 4. A con-
clusion about LHP and the possibilities to avoid or to limit the side
effects of it, is given in Section 5.

2 SPINLOCKS, VIRTUALIZATION AND LOCK
HOLDER PREEMPTION

2.1 Spinlocks
Spinlocks are used on kernel level, such that a critical section is
accessed by one process only. They are the lowest-level mutual
exclusion mechanism in Linux kernels [3]. On application level,
other synchronization techniques are used because spinlocks are

25

WAMOS, 2017, Wiesbaden, Germany Burak Selcuk

implemented with busy waiting, which wastes CPU resources. If a
process holds a spinlock and another process acquires it, he spins
on the spinlock until it available. The usage of spinlock relies on
the assumption that the critical section is short and the lock holder
is not preempted during the execution of it. Regardless of the latter
one, the lock could be implemented with passive waiting but it
would be inefficient because if the critical section is short, spinning
on the lock results in less CPU cycles than doing a context switch.
Also, doing a context switch could result in starvation or unfairness
because the waiter may be scheduled out with another process,
acquiring the spinlock too.

In fact, spinlocks in earlier Linux kernel versions (≤ 2.6.24) could
result in starvation because the implementation was unfair [3]. The
spinlock was implemented with an integer l . It is initialized with 1,
which indicates that the lock is available. Acquiring the lock is done
by decrementing and reading the value l atomically. If the return
value is 0, the lock was successfully taken by the thread and l is set
to 0. Otherwise, if the return value is negative, the thread repeatedly
checks the lock in a loop until it becomes available. A thread releases
the lock by setting l to 1 and the spinning thread stops the loop
and tries to acquire the spinlock again. This implementation gives
no guarantee that the thread, which acquires the lock first, will
get it. This issue was fixed with kernel versions ≥ 2.6.25, where
two integer fields are used as head and tail. If a thread acquires
the lock, tail is incremented by one and copied to the thread. He
is taking a ticket, which is compared with the value of head. If the
lock holder releases the lock, head is incremented by one, which
allows the thread with the proper ticket to take the lock. With this
ticket spinlock implementation, locks are acquired in FIFO order.

2.2 Overcommitment and Scheduling in
Virtualization

Using virtualization, several operating systems can be executed
concurrently on the same hardware. They share the hardware re-
sources, e.g. physical CPUs get virtual CPUs of the virtual machines
assigned. The virtual machine does not see any other VM or how
many physical CPUs really exists, it is only aware of its virtual
hardware configuration. Typically, virtual machines are assigned
more vCPUs than the physical host actually has. With this option,
an overcommitment of the vCPUs happens because the total num-
ber of vCPUs is greater than the number of pCPUs. This scenario is
usual in virtualization, since each vCPU gets a time slice to execute
its guest OS processes. Though, with overcommitment, lock holder
preemption is more likely to happen because if #vCPU > #pCPU,
there are always vCPUs which are not active and one of them may
hold a spinlock. Figure 1 shows a possible configuration of two
virtual machines, where VM 0 has 2 vCPUs and VM 1 has 4 vCPUs.
The hardware itself has only 4 pCPUs, hence an overcommitment
happens. The CPU scheduler of the hypervisor decides, which vC-
PUs are assigned to the pCPUs. In this example, all vCPUs of VM 0,
vCPU 1-1 and vCPU 1-3 are running, while vCPU 1-0 and vCPU
1-2 are “inactive”.

As already said in the beginning, scheduling occurs on two layers.
The guest OS performs its process scheduling and the hypervisor
schedules the vCPUs of the virtual machines to the pCPUs, such
that each vCPU gets a time slice to execute its VM. For example, the

Credit scheduler of Xen hypervisor has a time slice of 30ms [18] and
the VMware vSphere scheduler has 50ms as default configuration
[16]. VMware vSphere also uses a scheduling technique, called co-
scheduling (or gang-scheduling), which schedules the vCPUs of the
VMs in such a way, that the VM only run if every vCPU is assigned
to pCPUs simultaneously. Hence, single vCPU preemption can not
occur because the hypervisor preempts the whole group of vCPUs
instead of single a one as soon as its time slice ends. This scheduling
technique avoids lock holder preemption and it will be explained
in Section 3.1.

VM 0

vCPU
0-1

vCPU
0-0

VM 1

vCPU
1-0

vCPU
1-2

HardwarepCPU
0

pCPU
1

pCPU
2

pCPU
3

vCPU
1-3

vCPU
1-1

CPU Scheduler

Hypervisor

Figure 1: Overcommitment of 6 vCPUs on 4 pCPUs

2.3 Lock Holder Preemption Problem
In virtualized environments, lock holder preemption problem oc-
curs when a vCPU, that is currently holding the spinlock, is pre-
empted and one or more other vCPUs of the same virtual machine
are acquiring the lock. Those other vCPUs are spinning on the
lock, resulting in busy waiting which wastes CPU resources until
the lock holder vCPU is scheduled again. A formal definition of
LHP (and also lock waiter preemption) is given by Teabe et. al. [14]:
Let V = {v0, . . . ,vn } the list of vCPUs trying to acquire the same
spinlock. The vCPUsvi are scheduled in the ascending order. vCPU
v0 is acquiring the lock and can enter a critical section, since he is
the first one in the list. The lock holder preemption problem can be
defined as:

Lock Holder Preemption (LHP) problem. LHP problem occurs, if
vCPU vi is holding a spinlock and is preempted by the hypervisor,
each vCPUvi+1 does a busy waiting in their time slices of execution,
until vi is scheduled back in and releases the lock.

The main cause of lock holder preemption problem relies on the
fact that even if the guest OS scheduler does not allow preemption
of a lock holder, the hypervisor can preempt the lock holding vCPU
at any point of time. The hypervisor does not distinguish between
vCPUs holding a lock and those who are not. Hence, scheduling
algorithm of the hypervisor or operating systems must be adapted,
such that lock holder preemption is avoided or the effects of it
are limited. The main effect of LHP is wasting CPU resources,

26

Lock Holder Preemption Problem in Multiprocessor Virtualization WAMOS, 2017, Wiesbaden, Germany

which leads to performance decreasing in the guest OS. Friebel and
Biemueller [5] demonstrated some example with a 16-core 4-socket
system. On this system, one single VM was running with 16 vCPUs.
Because no other VM was running, LHP was unlikely, cause every
vCPU can be assigned to a distinct pCPU. LHP arose as soon as a
second VM with 16 vCPUs was started, hence an overcommitment
of the system with 32 vCPUs happened. The time spent on spinning
for the lock took 0.2% with single-guest and increased to 7.6% with
two-guest configuration.

3 SOLUTIONS
In this section, several solutions are presented, to either avoid
or limit the side effects of LHP. Some solutions avoid LHP com-
pletely, such that a lock holder is not preempted at all. First, the co-
scheduling approach, mentioned in Section 2.2 and used in VMware
vSphere, is explained. After this, solutions which involve a modifi-
cation of the guest OS or rather the guest OS kernel are considered.
Those approaches are well suited for paravirtualization, where a
modification of the guest OS is typically performed. In addition,
when the source code of the guest OS is available, it allows such an
adaption of the code. If a modification of a guest OS is not possible
like in proprietary operating systems, a third solution is shown. In
this case, the hypervisor tries to detect if the guest OS is on user or
kernel level and decides whether to preempt or not.

3.1 Co-Scheduling in Virtualization
Co-scheduling is a scheduling technique for multiprocessor sys-
tems, published by John K. Ousterhout in 1982 [9]. Until this time,
operating systems worked on the assumption that processes work
independent and there is no to few communication between them.
But multiprocessor systems became more famous and program-
ming style went to a way, where processes are working together to
solve a problem. Hence, processes send messages to each other and
a scheduler algorithm could decrease the performance by assigning
the wrong process at a time point. In Figure 2 is an example of the
communication between two threads of two processes A and B [13].
There are 2 CPUs and the scheduler assigns thread A0 of process
A to CPU 0 and thread B1 of process B to CPU 1 at time point T0.
A0 sends a request to thread A1, but it has to wait until time point
T1 because B1 is currently active on CPU 1. If time point T1 arrives,
A1 gets the request and answers A0, but it has to wait again until
time point T2. This behavior is equal for process B if its threads
are communicating too. The scheduling algorithm is clearly not
efficient, if the threads are sending requests to each other.

CPU 0

CPU 1

T0 T1 T2 T4
Time T5T3

A0 B0 A0 B0 A0

B1 A1 B1 A1 B1

Figure 2: Problem with process communication through in-
efficient scheduling (adapted from [13])

Co-scheduling is also known under the name gang-scheduling,
which is a stricter version of it [4]. Co-scheduling and gang-schedul-
ing aims to help at the problem shown above by scheduling threads
of a process concurrently on the CPUs. The threads that belong
to a unit are called a gang. The scheduler assigns the member of
a gang simultaneously on the available CPUs, hence a one-to-one
mapping of threads to CPUs is performed. All members have the
same time slice duration and are preempted together at its end.
With this scheduling, no synchronization problems between threads
occur. The threads that communicate can answer immediately and
synchronization mechanism like spinlocks won’t suffer from effects
of lock holder preemption.

Co-scheduling can be used to schedule the vCPUs of a hyper-
visor. In fact, a relaxed co-scheduling version is the scheduling al-
gorithm in VMware vSphere [16]. With this approach, the lock
holder preemption problem can be avoided. Unfortunately, it has
some disadvantages: at each time slice, every vCPU of a VM is
scheduled on the pCPUs, which allows that idle vCPUs waste CPU
time. The wasted CPU time can be used by vCPUs of other VMs.
Remember, that busy waiting is no issue here, since the lock holder
is active. Another problem, which is mentioned by [15], is that the
hypervisor can not use other scheduling features, e.g. multiplexing
multiple vCPUs on the same pCPU to allow fault recovery of a
failed processor or load balancing.

CPU fragmentation is also some major problem with co-schedul-
ing [12]. Figure 3 shows a schedule, where CPU fragmentation
occurs. To co-schedule vCPU 1-0 and vCPU 1-1 at the same time
slice, they have to wait until time point T1 because at T0 there is
only one pCPU inactive. Priority inversion can also happen, where
a job with a higher priority is scheduled after a job with a lower
priority. The figure shows an I/O job at time point T2, which could
already run at time point T1. It has a higher priority, but because
of co-scheduling the vCPUs always run as group and the next free
time slot they got is T1. This causes an idle disk and higher I/O
latency. Those two issues, are worse than the issues caused by lock
holder preemption [14].

pCPU 0

pCPU 1

T0 T1 T2 T4
Time T3

vCPU
0-0

vCPU
1-0

vCPU
2-0

vCPU
3-0

vCPU
1-1

I/O
vCPU
3-1

Figure 3: CPU fragmentation through co-scheduling
(adapted from [12])

3.2 Modification of the Guest OS
Modification of the guest OS or paravirtualized approaches aims to
change kernel code and give the hypervisor hints about the status
of lock holding and spinning. With this method, the hypervisor

27

WAMOS, 2017, Wiesbaden, Germany Burak Selcuk

can decide if its safe to preempt the lock holder or to preempt the
spinning vCPU to schedule a useful one.

The first possible modification performs a preemption delay
mechanism [15]. Before taking the spinlock and entering the critical
section, the guest OS gives the hypervisor a hint, that he should
not be preempted for the next n microseconds. During this time
period, the hypervisor does not preempt the lock holder if such a
hint was given. Instead, if the hypervisor wanted to preempt the
guest OS, he sets a flag for the vCPU and delays the preemption to
n microseconds. When the guest OS leaves the critical section and
releases the lock, he checks if the flag is set and yields immediately,
so that the hypervisor can preempt the guest OS. If the guest OS did
not release the lock after n microseconds, the hypervisor preempt
him anyway and gets penalized by reducing the further time slices
of the vCPU.

This approach does not avoid lock holder preemption completely
but rather delay preemption itself, such that the vCPU has more
time to release the lock. Hence, n has to be chosen suitable such
that the lock is released within the time period. A high value would
avoid LHP, but gives the guest OS the possibility to execute a long
critical section, which could violate fairness of other vCPUs. A
low value, would cause LHP anyway and a penalty for the vCPU
additionally.

Another approach is to modify the spinlock code in the guest OS
[5]. This approach will not avoid LHP but limit the side effects of it,
such that busy waiting for the lock is not performed unnecessarily
by the spinning vCPU. The spinlock code of the guest OS is changed
by inserting a hypercall, which is executed after a time period. With
this modification, busy waiting is still proceed, but if the lock waiter
spins too long, the hypervisor gets notified to preempt the waiter.
The spinning vCPU gets scheduled out with another vCPU of the
same VM. Ideally, the vCPU, holding the lock, should be chosen
to end its critical section and release the lock. Unfortunately, if
this is the only modification towards LHP, then the hypervisor is
not aware which vCPU holds the lock. Therefore, another vCPU,
acquiring the lock, could be assigned, which results in busy waiting
again.

Similar to the first approach, a time duration has to be chosen.
Friebel and Biemueller [5] says, 216 cycles result in a good threshold
because after those cycles, the critical section is finished and the
waiter can take the lock. There evaluation shows, that no time is
spend on spinning anymore and the guest time is decreased by 7.5%,
but the wall-clock time is only decreased by half of that percentage.
They argument this behavior, that the evaluation caused a lot of
shadow paging work for the hypervisor.

3.3 Lock Holder Detection by the Hypervisor
In some situations, a modification of the guest OS is not possible,
e.g. the kernel code is only available in binary format or too many
different operating systems are running on the hypervisor and
changing every kernel or OS would lead to high costs of time
and money. Therefore, to avoid lock holder preemption in such
environments, the hypervisor should have the possibilities to detect
and to avoid LHP itself. Approaches of that kind are well suited for
full-virtualized systems.

Uhlig et. al. [15] proposed an approach, where the hypervisor
monitors the guest OS to detect a possible lock holder. Remember
that spinlocks are usually used in kernel mode only. When the
guest OS is leaving the kernel mode, he has to release all locks
before entering the user mode again. By knowing this behavior,
the hypervisor could monitor the guest OS and notice each time
when an entering and a leaving of kernel mode happens. If the
hypervisor notices, that the guest OS is currently in kernel mode,
a preemption could be fatal because a vCPU may hold a spinlock.
Thus, two states for preemption can be defined:

• Safe State. The guest OS is currently in user mode. No spin-
lock is hold by a vCPU and a preemption of a vCPU is safe.

• Unsafe State. The guest OS is currently in kernel mode.
A spinlock may be hold by a vCPU and a preemption of a
vCPU is unsafe.

A spinlock hold on user level will still be classified as safe state.
This behavior is negligible, since it relies on the programmer to use
a synchronization mechanism, which may not violate performance
on user level.

Another way to detect a safe state is to monitor the guest OS
instructions and detect HALT instructions, e.g. IA-32 HLT. This
instruction lets the system enter an idle state, where a spinlock
should not be hold anymore. Also, a (fake) device driver could give
the hypervisor a possibility, to check if a guest OS is holding a lock.
By sending special packages to this (fake) virtual device, the guest
OS starts the protocol handler of the driver and can yield, since it
is not holding any locks during protocol handling.

3.4 Procedures in Common Hypervisors
The previous sections showed several approaches to avoid lock
holder preemption. Modern hypervisors use different solutions,
either to schedule vCPUs efficiently or to avoid LHP only. This sec-
tion should give a short overview, which solution those hypervisors
use.

3.4.1 VMware vSphere. In Section 3.1 the co-scheduling ap-
proach was explained. A customized version of it is used in VMware
vSphere (ESX) [16]. In previous version of VMware ESX 2.x, a strict
co-scheduling algorithm was used, which avoids lock holder pre-
emption by scheduling vCPUs of the same VM simultaneously. To
schedule those vCPUs at the same time, the same number of pCPUs
has to be available. This scheduling might cause CPU fragmenta-
tion (compare Figure 3) because if 3 pCPUs are idle and the VM
needs 4 vCPUs to run, the scheduler will not even assign those
3 vCPUs. The scheduler will only assign a part of the vCPUs, if
the remaining vCPUs are idle. For example, a VM with 4 vCPUs,
where 3 vCPUs are idle, can run if one pCPU is available only. In
VMware ESX 3.x and later versions, they implemented a relaxed
co-scheduling algorithm, which solves the CPU fragmentation. A
vCPU can make decisions to stop and start himself based on the
execution gap between him and slowest vCPU of the VM. VMware
says, this allow vCPUs to run without the complete group of the
VM 1.

1Though, if only a part of the vCPUs run simultaneously, it seems that LHP can still
be occur.

28

Lock Holder Preemption Problem in Multiprocessor Virtualization WAMOS, 2017, Wiesbaden, Germany

3.4.2 Xen and KVM. The Xen [1] hypervisor supports full-vir-
tualized and paravirtualized guests. Since, no information about
lock holding preemption and avoidance by the hypervisor was
found, it is assumed that it relies in the hand of the guest operating
systems to prevent preemption or to yield while unusually long
waits. Also, with the introduction of ticket spinlocks in Linux kernel
≥ 2.6.25 for better fairness in lock acquiring (compare Section 2.1),
LHP wasn’t the major problem anymore. The ticket spinlock im-
plementation represents a FIFO queue for lock acquiring, such that
only the thread with the next ticket can take the lock. Since, the hy-
pervisor doesn’t know, which vCPU is the next eligible lock-holder,
it can schedule any vCPU of the VM, resulting in ineffective busy
waiting (remember that the lock is released, but the vCPU may not
take the lock because it may has a higher ticket). The evaluation
in [5] shows, that the execution time increases from 33 seconds to
47 minutes. To solve this problem, a series of kernel patches was
published [11], supporting Xen and KVM [10] and replacing the
paravirtualized spinlock mechanism with a paravirtualized ticket-
lock mechanism. The implementation is similar to the modification
of the spinlock code explained in Section 3.2. If a vCPU is spin-
ning more iterations than a configurable threshold, it performs a
hypercall, such that the hypervisor can block the vCPU instead
of spinning anymore. Also, in the lock data structure, a bit flag is
set, to indicate that a vCPU is passively waiting. If the lock holder
vCPU releases the lock it checks the bit and makes a hypercall to
wake up the next vCPU in queue.

3.4.3 Microsoft Hyper-V. The Hyper-V hypervisor of Microsoft
is generally used for VMs with Windows as guest OS. They do not
use a co-scheduling algorithm because they can adapt the code
of Windows OS in such a way, that it perform well virtualized on
top of their hypervisor. In the hypervisor specification [6], guest
spinlocks are also addressed and an interface is offered to notify
the hypervisor about unusually long waits. The guest OS gets from
the hypervisor an indicator, how many iterations of spinning is
allowed before the guest should perform a hypercall to inform
the hypervisor about long spinning. With the hint, the hypervisor
can make better scheduling decisions, e.g. preempt the waiter and
schedule another vCPU. It is assumed that those hypercalls are
used in Windows OS to limit the effects of LHP. Also, Hyper-V
supports several Linux distributions and the hypervisor specifi-
cation is openly available, therefore an implementation in those
distributions is not excluded.

4 RELATEDWORK
In the previous section several solutions were given to solve lock
holder preemption problem or limit the effects of it at least. Those
approaches are mostly based on the work of Uhlig et. al. [15], Friebel
and Biemueller [5], Teabe et. al. [14], Ousterhout [9] and Sukwong
et. al. [12].

However, there are other solutions to avoid LHP. Wells et. al.
[17] published a hardware technique to detect vCPUs that are not
performing useful work. With this technique, spinning vCPUs can
be recognized and scheduled out with another vCPU, which may
be productive. To detect spinning vCPUs, the execution pattern
of a program is observed. A spinning process makes only very
few changes to the program state. Those changes can be identified

by the amount of unique store instructions in a given interval of
committed instructions. To detect false positive spins (execution
of user code), unique load instructions are also identified. Hence,
spinning in kernel mode is recognized, when the amount of unique
stores within n committed instructions is less than a limit and a
user spin is detected when unique stores and loads are less than that
limit. Their experiments shows, for a interval of 1024 committed
instructions, a limit of eight store and load instructions are sufficient
to detect spinning.

Mitake et. al. [7, 8] researched LHP problem with focus of real-
time virtualized environments and embedded systems. They in-
vestigated the case, when a real-time operating system (RTOS)
and a general purpose operating system (GPOS) are virtualized on
the same hypervisor, where the RTOS has a higher priority than
the GPOS. Solutions like co-scheduling or preemption delay may
work well with virtualized GPOS only, but may not hold the con-
straints of a virtualized RTOS, e.g. a preemption delay would violate
the real-time responsiveness. Lock holder preemption is solved by
a technique in their virtualization layer SPUMONE, which focus
embedded systems and offers a paravirtualized interface. The tech-
nique is called vCPU migration mechanism, which migrates a run-
ning vCPU from one pCPU to another. For example, a SPUMONE
system has two pCPUs, running an RTOS with one vCPU and a
GPOS with two vCPUs. Both VMs share one pCPU for two vCPUs,
since the GPOS usually needs more performance. When the GPOS
system enters the kernel level (invoking a trap instruction or by
receiving an interrupt), his vCPU on the shared pCPU is migrated
to the second pCPU. Another technique is to migrate the vCPU
of the GPOS every time when the RTOS becomes active. A return
migration happens, when the GPOS leaves the kernel level or the
RTOS becomes idle again. With those two approaches, lock holder
preemption can be avoided in real-time virtualized systems.

A third solution is based on the recent work of Teabe et. al. [14].
They proposed a new spinlock implementation I-Spinlock (Informed
Spinlock) for virtualized environments, where the spinlock is aware
of the remaining time slice of its vCPU. A thread can only acquire
a spinlock if and only if the time slice of its vCPU is long enough
to enter and leave the critical section. A thread computes a lock
completion capability, based on the remaining time of the vCPU
and the duration of the critical section. The former one is delivered
over a shared memory region between guest and hypervisor. The
latter one relies on experiments, showing that the average critical
section duration is about 214 cycles2. They present the I-Spinlock
implementation as patch for the Linux kernel and Xen hypervisor,
supporting hardware-assisted virtualization and paravirtualization
modes. However, a guest OS modification is still required 3, which
is not possible, if the kernel is in binary form only.

5 CONCLUSION
Virtualization of operating systems may raise problems, which are
not an issue in non-virtualized environments. The lock holder pre-
emption problem is one of them and can cause performance issues
in the particular guest OS as well as in other VMs of a hypervisor.
2Similar results were recognized by Friebel and Biemueller [5].
3As remark, they mention that their solution works with unmodified (HVM) guest OS
too, but it is not clear how an unmodified guest OS benefits from their implementation
in Xen hypervisor.

29

WAMOS, 2017, Wiesbaden, Germany Burak Selcuk

This problem is caused, whenever a vCPU acquires a lock, enters a
critical section and is preempted by the hypervisor, leading another
vCPU of the same VM to spin on the lock without making any
progress.

A common solution to avoid LHP is to use co-scheduling as CPU
scheduling algorithm on the hypervisor, which assigns every vCPU
of a VM to the pCPUs simultaneously. With co-scheduling, lock
holder preemption will not happen but can cause CPU fragmenta-
tion and priority inversion as other problems. Other approaches to
avoid or limit the effects of LHP are modification of the guest OS,
e.g. preemption delay or making a hypercall after spinning exceeds
a threshold. This will let the hypervisor delay the preemption of the
lock holding vCPU or schedule out the waiter vCPU with another
one. Approaches, without a modification of the guest OS, rely on
the detection of lock holding by the hypervisor. By monitoring the
guest OS, the hypervisor could recognize whenever the guest OS is
entering and leaving the kernel level and by this, define safe and
unsafe states. A preemption in an unsafe state could lead to LHP,
therefore it should be avoided.

Most hypervisor take usage of the two former approaches. VM-
ware vSphere is using a customized, relaxed co-scheduling tech-
nique, which can restrict LHP but it seems that it does not avoid it
completely. The Xen and KVM hypervisor rely more on the modifi-
cation of the guest OS approach by giving the hypervisor hints to
preempt a lock waiter with another vCPU. This approach will also
help to eliminate lock waiter problem, which is caused by ticket
spinlocks (explained in Section 3.4.2 and in [14]). Microsoft Hyper-V
offers a similar hypercall like in Xen, which informs the hypervisor
when spinning iteration exceeds a limit. It seems that a generic
solution rather than co-scheduling is not used, probably because
modification of the most Linux distributions is easily possible and
proprietary operating systems solves the problem related to their
own hypervisor. But all of those approaches clearly avoid or restrict
the effects of lock holder preemption, whereby the guest OS doesn’t
waste CPU resources and won’t have performance issues.

REFERENCES
[1] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho,

Rolf Neugebauer, Ian Pratt, and Andrew Warfield. 2003. Xen and the art of
virtualization. In Proceedings of the nineteenth ACM symposium on Operating
systems principles, Michael L. Scott (Ed.). ACM, New York, NY, 164. https://doi.
org/10.1145/945445.945462

[2] Koushik Chakraborty, Philip M. Wells, and Gurindar S. Sohi. 2012. Support-
ing Overcommitted Virtual Machines through Hardware Spin Detection. IEEE
Transactions on Parallel and Distributed Systems 23, 2 (2012), 353–366. https:
//doi.org/10.1109/TPDS.2011.143

[3] Jonathan Corbet. 2008. Ticket spinlocks. (2008). https://lwn.net/Articles/267968/
[4] Dror G. Feitelson and Larry Rudolph. 1992. Gang Scheduling Performance

Benefits for Fine-Grain Synchronization. J. Parallel and Distrib. Comput. 16
(1992), 306–318.

[5] Thomas Friebel and Sebastian Biemueller. 2008. How to Deal with Lock Holder
Preemption. (2008).

[6] Microsoft. 2016. Hypervisor Top Level Functional Specification v5.0. (2016). https:
//docs.microsoft.com/de-de/virtualization/hyper-v-on-windows/reference/tlfs

[7] Hitoshi Mitake, Yuki Kinebuchi, Alexandre Courbot, and Tatsuo Nakajima. [n.
d.]. Handling Lock-Holder Preemption in Real-Time Virtualization Layer for
Multicore Processors.

[8] Hitoshi Mitake, Tsung-Han Lin, Yuki Kinebuchi, Hiromasa Shimada, and Tatsuo
Nakajima. 2012. Using Virtual CPU Migration to Solve the Lock Holder Preemp-
tion Problem in a Multicore Processor-Based Virtualization Layer for Embedded
Systems. In Proceedings of the 2012 IEEE International Conference on Embedded
and Real-Time Computing Systems and Applications (RTCSA ’12). IEEE Computer
Society, Washington, DC, USA, 270–279. https://doi.org/10.1109/RTCSA.2012.32

[9] John K. Ousterhout. 1982. Scheduling Techniques for Concurrent Systems. In
Proceedings of the 3rd International Conference on Distributed Computing Systems,
Miami/Ft. Lauderdale, Florida, USA, October 18-22, 1982. IEEE Computer Society,
22–30.

[10] K. T. Raghavendra, Srivatsa Vaddagiri, Nikunj Dadhania, and Jeremy Fitzhardinge.
2012. Paravirtualization for Scalable Kernel-Based Virtual Machine (KVM). In
2012 IEEE International Conference on Cloud Computing in Emerging Markets
(CCEM), Gopal Pingali (Ed.). IEEE, Piscataway, NJ, 1–5. https://doi.org/10.1109/
CCEM.2012.6354619

[11] Raghavendra K T. 2013. Paravirtualized ticket spinlocks. (2013). https://lwn.net/
Articles/552696/

[12] Orathai Sukwong and Hyong S. Kim. 2011. Is co-scheduling too expensive for
SMP VMs?. In Proceedings of the sixth conference on Computer systems, Christoph
Kirsch and Gernot Heiser (Eds.). ACM, New York, NY, 257. https://doi.org/10.
1145/1966445.1966469

[13] Andrew S. Tanenbaum. 2001. Modern operating systems (2. ed., internat. ed. ed.).
Prentice-Hall, Upper Saddle River N.J.

[14] Boris Teabe, Vlad Nitu, Alain Tchana, and Daniel Hagimont. 2017. The lock holder
and the lock waiter pre-emption problems. In Proceedings of the Twelfth European
Conference on Computer Systems - EuroSys ’17, Unknown (Ed.). ACM Press, New
York, New York, USA, 286–297. https://doi.org/10.1145/3064176.3064180

[15] Volkmar Uhlig, Joshua LeVasseur, Espen Skoglund, and Uwe Dannowski. 2004.
Towards Scalable Multiprocessor Virtual Machines. In Proceedings of the 3rd
Conference on Virtual Machine Research And Technology Symposium - Volume 3
(VM’04). USENIX Association, Berkeley, CA, USA, 4. http://dl.acm.org/citation.
cfm?id=1267242.1267246

[16] VMware Inc. 2013. The CPU Scheduler in VMware vSphere 5.1. (2013).
[17] Philip M. Wells, Koushik Chakraborty, and Gurindar S. Sohi. 2006. Hardware

Support for SpinManagement in Overcommitted Virtual Machines. In Proceedings
of the 15th International Conference on Parallel Architectures and Compilation
Techniques (PACT ’06). ACM, New York, NY, USA, 124–133. https://doi.org/10.
1145/1152154.1152176

[18] Xen. [n. d.]. Xen Project Wiki - Credit Scheduler. ([n. d.]). https://wiki.xen.org/
wiki/Credit_Scheduler

30

Notes

WAMOS 2017 Program

Friday, August 25th 2017
9:00 – 9:15 Introducion
9:15 – 9:45 Keynote Talks and Award Presentation:

Praxisnahe Entwicklung anhand des V-Modells
Corinna Schaub, ITK Engineering GmbH

Vorstellung ITK Engineering GmbH und Infos über Student Award
Markus Hirsch, ITK Engineering GmbH

Presentation of ITK Student Award
Corinna Schaub and Markus Hirsch, ITK Engineering GmbH

9:45 – 10:00 Coffee Break

10:00 – 11:00 Session 1: Performance, Safety and Security
Session Chair: Andreas Werner

Solution approaches towards verified µ-Kernel
Danny Ziesche

Benefits of dedicated hardware for microkernels
Daniel Schultz

11:00 – 11:15 Coffee Break

11:15 – 12:45 Session 2: Kernel Design Principles
Session Chair: Olga Dedi

Single Address Space Operating Systems
Fabian Kopatschek

Towards policy-free µKernels
Bernhard Görtz

Lock Holder Preemption Problem in Multiprocessor Virtualization
Burak Selcuk

12:45 – 13:00 Discussion and Closing Remarks

© 2017 HSRM. All rights reserved.

	Foreword
	Program Committee
	Keynote Talks and Award Presentation
	Praxisnahe Entwicklung anhand des V-Modells
	Vorstellung ITK Engineering GmbH und Infos uÌ‹ber Student Award

	Session 1: Performance, Safety and Security
	Solution approaches towards verified -Kernel
	Benefits of dedicated hardware for microkernels

	Session 2: Kernel Design Principles
	Single Address Space Operating Systems
	Towards policy-free Kernels
	Lock Holder Preemption Problem in Multiprocessor Virtualization

	Program

