
16.11.2018
HYPERVISOR DETERMINISM ON MODERN SOC
Robert Kaiser · Computer Engineering · RheinMain University of Applied Sciences

01
INTRODUCTION

2 / 51

WHY HYPERVISORS IN EMBEDDED
SYSTEMS

▶ Origin: Server consolidation → also useful for complex
embedded systems for:

▶ Safety:
▶ Mixed criticality systems
▶ Software redundancy (e.g. multi version dissimlar code)
▶ Online monitoring (e.g. for graceful degradation)

▶ Security:
▶ MILS Systems
▶ Online monitoring (e.g. for intrusion detection)

▶ Efficiency: Improve resource utilization
▶ Combine different levels of real-time requirements
▶ (Legal reasons: License isolation)

3 / 51

A HYPERVISOR PROVIDES ...

▶ ... multiple instances of the
underlying physical machine

▶ ... each with its own subset
of system resources
(→ isolated and independent)

▶ ... each can run its own
specialised OS w/ apps

▶ Sole mandatory trusted code
for all: the hypervisor

VM #1 VM #2 VM #3

Hypervisor

Hardware (SoC)

4 / 51

A HYPERVISOR PROVIDES ...

▶ ... multiple instances of the
underlying physical machine

▶ ... each with its own subset
of system resources
(→ isolated and independent)

▶ ... each can run its own
specialised OS w/ apps

▶ Sole mandatory trusted code
for all: the hypervisor

VM #1 VM #2 VM #3

Hypervisor

Hardware (SoC)

CPU: 20% CPU: 30% CPU: 30%

Mem: 10% Mem: 80% Mem: 10%

4 / 51

A HYPERVISOR PROVIDES ...

▶ ... multiple instances of the
underlying physical machine

▶ ... each with its own subset
of system resources
(→ isolated and independent)

▶ ... each can run its own
specialised OS w/ apps

▶ Sole mandatory trusted code
for all: the hypervisor

VM #1 VM #2 VM #3

Hypervisor

Hardware (SoC)

CPU: 20% CPU: 30% CPU: 30%

Mem: 10% Mem: 80% Mem: 10%

4 / 51

A HYPERVISOR PROVIDES ...

▶ ... multiple instances of the
underlying physical machine

▶ ... each with its own subset
of system resources
(→ isolated and independent)

▶ ... each can run its own
specialised OS w/ apps

▶ Sole mandatory trusted code
for all: the hypervisor

VM #1 VM #2 VM #3

Hypervisor

Hardware (SoC)

CPU: 20% CPU: 30% CPU: 30%

Mem: 10% Mem: 80% Mem: 10%

4 / 51

A HYPERVISOR PROVIDES ...

▶ ... multiple instances of the
underlying physical machine

▶ ... each with its own subset
of system resources
(→ isolated and independent)

▶ ... each can run its own
specialised OS w/ apps

▶ Sole mandatory trusted code
for all: the hypervisor

VM #1 VM #2 VM #3

Hypervisor

Hardware (SoC)

CPU: 20% CPU: 30% CPU: 30%

Mem: 10% Mem: 80% Mem: 10%

4 / 51

A HYPERVISOR PROVIDES ...

▶ ... multiple instances of the
underlying physical machine

▶ ... each with its own subset
of system resources
(→ isolated and independent)

▶ ... each can run its own
specialised OS w/ apps

▶ Sole mandatory trusted code
for all: the hypervisor

VM #1 VM #2 VM #3

Hypervisor

Hardware (SoC)

4 / 51

A HYPERVISOR PROVIDES ...

▶ ... multiple instances of the
underlying physical machine

▶ ... each with its own subset
of system resources
(→ isolated and independent)

▶ ... each can run its own
specialised OS w/ apps

▶ Sole mandatory trusted code
for all: the hypervisor

VM #1 VM #2 VM #3

Hypervisor

Hardware (SoC)

4 / 51

HYPERVISOR: DEFINITION

▶ From Wikipedia, paraphrasing [PG74]:
“A virtual machine monitor (VMM, also called hypervisor) is
the piece of software that provides the abstraction of a virtual
machine. There are three properties of interest when analyzing
the environment created by a VMM:“

▶ Equivalence / Fidelity:
“A program running under the VMM should exhibit a behavior
essentially identical to that demonstrated when running on an
equivalent machine directly.“

▶ Resource control / Safety:
“The VMM must be in complete control of the virtualized
resources.“

▶ Efficiency / Performance:
“A statistically dominant fraction of machine instructions must
be executed without VMM intervention.“

5 / 51

“ESSENTIALLY IDENTICAL“ ...

▶ “Any program run under the hypervisor should exhibit an
effect identical with that demonstrated if the program had
been run on the original machine directly, with the possible
exception of differences caused by the availability of system
resources and differences caused by timing dependencies.“

⇒ Determinism is normally not within the scope of Hypervisors.
⇒ Scope of Hypervisors must be extended.

6 / 51

02
REQUIREMENTS AND NON-REQUIREMENTS

7 / 51

FEATURES WE WANT

▶ Safe isolation between VMs
▶ Achieved by resource partitioning

▶ Interaction between VMs
▶ Any interaction must be under hypervisor’s control

▶ Temporal determinism
▶ Requires extension (see above) → subject of this talk

8 / 51

FEATURES WE WANT

▶ Safe isolation between VMs
▶ Achieved by resource partitioning

▶ Interaction between VMs
▶ Any interaction must be under hypervisor’s control

▶ Temporal determinism
▶ Requires extension (see above) → subject of this talk

8 / 51

FEATURES WE WANT

▶ Safe isolation between VMs
▶ Achieved by resource partitioning

▶ Interaction between VMs
▶ Any interaction must be under hypervisor’s control

▶ Temporal determinism
▶ Requires extension (see above) → subject of this talk

8 / 51

FEATURES WE WANT

▶ Safe isolation between VMs
▶ Achieved by resource partitioning

▶ Interaction between VMs
▶ Any interaction must be under hypervisor’s control

▶ Temporal determinism
▶ Requires extension (see above) → subject of this talk

8 / 51

FEATURES WE MAY NOT NEED

▶ Virtual memory
▶ Two aspects: virtual addressing and protection
▶ For partitioning: just having protection suffices
▶ Some low end SoCs lack mapping capability (only MPU)

▶ Dynamic reconfiguration
▶ I.e. changing a VM’s allocated resources at run-time
▶ Live migration
→ Significant complexity in HV and VM
▶ Needed (if at all) only by best effort (non-realtime)VMs

▶ “Standard“ ABI compatibility
▶ e.g. IA32 / 64 / Windows
▶ Often irrelevant for SoCs

9 / 51

03
HYPERVISOR BASICS

10 / 51

HYPERVISOR BASICS: ARCHITECTURAL
CLASSIFICATION

▶ Type 1: Run on bare metal
▶ Classical: Hardware assisted, full virtualization

architecture must be “virtualisable“ (according to [PG74])
▶ Paravirtualisation &

microkernels
Privileged software (kernel)
needs to be adapted

▶ Binary rewriting, aka “just in
time paravirtualisation“:
Full virtualisation for
non-virtualisable architectures

▶ Special cases
e.g. leveraging ARM TrustZone

VM #1 VM #2 VM #3

Hypervisor

Hardware (SoC)

OS

Guest

OS

Guest

OS

Guest

App App App App App App

11 / 51

HYPERVISOR BASICS: ARCHITECTURAL
CLASSIFICATION

▶ Type 2: Run on another OS

▶ One more layer in scheduler
hierarchy → needs to be
controlled for determinism

▶ Benefits for embedded
systems are questionable
(See “Standard“ ABI
compatibility)

VM #1 VM #2

Hardware (SoC)

Host OS

Hypervisor

User space

OS

Guest

OS

Guest

App App App App AppApp

App

App

App App

12 / 51

MICROKERNELS VS. HYPERVISORS

▶ Microkernels: Different origin ...
▶ Minimise privileged (e.g. kernel)

code
▶ Seperate policy from mechanism
▶ IPC as central (only) service

▶ ... but similar results
▶ E.g. the Lites Server [Hel94] and

L4Linux [HHL+97] were
paravirtualised UNIX kernels

Hardware (SoC)

App App App App

µ K

Service

File

Service

Task

Service

I/O

App App

User space

Memory

Service

Device
Driver

▶ Generally more flexible
▶ No significant differences wrt. scheduling / determinism

(however: ongoing attempts to push scheduling policy out of the
kernel [GGB+17])

13 / 51

MICROKERNELS VS. HYPERVISORS

▶ Microkernels: Different origin ...
▶ Minimise privileged (e.g. kernel)

code
▶ Seperate policy from mechanism
▶ IPC as central (only) service

▶ ... but similar results
▶ E.g. the Lites Server [Hel94] and

L4Linux [HHL+97] were
paravirtualised UNIX kernels

Hardware (SoC)

App App App App

µ K

App App

User space User space User space

Lites

Server Server
Linux

Service

RTOS

Lites RTOS Linux

▶ Generally more flexible
▶ No significant differences wrt. scheduling / determinism

(however: ongoing attempts to push scheduling policy out of the
kernel [GGB+17])

13 / 51

MICROKERNELS VS. HYPERVISORS

▶ Microkernels: Different origin ...
▶ Minimise privileged (e.g. kernel)

code
▶ Seperate policy from mechanism
▶ IPC as central (only) service

▶ ... but similar results
▶ E.g. the Lites Server [Hel94] and

L4Linux [HHL+97] were
paravirtualised UNIX kernels

Hardware (SoC)

App App App App

µ K

App App

User space User space User space

Lites

Server Server
Linux

Service

RTOS

Lites RTOS Linux

▶ Generally more flexible
▶ No significant differences wrt. scheduling / determinism

(however: ongoing attempts to push scheduling policy out of the
kernel [GGB+17])

13 / 51

HYPERVISOR CPU ALLOCATION

▶ 1. Static allocation of CPUs to VMs
▶ Hardware as well as software solutions exist

No1 or very little software required
No Very little interference between
VMs (e.g. system bus / L3 cache
may still be shared)
No CPU sharing between VMs

→ Uniprocessor scheduling theory
directly applicable

→ Easy to mix real-time and
non-realtime VM payloads

VM #1 VM #2 VM #3

Physical CPUs

 (pCPUs)

Static CPU allocation

Multiprocessor

OS

Multiprocessor

OS

Uniprocessor

OS

Amenable to heterogenous multicore SoCs
Inflexible: #Cores ≥ #VMs → Can lead to poor utilization
Sharing, if needed, can be difficult

1for hardware solutions 14 / 51

HYPERVISOR CPU ALLOCATION

▶ 2. Hierarchical scheduler
▶ Dynamic allocation of cores to VMs

More flexible
Controlled sharing of CPU and
other resources possible
Better utilisation of resources
Applicable to uniprocessor systems
More interference between VMs
Scheduling needs more
consideration

VM #1 VM #2 VM #3

Scheduler

Local

Scheduler

Local

Scheduler

Local

Global Scheduler

15 / 51

04
HYPERVISOR SCHEDULING

16 / 51

TIME FROM A VM’S POINT OF VIEW

▶ Computation time and observed “wall clock time“ differ
▶ Slowdown due to virtualization (e.g. trap & emulate)

▶ Makes virtual processor run slower
▶ Compensate by allocating more budget
→ No problem for determinism

▶ Slowdown due to sharing of CPU with other VMs
▶ Causes “Blackouts“

(CPU not available when VM has work to do)
▶ Need to adapt hypervisor scheduling to either avoid or cope

▶ Slowdown due to pollution of shared Caches / TLBs
by other VMs

▶ Makes virtual processor run slower following VM switch
▶ Effect decays as CPU is “owned“ by VM for some time
▶ May also leak information about other VM (covert channel)
▶ Need to adapt hypervisor scheduling to either avoid or cope

17 / 51

TIME FROM A VM’S POINT OF VIEW

▶ Computation time and observed “wall clock time“ differ
▶ Slowdown due to virtualization (e.g. trap & emulate)

▶ Makes virtual processor run slower
▶ Compensate by allocating more budget
→ No problem for determinism

▶ Slowdown due to sharing of CPU with other VMs
▶ Causes “Blackouts“

(CPU not available when VM has work to do)
▶ Need to adapt hypervisor scheduling to either avoid or cope

▶ Slowdown due to pollution of shared Caches / TLBs
by other VMs

▶ Makes virtual processor run slower following VM switch
▶ Effect decays as CPU is “owned“ by VM for some time
▶ May also leak information about other VM (covert channel)
▶ Need to adapt hypervisor scheduling to either avoid or cope

17 / 51

EFFECT ON LATENCY

▶ Real-time process running in VM may experience a “blackout“
▶ Worst case delay: ∆tdelj = ∆tsw +

∑
i ̸=j ∆evmi +∆tsw

c iri

ri c i

swt∆ swt∆

∆ vmp

swt∆
e∆

vm0
e∆

vm1
e∆

vm2
e∆

vm0

VM0 VM1 VM2 VM0

∆e
i

swt∆

Running on
phys. machine

Running in VM0
(worst case)

⇒ Imposed jitter/delay is severe, but bounded
18 / 51

EFFECT ON LATENCY

▶ Real-time process running in VM may experience a “blackout“
▶ Worst case delay: ∆tdelj = ∆tsw +

∑
i ̸=j ∆evmi +∆tsw

c iri

ri c i

swt∆ swt∆

∆ vmp

swt∆
e∆

vm0
e∆

vm1
e∆

vm2
e∆

vm0

VM0 VM1 VM2 VM0

∆e
i

swt∆

"Blackout"

Running on
phys. machine

Running in VM0
(worst case)

⇒ Imposed jitter/delay is severe, but bounded
18 / 51

EFFECT ON LATENCY

▶ Real-time process running in VM may experience a “blackout“
▶ Worst case delay: ∆tdelj = ∆tsw +

∑
i ̸=j ∆evmi +∆tsw

c iri

ri c i

swt∆ swt∆

∆ vmp

swt∆
e∆

vm0
e∆

vm1
e∆

vm2
e∆

vm0

VM0 VM1 VM2 VM0

∆e
i

swt∆

"Blackout"

Running on
phys. machine

Running in VM0
(worst case)

⇒ Imposed jitter/delay is severe, but bounded
18 / 51

LOCK HOLDER PREEMPTION PROBLEM

▶ Cause: Virtual CPU (vCPU) being preempted while holding a
spinlock

▶ Guest OS is unaware of vCPU ↔ pCPU mapping
▶ May cause excessive CPU waste
▶ Similar to priority inversion problem

VM0,vCPU2 VM0,vCPU2VM1, ..

.....................

.....................

VM0, vCPU0 VM0, vCPU1 VM0, vCPU0 VM1..

VM1, ..

pCPU1

pCPU0

Lock acquired

Lock released

Lock contended Preempted when lock held

Critical section Busy−waiting

▶ Countermeasures:
▶ “Helping“ [FB08]: complex interaction patterns
▶ At VM scheduler level: always co-schedule VMs

19 / 51

LOCK HOLDER PREEMPTION PROBLEM

▶ Cause: Virtual CPU (vCPU) being preempted while holding a
spinlock

▶ Guest OS is unaware of vCPU ↔ pCPU mapping
▶ May cause excessive CPU waste
▶ Similar to priority inversion problem

VM0,vCPU2 VM0,vCPU2VM1, ..

.....................

.....................

VM0, vCPU0 VM0, vCPU1 VM0, vCPU0 VM1..

VM1, ..

pCPU1

pCPU0

Lock acquired

Lock released

Lock contended Preempted when lock held

Critical section Busy−waiting

▶ Countermeasures:
▶ “Helping“ [FB08]: complex interaction patterns
▶ At VM scheduler level: always co-schedule VMs

19 / 51

05
HYPERVISOR SCHEDULERS

20 / 51

PROPORTIONAL SHARE SCHEDULING

▶ Default strategy with most
hypervisors:

▶ Pfair / proportional share
scheduling

▶ VMs receive share
(percentage) of CPU(s)

▶ Idealised assumption:
VM “sees“ slower CPU,
available at any time

VM #1 VM #2 VM #3

Scheduler

Local

Scheduler

Local

Scheduler

Local

Global Scheduler

→ Slowdown can (in theory) be compensated by allocating
sufficient budget

21 / 51

PROPORTIONAL SHARE SCHEDULING

▶ Default strategy with most
hypervisors:

▶ Pfair / proportional share
scheduling

▶ VMs receive share
(percentage) of CPU(s)

▶ Idealised assumption:
VM “sees“ slower CPU,
available at any time

VM #1 VM #2 VM #3

Scheduler

Local

Scheduler

Local

Scheduler

Local

Global Scheduler

CPU: 30%CPU: 30%CPU: 20%

→ Slowdown can (in theory) be compensated by allocating
sufficient budget

21 / 51

PROPORTIONAL SHARE SCHEDULING

▶ Default strategy with most
hypervisors:

▶ Pfair / proportional share
scheduling

▶ VMs receive share
(percentage) of CPU(s)

▶ Idealised assumption:
VM “sees“ slower CPU,
available at any time

VM #1 VM #2 VM #3

Scheduler

Local

Scheduler

Local

Scheduler

Local

Global Scheduler

CPU: 30%CPU: 30%CPU: 20%

→ Slowdown can (in theory) be compensated by allocating
sufficient budget

21 / 51

PROPORTIONAL SHARE SCHEDULING

▶ Idealised situation ...
▶ ... is approximated
▶ Precision increases

with frequency
▶ Limited by switch cost

VM

exec time VM

VM

CPU share

wallclock time

2

1

66%

33%

▶ Rule of thumb: Switch frequencies above 1-10kHz
lead to excessive overhead

→ Applicable to best effort and “slow“ real-time systems

22 / 51

PROPORTIONAL SHARE SCHEDULING

▶ Idealised situation ...
▶ ... is approximated
▶ Precision increases

with frequency
▶ Limited by switch cost

wallclock time

VM

VM

1

2

active VM

VM

exec time 1

2

▶ Rule of thumb: Switch frequencies above 1-10kHz
lead to excessive overhead

→ Applicable to best effort and “slow“ real-time systems

22 / 51

PROPORTIONAL SHARE SCHEDULING

▶ Idealised situation ...
▶ ... is approximated
▶ Precision increases

with frequency
▶ Limited by switch cost

VM

exec time VM

VM

active VM

2

1

wallclock time

2

1

▶ Rule of thumb: Switch frequencies above 1-10kHz
lead to excessive overhead

→ Applicable to best effort and “slow“ real-time systems

22 / 51

PROPORTIONAL SHARE SCHEDULING

▶ Idealised situation ...
▶ ... is approximated
▶ Precision increases

with frequency
▶ Limited by switch cost

VM

exec time VM

VM

active VM

2

1

wallclock time

2

1

▶ Rule of thumb: Switch frequencies above 1-10kHz
lead to excessive overhead

→ Applicable to best effort and “slow“ real-time systems

22 / 51

PROPORTIONAL SHARE SCHEDULING

▶ Idealised situation ...
▶ ... is approximated
▶ Precision increases

with frequency
▶ Limited by switch cost

VM

exec time VM

VM

active VM

2

1

wallclock time

2

1

▶ Rule of thumb: Switch frequencies above 1-10kHz
lead to excessive overhead

→ Applicable to best effort and “slow“ real-time systems

22 / 51

PROPORTIONAL SHARE SCHEDULING

▶ Shortcomings from a real-time perspective:
▶ Scheduler is work conserving: idle VMs give up their time slice

▶ Makes actual allocation unpredictable
▶ Breaks (to some extent) VM isolation by opening covert

channels
▶ Generally no admission test

→ per VM absolute budget could change at any time

▶ Targeted at best effort, greedy VMs

23 / 51

TIME PARTITIONING

VM1 VM2 VM1 VM1 VM1

Time

id
leVM2

repeat
VM2

Major Time Frame

Activation Duration

▶ VMs have statically configured time slots (durations) within
periodic major time frame

▶ (Different modes are possible)
▶ Time slots are enforced: exceeding budget is a violation
▶ Non-work conserving: VMs must “burn“ budget when idle
▶ Simple enough for formal reasoning
▶ Targeted at real-time systems

24 / 51

PIKEOS SCHEDULER [KF14]

▶ Assign priority ranges to VMs
▶ Assign time domains2 (τi)

to VMs
▶ A VM is scheduled iff

▶ it has the highest priority,
and

▶ its time domain is active

prio

prio

prio

τ
0

τ
1

τ
N−1

.................

.............

.....

.....

.............

.....

.....

.............

.....

.....

0

1

2

N−2
.....

N−1

Ready queues

(t)σvm

dispatchprio>?

▶ Up to two time domains can be active at a time:
▶ τ0: background domain, always active
▶ τi, i = 1..N: foreground domain, switched by partition schedule

▶ VMs from foreground or background domain selected by priority
▶ Guaranteed time partitioning, but also work conserving:
▶ Over-allocated budget not used by high priority, foreground real-time

VMs falls back to low priority, background best-effort VMs

2(represented by a set of ready queues, one per priority) 25 / 51

06
HIERARCHICAL SCHEDULING

26 / 51

SUPPORTING DIFFERENT VM CLASSES

▶ VM scheduler must be aware of the nature of task sets
executing in a VM

▶ Real-time: must or should 3 meet deadlines
▶ Two subclasses:

▶ Time-driven: static schedule, typically periodic
▶ Event-driven: scheduled in response to (unpredictable) events,

(assumed to be sporadic)
▶ Non real-time (best effort): no need to meet deadlines,

instead: try to utilise all resources (“greedy“)
▶ Assumption: Each class uses a specific OS API
⇒ Guests and their VMs as a whole can be classified as one of:

1. Time-driven, real-time (TRT)
2. Event-driven, real-time (ERT)
3. Non real-time (NRT)

▶ VM scheduler must guarantee sufficient resources for all
real-time guests

3“must“ = “hard“, “should“ = “soft“ real-time 27 / 51

SUPPORTING TIME-DRIVEN VMS

▶ Cause of VM delay: VMM schedule
and local schedules not correlated

⇒ Synchronise VMM schedule and
local schedules of time-driven VMs

▶ Define VMM schedule to “enclose“
all time-driven local schedules

▶ Restrictions:
▶ Local schedules must not overlap
▶ Local schedules must use same

(or harmonic) periods
▶ Low jitter (e.g. for PLCs)

1

2

3

(t)
1

(t)
2

3

2

1

t

t

t

(t)
3

3

2

1

(t)
vm

3

2

1

t

σ

σ

σ

σ

Resulting ”super schedule” is strictly a function of time

28 / 51

SUPPORTING EVENT-DRIVEN VMS

▶ Event-driven VMs need access to CPU at arbitrary times
⇒ Need ability to preempt current VM
▶ Conflicts with time-driven VMs
▶ Two choices:

▶ Give event-driven VMs precedence over time-driven VMs
→ Time-driven VMs experience jitter and delays

▶ Give time-driven VMs precedence over event-driven VMs
→ Event-driven VMs are delayed

▶ Classical dilemma: no generic solution (for uniprocessor
architectures)

▶ Approach must be flexible enough to allow both choices on a
case by case basis

▶ How to derive necessary period/budget for real-time VMs?
29 / 51

PROXY MODEL

▶ VM’s point of view:
1. P = {1, .., n}: Set of

periodic tasks with:
- Execution time ∆ei
- Period ∆pi

2. Scheduled, e.g. by
RMS (fixed prio)

,[]∆ ei ∆ pi

....
RMS

Global Scheduler

▶ Abstraction: equivalent representation at the hypervisor level:
one periodic proxy process with parameters ∆eprox, ∆pprox

30 / 51

PROXY MODEL

▶ VM’s point of view:
1. P = {1, .., n}: Set of

periodic tasks with:
- Execution time ∆ei
- Period ∆pi

2. Scheduled, e.g. by
RMS (fixed prio)

....

=

]p∆∆[e ,prox prox
[]∆ ei ∆ pi,

RMS

Global Scheduler Global Scheduler

▶ Abstraction: equivalent representation at the hypervisor level:
one periodic proxy process with parameters ∆eprox, ∆pprox

30 / 51

RMS INTEGRATION

▶ RMS rule:
∆pi > ∆pj ⇔ prio(i) < prio(j)

▶ Concept of the proxy process:
...... δ

∆e
δ

p∆

∆e

prox

prox

VM

1. To guarantee timeliness on the local level, set:
∆pprox ≤ min(∆pi)∀i ∈ P

2. Map the time quantum not used by the proxy to a
“parasite process“ δ, in the worst case of higher priority.

3. Since ∆pδ ≤ ∆pprox ≤ min(∆pi)∀i ∈ P , δ can be added
to the set P as new task having the highest priority.

⇒ RMS remains applicable to new set
31 / 51

RMS INTEGRATION

▶ RMS rule:
∆pi > ∆pj ⇔ prio(i) < prio(j)

▶ Concept of the proxy process:
...... δ

∆e
δ

p∆

∆e

prox

prox

VM

1. To guarantee timeliness on the local level, set:
∆pprox ≤ min(∆pi)∀i ∈ P

2. Map the time quantum not used by the proxy to a
“parasite process“ δ, in the worst case of higher priority.

3. Since ∆pδ ≤ ∆pprox ≤ min(∆pi)∀i ∈ P , δ can be added
to the set P as new task having the highest priority.

⇒ RMS remains applicable to new set
31 / 51

UTILIZATION BOUNDS

Question: What are the lowest upper bounds on utilization of the
process set {δ, 1, ..., n}

▶ Derivation analogous to Liu/Layland (see [KZ09]):

Umin = n ·
(

n

√
2

Uδ + 1
− 1

)
lim

n→∞
Umin = ln

(
2

Uδ + 1

)
▶ Where: Uδ =

∆eδ
∆pprox

is the CPU utilization by the parasite
process δ

32 / 51

POXY TASK PARAMETERS

▶ Proxy period (see above): ∆pprox = min(∆pi)
▶ Proxy execution time:

∆eprox +∆eδ = ∆pprox(see above)

⇒ Uprox =
∆eprox
∆pprox

= 1− Uδ

⇒ ∆eprox = 2 ·∆pprox ·

(
1− 1(U

n + 1
)n

)
lim

n→∞
⇒ ∆eprox = 2 ·∆pprox ·

(
1− e−U)

⇒ Can compute ∆eprox,∆pprox for all VMs using RMS
⇒ Input to global scheduler, planning using RMS or EDF

A similar derivation is also possible for EDF [Kai09]
33 / 51

07
CONTEXT SWITCH COST

34 / 51

SLEDGEHAMMER APPROACH

▶ Estimate switch cost
▶ Describe switch behaviour with a simple

model
▶ ”Calibrate” model with experimentally

gathered data
▶ Cons/Pros:

imprecise
no proof (only empirical evidence)
simple computation
only superficial platform information
required

▶ At any rate: better than neglecting ...

35 / 51

MODEL

▶ Computational Power, or
Progress rate: r(t)

▶ Work (or Service): Wcpu(t)

Wcpu(t1, t2) =
t2∫

t1

r(τ)dτ

▶ Equivalent constant
workload (i.e. r(t) = r̄):

W(t1, t2) = (t2 − t1) · r̄

t1 t2

Wcpu
(t 1 , t2)

r(t)

t

r(t)

t

W(t , t)

t1

1

t2

2

r

36 / 51

SWITCH OVERHEADS
▶ Execution time lost by task

switching
- Activity of other proceses

(not overhead)
- Scheduler activity (Overhead)

▶ Assumption: Fixed scheduler
execution time (= ∆tsw)

⇒ Cost per scheduler invocation:

Wsched = ∆tsw · r̄

▶ On process switch4: more overhead
▶ Both can be accounted to

processes

r(t)

t

W
sched2

W
sched1

∆ t
sw

∆ t
sw

W
vm0

W
vm1

W
vm2

r

r(t)

t
∆ t

sw
∆ t

sw

W
vm0

W
vm1

W
vm2

r

4(Note: Process switch ̸= scheduler invocation) 37 / 51

PROCESS SWITCH COST

▶ Process switch cost: caused by Cache-/TLB-misses
▶ No discrete time window but ”slowdown” of CPU, i.e.

temporarily lowered progress rate

⇒ Cost per process switch:

Wsw(t) = t · r̄ −
t∫

0

rsw(τ)dτ

▶ Relative loss:

Osw(t) = 1− 1

t

t∫
0

rsw(τ)

r̄ dτ
minr

0r

r
maxr

Wsw

ts t0

permanent cache

misses (’’thrashing’’)

no cache missesr

r (t)
sw

Process switch at t = 0

38 / 51

PAYLOAD SHARE

▶ Share of computational power
consumed by payload:

f(t) := rsw(t)
r̄

▶ Thus:

Osw(t) = 1− 1

t

t∫
0

f(τ)dτ ts

0f

1

minf

Worst case: f = f min

t0

f(t)

f Best case: f = 1

Process switch at t = 0

▶ Problem: f(t) is unknown, however
▶ best case: f(t) = 1
▶ worst case: f(t) = fmin > 0
▶ realistic case: somewhere between ..

39 / 51

APPROXIMATING PAYLOAD SHARE

▶ Use time-dependent functions f(t), e.g.:

▶ ”cache flooding” (worst case) ...

fflood(t) =
{

fmin, 0 ≤ t < ts
1, t ≥ ts

▶ ... or linear ...

flin(t) =
{

fmin +
1−fmin

ts
· t, 0 ≤ t < ts

1, t ≥ ts

▶ ... or exponential function ...

fexp(t) = 1 + (fmin − 1) · e−kt

▶ all parametrised by fmin, ts

ts

fmin

1

ts

fmin

1

ts

fmin

1 ε

⇒ Can compute loss per process switch
▶ Use different f(t) depending on timing reqirements, e.g.

▶ ”hard” real-time → use fflood(t)
▶ ”soft” real-time → use flin(t) or fexp(t)

40 / 51

GOALS AND METHODS

▶ Question: How to find appropriate values for (ts, fmin, etc.)?
▶ Empirical approach: Measure, 2 goals:

1. Demonstrate/validate worst case behaviour (”flooding”)
2. Determine realistic parameters

▶ Method:
▶ Bring caches into a defined state (invalidate / read-fill /

write-fill)
▶ Read- or write-access data in a previously uncached memory

region of configurable size (”working set”)
▶ Measure: Time used for a given (variable) number of accesses

41 / 51

RESULTS

▶ MPC 5200 @ 400MHz: Simple, single-level cache, 16kB

Testcase WSS Cache fmin ts
consec_wr 2k dirty 0.05 17µs
consec_wr 4k dirty 0.05 31µs
consec_wr 8k dirty 0.05 59µs
consec_wr 16k dirty 0.05 116µs
consec_wr 2k invd 0.13 10µs
consec_wr 4k invd 0.09 19µs
consec_wr 8k invd 0.08 35µs
consec_wr 16k invd 0.08 69µs
consec_rd 2k invd 0.13 10µs
consec_rd 4k invd 0.10 19µs
consec_rd 8k invd 0.09 35µs
consec_rd 16k invd 0.10 68µs

invd = cache invalidated, dirty = cache flood-filled

▶ ts ∼ WSS
▶ fmin between 5% und 13%

independent of WSS

▶ Normalised values:

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.5 1 1.5 2
P

a
y
lo

a
d
 s

h
a
re

 [
r/

r m
a
x
]

Relative time[t/ts]

inval-write
dirty-write
inval-read

⇒ Matches model behaviour

42 / 51

SOC EXAMPLES

Plat WSS Cache fmin ts
i.MX6 16k dirty-w 0.063 60µs
i.MX6 32k dirty-w 0.068 119µs
i.MX6 64k dirty-w 0.131 210µs
i.MX6 16k inv-w 0.134 29µs
i.MX6 32k inv-w 0.124 55µs
i.MX6 64k inv-w 0.267 107µs
i.MX6 128k inv-r 0.338 220µs
Exynos 32k dirty-w 0.177 22µs
Exynos 64k dirty-w 0.241 40µs
Exynos 16k inv-w 0.161 13µs
Exynos 32k inv-w 0.184 22µs
Exynos 64k inv-w 0.238 40µs
KZM 16k dirty-w 0.05 240µs
KZM 32k dirty-w ≈0.5 470µs
KZM 64k dirty-w ≈0.5 ≈1050µs
KZM 16k inv-w 0.11 114µs
KZM 32k inv-w ≈0.18 208µs
KZM 64k inv-w ≈0.18 312µs

Testcase: writing to adjacent cache lines
inv = Cache invalidated, dirty = cache flood-filled

▶ Normalised values (i.MX6):

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.5 1 1.5 2R
e
la

ti
v
e
 E

x
e
c
u
ti
o
n
 S

p
e
e
d
 [
r/

r m
a
x
]

Relative time[t/ts]

dirty-read
inval-read
flood-read
dirty-write
inval-write

▶ ts grows with ”working set”
(roughly proportional ..)

▶ fmin between (here) 5% und 34%,
depending on WSS
(due to 2-level cache)

⇒ Qualitatively: expected behaviour

43 / 51

SCHEDULER SIMULATION

▶ “Lowest lag first“ proportional share scheduler
▶ Cache load simulations: linear, exponential and flood
▶ Configured with fmin, ts as measured on i.MX6

 0

 20

 40

 60

 80

 100

 0.1 1 10 100

O
v
e

rh
e

a
d

 [
%

]

Switch Frequency [kHz]

flood-ir, 128k
flood-dw, 16k
flood-dw, 64k
linear-ir, 128k
linear-dw, 16k
linear-dw, 64k

exp-ir, 128k
exp-dw, 16k
exp-dw, 64k

no cache

▶ 2 Tasks, 50% CPU each
▶ Assumed scheduler exec time: 1µs

⇒ Shows trade off between
continuity ↔ switch cost

⇒ In the given case (i.MX6),
switch frequencies higher
than ≈ 2-3 kHz lead to
excessive overheads!

⇒ Similar results for other
platforms [Kai08]

44 / 51

UPSHOT

▶ Processor performance can drop down to ∼ 5% (worst case) if
context switches occur frequently

▶ To compensate in such cases, budgets for critical real-time
VMs must be increased accordingly

▶ Less critical tasks can use a less pessimistic payload share
function, resulting in less overhead

▶ Since overheads and slowdowns are attributed to individual
VMs, other VMs are not affected (except for the global
admission test)

45 / 51

08
SUMMARY AND CONCLUSION

46 / 51

SUMMARY

Recommendations how to avoid or cope with ...
- Slowdown due to sharing of CPU with other VMs

▶ For “slow“ real-time tasks (∆pprox ≥∼ 100ms):
▶ just use standard proportional scheduling
▶ however, make sure sure budget can be guaranteed (e.g. static

admission test at system configuration time)
▶ For “fast“ real-time tasks (∆pprox <∼ 100ms):

▶ increase budget to compensate for switch costs
▶ use time partitioning to enforce budgets
▶ for time-triggered tasks: use “enclosing super schedule“
▶ for event-triggered tasks: if possible, assign to core(s) different

from event triggered tasks

47 / 51

SUMMARY

Recommendations how to avoid or cope with ...
- Slowdown due to pollution of shared caches / TLBs

▶ (again,) increase budget to compensate for switch costs
▶ partition caches (not covered here)
▶ for security-sensitive tasks:

▶ force cache flush (in the kernel) before switching contexts
▶ enforce consumption of full budget for every job execution to

avoid cache side channels

48 / 51

CONCLUSION

▶ Achieving hypervisor temporal determinism is possible!
▶ However, applicability of common hypervisors intended for

server consolidation is limited:
▶ Put significant effort into unneeded features, (thus increasing

the amount of trusted code)
▶ Fail to guarantee timely scheduling for “fast“ real-time

workloads
▶ Classification and corresponding treatment of different

workloads is necessary
▶ External requirements of real-time workloads can be

computed from their task parameters

49 / 51

09
REFERENCES

50 / 51

REFERENCES

Thomas Friebel and Sebastian Biemueller, How to deal with
lock holder preemption [extended abstract], 2008.

Phani Kishore Gadepalli, Robert Gifford, Lucas Baier, Michael
Kelly, and Gabriel Parmer, Temporal capabilities: Access
control for time, 2017 IEEE Real-Time Systems Symposium,
RTSS 2017, Paris, France, December 5-8, 2017, 2017,
pp. 56–67.
Johannes Helander, Unix under mach: The lites server, 1994.

Hermann Härtig, Michael Hohmuth, Jochen Liedtke, Sebastian
Schönberg, and Jean Wolter, The performance of
microkernel-based systems, Proceedings of the 16th ACM
Symposium on Operating System Principles (SOSP) (St.
Malo, France), October 5–8 1997.

Robert Kaiser, Estimating Context Switch Cost: A
Practitioner’s Approach, OSPERT 2008 – Proceedings of the
Fourth International Workshop on Operating Systems
Platforms for Embedded Real-Time Applications (Praque,
Czech Republic), UNC Technical Report, no. TR08-010,
University of North Carolina, July 2008, pp. 73–82.

, Virtualisierung von Mehrprozessorsystemen mit
Echtzeitanwendungen, Ph.D. thesis, Universität
Koblenz-Landau, June 2009.
Robert Kaiser and Rudolf Fuchsen, Method for distributing
computing time in a computer system, 2014, US Patent
US8695004B2.
Robert Kaiser and Dieter Zöbel, Quantitative Analysis and
Systematic Parametrization of a Two-Level Real-Time
Scheduler, ETFA 2009 – 14th IEEE International Conference
on Emerging Technologies and Factory Automation, Mallorca,
Spain, September 2009.
Gerald J. Popek and Robert P. Goldberg, Formal requirements
for virtualizable third generation architectures, Commun. ACM
7 (1974), no. 7, 412–421.

51 / 51

	Introduction
	Motivation
	Hypervisor

	Requirements and non-Requirements
	Hypervisor Basics
	Hypervisor Scheduling
	Virtualisation Effects on timing

	Hypervisor Schedulers
	Hierarchical Scheduling
	Context switch cost
	Background
	Process switch cost

	Summary and conclusion
	References

