
Current state of mitigations for Spectre within
operating systems

Ben Stuart
August 9, 2018

Fachbereich DCSM
M.Sc. Informatik
Hochschule RheinMain
WAMOS 2018



Outline

1. Introduction

2. Spectre-based attacks

3. Mitigation strategies

4. Current state

5. Conclusion



Introduction



Introduction i

Key Questions:

• What is Spectre-based attack?
• How can we mitigate it?
• Who is effected?

In particular, how did the operating systems mitigate?



Introduction ii

This presentation will not cover:

• Processor vendor mitigations (microcode).
• Detailed internals of a branch predictor.
• Detailed Spectre attack setup.



Spectre-based attacks



Spectre-based attacks i

Goal
Exploit speculative execution to leak sensitive information.

Spectre has two variants with different chances and behavior:

Variant 1 Bound check bypass of a buffer to leak sensitive
information of the system [4].

Variant 2 Mistrain the branch predictor to jump to arbitrary
locations [2].



Spectre-based attacks ii

Variant 1

• The attacker can provide a malicous chosen offset [4].
• Extract data from the cache [4].

Variant 2

• The attacker can mistrain the branch predictor [4].
• Use gagdets to extract information [2].



Mitigation strategies



Mitigation strategies

Several strategies are viable:

• Utilize the compiler.
• Rely on microcode mitigations.
• Use external static analysis.
• OS apply mitigations.
• (Apply mitigation patches by hand.)

The chosen strategy should be easy to implement!



Mitigation options

The Mitigations options can be put into several categories [4]:

• Prevent speculative execution.
• Prevent access to secret data.
• Prevent branch poisoning.
• Prevent data from entering a covert channel.
• Limit data extraction from a covert channel.

− Preventing speculative execution overall is the least attractive
choice.

+ Preventing branch poisoning and prevent the access to secret
data is viable.



Mitigation Variant 1: Non-speculative-array-access

Goal: The ability to detect and limit the scope of harm of
speculative execution.

1. Ensure no out-of-bounds data is accessed.
2. Detect a speculative execution.

1 unsigned long mask = ~(long)(offset | (size - 1 - offset))
2 >> (BITS_PER_LONG - 1);
3 // Additional mask checks
4 // ...
5 return array[offset & mask];



Mitigation variant 1: GCC Built-in functions

GCC provides the built-in function
__builtin_speculation_safe_value [1].

Additional benefits
It uses previous mitigation to detect speculative execution paths on
a greater scale. Use register to track, if a speculative execution
occurred and provide a fallback [1].



Mitigation Variant 2: Retpoline i

Idea
Inspired by return-orientated-programming: setup an infinite loop
to capture speculative execution [5].

The retpoline has two variants:

• Indirect branch.

• Indirect Call.

The retpoline can be shared e.g. functions.



Retpoline ii

jmp *%r11

call set_up_target;
capture_spec:

pause;
jmp capture_spec;

set_up_target:
mov %r11, (%rsp);
ret;

• Instead of jumping to the
location of %r11.

• Call set_up_target and override
the return address.

• Speculative Execution will be
trapped within capture_spec.

• The call instruction
manipulated the
return-stack-buffer of the
branch predictor.



Current state



Current State

Mitigation Overview:

OS Variant 1 Variant 2
Microsoft Microcode Microcode
Linux non-speculative-array Retpoline + lfence-instruction



Performance

Experience Reports

Microsoft mostly uses microcode mitigations and claims variant
1 has no impact on performance. They provide an
unrealiable mitigation for variant 1 via Visual
C++ [3].

Red Hat Linux Retpoline in combination with microcode
mitigation caused system instabilities [6]. Variant 1
mitigations 1 caused no performance penalty.

Google Uses the retpoline mitigation on their servers. User
reports indicated no performance hit [7].



Conclusion



Conclusion

• Software based solutions seem to properly mitigate the first
two Spectre attacks.

• Unclear, whether this mitigations open up other exploits.



Thank you for your attention!

16



References i

Corbet, J., July 2018.

Jann Horn, P. Z.
Reading privileged memory with a side-channel, January
2018.
Kocher, P.
Spectre mitigations in microsoft’s c/c++ compiler,
February 2018.

17



References ii

Kocher, P., Genkin, D., Gruss, D., Haas, W.,
Hamburg, M., Lipp, M., Mangard, S., Prescher, T.,
Schwarz, M., and Yarom, Y.
Spectre attacks: Exploiting speculative execution.
ArXiv e-prints (Jan. 2018).

Paul Turner, Senior Staff Engineer, T. I.
Retpoline: a software construct for preventing
branch-target-injection, 2018.

RedHat, April 2018.

Sloss, B. T., Jan 2018.

18


	Introduction
	Spectre-based attacks
	Mitigation strategies
	Mitigation options

	Current state
	Performance

	Conclusion

