
WAMOS 2018

Common Attack Vectors of IoT Devices
09.08.2018

Alexios Karagiozidis



Motivation

• Botnetworks and Internet attacks increased rapidly

Examples of security issues:

• Mirai-Bot-Network

• CVE-2018-10967, bufferoverflow via malicous HTTP-request, D-Link DIR-816

• CVE-2015-2887, Backdoor Credentials, iBaby M3S

• CVE-2015-2888, Authentication-Bypass, Internet-Viewing-System

• CVE-2016-5054, Replay-Attack, Osram Lightify Home

There are permanently security issues found with IoT Devices

2



Agenda

1. Arbitrary Code Execution/Return-Oriented-Programming

2. Reverse Engineering

3. Fault Injections

4. Analyzing Signals with SDRs

5. Conclusion

3



01

Arbitrary Code Execution/ROP



1: http://www.cs.jhu.edu/~jorgev/cs333/usbkey/uC_3.JPG

Harvard-Architecture

Attacks differ from Neumann as

x86

• Code and Data are seperated

• Stack is unexecutable

• Most IoT devices use a modified

Harvard-Architecture

=> Traditional attack doesn‘t work

For arbitrary code execution only code from Instruction Memory can

be used

Fig. 1: Shematic of Harvard-Architecture.1

5



Return-Oriented-Programming

Return-to-libc

• Simplest form of a ROP

• Adress of System() is placed onto the stack instead of code together with argument

ROP can be used to bypass a non-executable-stack

• Bufferoverflow-vulnerability required

ROP gadget

• Sequence of instructions terminated by a free return or branch instruction

ROP chain

• Sequence of adresses of ROP gadgets

6



Why ret2libc doesn‘t work on ARM

An attacker has to setup arguments and registers manually

• returns on ARM are performed manually (Load-and-Store-Arch.)

Load and Store-Architecture

• Values must be loaded into registers to operate on them

• No instruction directly operates on values in memory

register description

R0 to R10 Used for arguments

R13 Stack-Pointer

R14 Link-Register

R15 Program-Counter

Tab. 1: ARM-Registers.

7



Return-to-Zero-Protection

ROPs mustn‘t change adresses and depend from compiler-options

• Presented by Itzhak Avraham in 2009

• Applies ret2libc to ARM

ldm sp, r0 , r1

add sp, sp, #12

pop lr

bx lr

sub sp, fp, #4

pop{fp, pc}

• First ROP gadget can be used for loading arguments

• Adresses of gadgets and used arguments have to be placed at the right place on stack

8



ROP chains on AVR

Trough a ROP chain also a code-injection can be performed on 

AVRs with a bootloader

First published worm for Wireless-Sensor-Network (ATmega128s) by Franc Aurellion (2010): 

• IP packets with malicious code send to node

• Last packet causes overflow and places ROP-chain on stack

• ROP-chain consists of SPM instruction and copies bytes from data to program memory

• Compromised node sends same packets to next node

9



02

Reverse-Engineering
Software- and Hardware



Reverse-Engineering

• Competitor can copy functionalities

• Attacker can create a malicious firmware (and resell the device)

Software:

• can be searched for vulnerabilities

• Functionalities or security-related routines can be analyzed

Hardware:

• Sniffing on Bus to get (more) information

• Dump memory directly from the device

Reverse-Engineering is essential for finding security issues or creating exploits

11



Firmware Analysis

Through Firmware Analysis software components

can be identified and analyzed

• Firmware contains all software-components of an embedded-device (Bootloader, Kernel, 

Filesystem…)

• Signatures for headers or components can be identified

• filesystem can be searched for passwords, API keys, private certificates or be backdoored

• Individual binaries or fimware itself can be emulated with Qemu and GDB

=> Firmware-Modification-Kit and Firmware-Analysis-Tool can automate process

12



To avoid reverse-engineering firmware is usually obfuscated

Fig. 3: Firmware scan and filesystem-extraction

Firmware Analysis

13



Dissasembling

• Architecture can be identified

• used instructions can be analyzed

• function calls and program-flow can

be traced with known entry-point

 IDA or Radare can automate

and visualize part of this

process

Through dissasembling an attacker can search for backdoors or

identifying and bypassing security-related functions

Fig. 4: Dissasembled Deobfuscation-Routine with IDA

14



Using hardware interfaces

Logic-Analyzer:

• Can be used to identify protocols and connectors

• Can be used to sniff on Bus lines as SPI connection between CPU and 

external Memories

Dumping flash:

• Through JTAG or SPI (connectors)

• Desoldering the Chip and read-out with programming device

External interfaces or components are additional target surfaces

Fig. 5: Captured transmission of UART-interface with a Logic-Analyzer (example).

15



03

Fault-Injections
Overclock- and Powerglitch



Overclock-Glitch

• Frequency of clock is increased for a short period of time

• Frequency has to be a factor of max. specified by manufacturer

 Used by Chris Gerlinsky in 2010 to skip Copy-Read-Protection on LPC-series

With an overclock glitch instructions can be skipped

Fig. 6: One glitched and normal clock-pulse for ATmega128P.

17



Glitches affect a wide range of uCs and are cheap to perform

Power-Glitch

• Supply voltage is changed rapidly

• Can affect Amplitude change in variable time

 On Atmega128P can be performed by turning suppy on- and off at 12Mhz

Fault-Injections

• Timing- and sidechannelanalysis are required

• Can be done randomly while monitoring interfaces

 FPGAs are cheap tools for glitches against uCs as they can reach higher frequencies

18

Fault-Injections



04

Analyzing Signals with SDR



Software-Defined-Radios and wireless

transmission

• Hardware takes only care of receiving and transmitting signals

• Signal processing itself is done by soft- or firmware

• Many Open-Source available

SDRs allow flexible and fast analysis of different wireless signals

with the same device

Fig. 6: Common modulations for wireless-transmission.

Amplitude-Shift-Keying Frequency-Shift-Keying

20



Capturing and Replaying a Signal

Requirements for capturing a signal

• Frequency

• Bandwith and Sample-Rate

• Frequency or Channel-hopping

Requirements for blind replaying a signal

• Captured or recorded signal

• SDR with transmit capability

• Proper Software (ex.: GNURadio)

21

Simple replay-attacks affect garage-openers, wireless-bells or

simple sensor-nodes

Fig. 7: GNURadio.Flowgraph for recording and replaying a Signal.

RX TX



Analyzing Signals

Requirements spoofing commands

• Modulation of signal

• Data/Symbol-rate

• protocol-analysis

With demodulated signal further protocol-

analysis can be performed and data as

ASCII or HEX extracted

22

For non-standarized protocols manual analysis has to be

performed

Selected security-related SDR Open-Source 

(for standarized) wireless-protocols²:

• ble_dump

• SecBee (based on killerbee)

• EZ-Wave

• GPS-SDR-SIM

• OpenBTS, OpenLTE

2: on GitHub available



Demodulating a signal

Fig. 10: Demodulation of recorded

presenter-control with dspectrum

23

Unencrypted (simple) wireless-transmission can be broken in a 

short time

Fig. 9: Spectrum while up-Button of presenter is pressed.



Demodulating a signal

Fig. 10: Demodulation of recorded

presenter-control with dspectrum

24

Unencrypted (simple) wireless-transmission can be broken in a 

short time

Fig. 9: Spectrum while up-Button of presenter is pressed.



06

Conclusion



Conclusion

• Vectors can be used independently or be combined

• Many Open-Source-Software available keeping time expenditure low

• Inexpensible Hardware for hardware or wireless related attacks

• Fully implemented mitigations would make devices too expensive

Security-Analysis of IoT Devices is recommended

26



Questions & Answers


