

Mitigation of actual CPU attacks A hare and hedgehog race not to win

09.08.2018

Jens Nazarenus

Conference 4th WAMOS 2018

Recap '18	Meltdown	Spectre	RISC-V	Conclusion	Literature
000	00000000	00000000	00000000		0000
TOC					

- 1. Recap '18
- 2. Meltdown
- 3. Spectre
- 4. RISC-V
- 5. Conclusion
- 6. Literature

RECAP '18

Recap '18	Meltdown	Spectre	RISC-V	Conclusion	Literature
○●○	00000000	0000000	00000000		0000
RECAP '1	8				

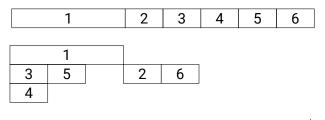
01/04/18	Meltdown
	Spectre variant 1
	Spectre variant 2
01/25/18	Retpoline (Spectre variant 2)
01/28/18	KAISER / KPTI
02/07/18	Kernel patches (Spectre variant 1)
03/27/18	Branchscope
05/22/18	Spectre variant 3
	Spectre variant 4
07/10/18	Bounds check bypass store

Recap ′18	Meltdown	Spectre	RISC-V	Conclusion	Literature
○O●	00000000	0000000	00000000		0000
RFCAP '1	8				

01/04/18	Meltdown
	Spectre variant 1
	Spectre variant 2
01/25/18	Retpoline (Spectre variant 2)
01/28/18	KAISER / KPTI
02/07/18	Kernel patches (Spectre variant 1)
03/27/18	Branchscope
05/22/18	Spectre variant 3
	Spectre variant 4
07/10/18	Bounds check bypass store

MELTDOWN

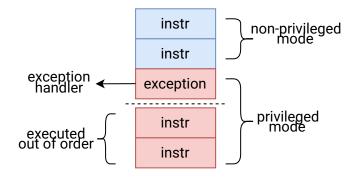
Recap '18 000	Meltdown ○●○○○○○○	Spectre 0000000	RISC-V	Conclusion	Literature 0000
MELTDO	WN				


- 1 raise_exception();
- $_2$ // the next line is never reached
- access(probe_array[data * 4096]);
 - \rightarrow Execute (3) out-of-order
 - \rightarrow Perform Cache-based side-channel attack

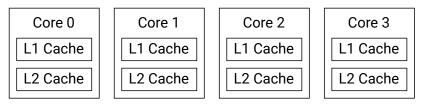
Recap '18	Meltdown	Spectre	RISC-V	Conclusion	Literature
000	○○●○○○○○	0000000	00000000		0000
OUT-OF-I	ORDER EXEC	CUTION			

- $\rightarrow\,$ CPU design paradigm to increase performance
- \rightarrow Increases "Instructions per clock cycle" (IPC)
- \rightarrow Does not preserve logical program order

Recap '18 000	Meltdown 000e0000	Spectre 00000000	RISC-V	Conclusion	Literature 0000


OUT-OF-ORDER EXECUTION

clock cycles


Recap '18 000	Meltdown ○○○○●○○○○	Spectre 0000000	RISC-V 00000000	Conclusion	Literature
MELTDO	WN				

- 1 raise_exception();
- 2 // the next line is never reached
- access(probe_array[data * 4096]);

Recap '18 000	Meltdown ○○○○●○○	Spectre 0000000	RISC-V 00000000	Conclusion	Literature
CACHE	HIERARCHY				

- \rightarrow Small storages
- $\rightarrow\,$ Holds copies of recently used memory
- → Fast access time

L3 Cache

Recap '18	Meltdown ○○○○○●○	Spectre 00000000	RISC-V 00000000	Conclusion	Literature

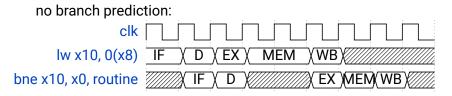
CACHE-BASED SIDE-CHANNEL ATTACKS

- \rightarrow Flush+Reload
- \rightarrow Flush cache line in hierarchy
- \rightarrow Wait for a specified time
- $\rightarrow\,$ Reload memory line
 - → Fast: Victim accessed memory
 - → Slow: Victim did not accessed memory
- $\rightarrow\,$ Spectre / Meltdown use Flush+Reload to access private data

Recap '18	Meltdown	Spectre	RISC-V	Conclusion	Literature
000	○○○○○○●	0000000	00000000		0000
MITIGAT	ION: KAISER				

- \rightarrow Problem: Kernel mapped 1:1 into process page table
- $\rightarrow\,$ Solution: Split tables
- $\rightarrow~$ It is not possible to access kernel space anymore
- \rightarrow Merged with Linux kernel 4.15

Recap '18	Meltdown	Spectre	RISC-V	Conclusion	Literature
000	00000000	••••••	00000000		0000
SPECTRE					


- $\rightarrow\,$ Variant 1: bounds check bypass
- \rightarrow Variant 2: branch target injection

Recap '18 000	Meltdown 00000000	Spectre ○○●○○○○○	RISC-V 00000000	Conclusion	Literature
SPECUL	ATIVE EXECL	JTION			

- \rightarrow Branch prediction
- \rightarrow Motivation?

Recap '18 000	Meltdown 00000000	Spectre	RISC-V 00000000	Conclusion	Literature
BRANCH	I PREDICTION	V			

- 1 lw x10, 0(x8)
- 2 bne x10, x0, routine
- 3 j x1 // ra

with branch prediction:

Recap '18	Meltdown	Spectre	RISC-V	Conclusion	Literature
000	00000000	○○○○●○○○	00000000		0000
BRANCH	PREDICTION	V			

- \rightarrow If guessed wrong: Rollback instructions
- \rightarrow But cache changes remain

Recap '18	Meltdown 00000000	Spectre	RISC-V 00000000	Conclusion	Literature 0000
SPECTRE					

- $\rightarrow\,$ Conditional jump gets mispredicted
- \rightarrow array1[x] gets evaluated (because of condition)

k

$$\rightarrow$$
 Try to read array2[array1[x] * 256]

- \rightarrow Rollback instructions
- $\rightarrow\,$ Flush+Reload: Timing differences of <code>array2</code>.

Recap '18 000	Meltdown 0000000	Spectre ○○○○○●○	RISC-V 00000000	Conclusion	Literature
MITIGAT	ION: RETPOL	INE			

- → Problem: Indirect branches
- $\rightarrow\,$ Look in register ${\rm x}$ and jump to this address
- 1 jmp *%rax
- 1 call load_label
 2 capture_ret_spec:
 3 pause ; lfence
 4 jmp capture_ret_spec
 5 load_label:
 6 mov %rax, (%rsp)
 7 ret

Recap '18	Meltdown 00000000	Spectre ○○○○○○●	RISC-V 00000000	Conclusion	Literature 0000
MITIGAT	ION: RETPOL	_INE			

- $\rightarrow\,$ Recompilation necessary
- $\rightarrow\,$ Merged with GCC 7.3
- $\rightarrow\,$ "007" improved Retpoline with minimal overhead

Recap '18	Meltdown	Spectre	RISC-V	Conclusion	Literature
000	0000000	0000000	0000000	00	0000

THE HARE AND THE HEDGEHOG

Gustav Süs, 1855, gemeinfrei

Recap '18	Meltdown	Spectre	RISC-V	Conclusion	Literature
000	00000000	0000000	○○●○○○○○		0000
RECAP '18	B				

01/04/18	Meltdown
	Spectre variant 1
	Spectre variant 2
01/25/18	Retpoline (Spectre variant 2)
01/28/18	KAISER / KPTI
02/07/18	Kernel patches (Spectre variant 1)
03/27/18	Branchscope
05/22/18	Spectre variant 3
	Spectre variant 4
07/10/18	Bounds check bypass store

Recap '18 000	Meltdown 00000000	Spectre 0000000	RISC-V ○○○●○○○○	Conclusion	Literature
MITIGAT	ION ≠ FIX				

- $\rightarrow\,$ CPU is an integrated circuit:
 - $\rightarrow~$ Only semiconductors can fix them
- $\rightarrow\,$ While there are no hardware fixes:
 - $\rightarrow~$ Software mitigation to protect data

Recap '18	Meltdown 0000000	Spectre 0000000	RISC-V ○○○○●○○○○	Conclusion	Literature 0000
MITIGAT	ION \neq FIX				

- $\rightarrow\,$ Developers chase the same hedgehog again and again
- \rightarrow How can the hare win the race?

Recap '18	Meltdown	Spectre	RISC-V	Conclusion	Literature
000	00000000	0000000	○○○○○●○○		0000
RISC-V					

- \rightarrow Open source Instruction set architecture (BSD license)
- $\rightarrow\,$ Developed at the University of California, Berkeley
- \rightarrow Free Software implementations available
 - → https://github.com/freechipsproject/rocket-chip
 - → https://github.com/SpinalHDL/VexRiscv

Recap '18	Meltdown	Spectre	RISC-V	Conclusion	Literature
000	00000000	0000000	○○○○○○●○		0000
RISC-V					

- \rightarrow Open-source development at GitHub
- \rightarrow Frameworks for formal verification (RVFI)

Recap '18	Meltdown	Spectre	RISC-V	Conclusion	Literature
000	00000000	0000000	○○○○○○○●		0000
HIFIVE1					

- \rightarrow RISC-V based SoC
- $\rightarrow\,$ RISC-V CPU rocket-chip, which is free software

© SiFive, Inc.

CONCLUSION

Recap '18	Meltdown	Spectre	RISC-V	Conclusion	Literature
000	00000000	0000000	00000000	○●	0000
CONCLU	SION				

- \rightarrow More and more CPU vulnerabilities
- $\rightarrow\,$ Huge time investment for mitigations
- $\rightarrow\,$ Free software RISC-V implementations as an alternative

LITERATURE

Recap '18	Meltdown	Spectre	RISC-V	Conclusion	Literature
000	0000000	00000000	0000000	00	0000

D. Gruss, M. Lipp, M. Schwarz, R. Fellner, C. Maurice, and S. Mangard.

KASLR is Dead: Long Live KASLR, volume 10379 LNCS of Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pages 161–176. Springer-Verlag Italia, Italy, 2017.

 P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom. Spectre attacks: Exploiting speculative execution. ArXiv e-prints, Jan. 2018.

Recap '18	Meltdown	Spectre	RISC-V	Conclusion	Literature
000	0000000	00000000	00000000	00	0000

 M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg. Meltdown. ArXiv e-prints, Jan. 2018.

- D. A. Patterson and J. L. Hennessy. Computer Architecture: A Quantitative Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1990.
- Y. Yarom and K. Falkner.
 Flush+reload: A high resolution, low noise, l3 cache side-channel attack.
 In 23rd USENIX Security Symposium (USENIX Security 14), pages 719–732, San Diego, CA, 2014. USENIX Association.

Recap '18	Meltdown	Spectre	RISC-V	Conclusion	Literature
000	00000000	0000000	00000000		○○○●
ΤY					

Thank you for listening.