

Presented at WAMOS 2018
Jonas Depoix

RheinMain University of Applied Sciences
Wiesbaden, Germany

jonas.depoix@student.hs-rm.d

Philipp Altmeyer
RheinMain University of Applied Sciences

Wiesbaden, Germany
philipp.b.altmeyer@student.hs-rm.de

Detecting Spectre Attacks
by identifying Cache

Side-Channel Attacks
using Machine Learning

Agenda
1. Motivation
2. Approach

● Concept
● Selected HPCs
● Data set
● Implementation

3. Results
4. Demo
5. Conclusion
6. Future Work

2

Motivation
● Spectre and Meltdown pose considerable threats

● Spectre software mitigations have drawbacks
○ Mitigations have to be implemented and deployed for every individual application

■ Vendors have to provide updates

■ Users have to keep their applications up to date

○ Considerable performance impact

○ Customers of cloud providers are at great risk

■ An up to date VM can be vulnerable to other VMs running on the same hypervisor

3

Motivation
Real-time detection system for Spectre attacks could ...

● … keep users safe, even when they use vulnerable software

● … potentially be run with less performance impact, than mitigations

● … be run on hypervisors by cloud providers, to identify malicious VMs

➢ We wanted to implement a real-time detection system for Spectre attacks, to

test if it is a feasible alternative/supplement to software mitigations
4

Approach

Concept
How does our real-time detection system for Spectre work?

● We mitigate Spectre, by shutting down cache side-channel attacks

● We exploit that cache side-channel attacks have side-effects as well
○ Memory has to be accessed frequently and repeatedly

○ Side-channel attacks induce distinct cache usage patterns

6

Concept
How does our real-time detection system for Spectre work?

1. Track cache usage with Hardware Performance Counters

● Special purpose CPU registers

● Counts occurrences of certain CPU events
○ E.g. clock cycles, L3 cache hits, L3 cache misses, …

● Can be attached to individual threads, processes, or the entire CPU

2. Classify processes as malicious or benign using a neural network

● Good at detecting patterns in data

● Effective at solving classification tasks
7

Selected HPCs
● L3 cache misses (L3_TCM)

○ Side-channel attacks cause high cache miss rates

● L3 cache accesses (L3_TCA)
○ Reference for total cache activity

● Total instructions (TOT_INS)
○ Reference for CPU load
○ Malicious process has higher rate of cache misses ⇔ executen instructions

8

Data set
11 scenarios for training and validation

● Server workloads
○ Wordpress CMS (PHP)
○ Ghost CMS (Node.js)

● Desktop workloads
○ stress
○ Web browsing

● Spectre implementations
○ Variants 1 and 2 implementations written in C
○ Variant 1 JavaScript implementation

➢ Selected HPCs are recorded over 60 seconds in 100 ms intervals

9

Implementation

10

Results

11

Predictions
Accuracy (total) 99.23%
Accuracy (positives) 97.16%
Accuracy (negatives) 99.67%
F-score 0.9716
true positives (TP) 308
false positives (FP) 4
true negatives (TN) 1243
false negatives (FN) 9

Ground truth
datapoints 1564
positives 317
negatives 1247

Demo

Conclusion
● We have successfully implemented a real-time detection system for Spectre

attacks
○ Accuracy above 99%

○ Detecting side-channel attacks by analyzing HPCs with neural networks shows great potential

➢ Real-time detection is a feasible alternative/supplement to software

mitigations

13

Future Work
● Performance could be improved

● Neural network could be trained on a wider variation of Spectre

implementations

● Neural network should be trained on a wider variation of CPU models

● Test if detection system is applicable to Meltdown

● Test if detection system is applicable to cross-VM attacks

14

 Thank you for your
attention!

Any questions?

