
Evolution of the PikeOS Microkernel

Robert Kaiser

SYSGO AG, Klein-Winternheim, and

Distributed Systems Lab,

University of Applied Sciences, Wiesbaden

Stephan Wagner

SYSGO AG, Klein-Winternheim

E-mail: {rob,swa}@sysgo.com

Abstract

The PikeOS microkernel is targeted at real-time embed-

ded systems. Its main goal is to provide a partitioned envi-

ronment for multiple operating systems with different design

goals to coexist in a single machine. It was initially mod-

elled after the L4 microkernel and has gradually evolved

over the years of its application to the real-time, embedded

systems space. This paper describes the concepts that were

added or removed during this evolution and it provides the

rationale behind these design decisions.

1 Introduction

Microkernels have been receiving new attention during

the recent years. After being discarded in the mid 1990s on

the grounds of causing too much performance impact, the

approach seems to be the answer to today’s computer prob-

lems: Today, computers generally do not suffer from lack

of performance, but they often have severe reliability prob-

lems. This is especially relevant in the field of embedded

systems: While the modern PC user may have (grudgingly)

come to accept the occasional system crash as a fact of life,

crashing cellular phones or video recorders are embarrass-

ing for their manufacturers and a potential cause for loss of

reputation and market share. More critically though, a mal-

function in an electronic control unit of, e.g. a car or an

airplane can be a severe threat to the life of humans.

Software complexity is the core problem here and mi-

crokernels offer the possibility to tackle it with a ”divide

and conquer” approach: a microkernel only provides ba-

sic functionality which can be used to divide the system’s

resources (memory, I/O devices, CPU time) into separate

subsets. Each of these subsets, which we will further refer

to as partitions, can be regarded as a virtual machine1 and

1We consider virtual machine monitors such as Xen [2] or VMware

ESX Server [22] to be specialised microkernels.

as such it can host an operating system along with its world

of application programs (see Figure 1). Since partitions op-

erate on separate sets of resources, they are completely iso-

lated and there is no way for a program in one partition to

affect another partition 2. In this way, multiple ”guest” op-

erating systems are able to coexist in a single machine and

their individual functionalities can be tailored to match the

requirements of their application programs. Thus, applica-

tions are no longer forced to unconditionally trust a huge

monolithic kernel containing a lot of complex functionali-

ties that the application may or may not need. Instead, each

subsystem can choose the amount of code that it wants to

trust: It can trade complexity for trust.

In complex embedded systems, there frequently ex-

ist applications with very different temporal requirements:

some must guarantee timely service under all circumstances

while others have no such constraint, but are instead ex-

pected to work ”as fast as possible” by making good use of

all resources they can possibly get. The differences between

such real-time and non-real-time programs are reflected in

the functionalities they need their underlying operating sys-

tem to provide: There are distinct real-time and non-real-

time operating system functions. This presents a problem in

monolithic systems because there exists only one operating

system interface which has to incorporate all the real-time

and non-real-time functionalities. In contrast, a microker-

nel can host multiple operating systems, so it is possible

to have distinct real-time or non-real-time interfaces coex-

isting in separate partitions of a single machine. However,

in such a scenario, the microkernel must guarantee timely

availability of sufficient computational resources to its real-

time guests so they can in turn fulfil their requirements. Not

all microkernels are suitable in this respect.

Since the late 1990s, Sysgo have been developing their

own microkernel. Initially, it was called ”P4” and it was

a faithful re-implementation of the L4 version 2.0 micro-

kernel API as specified by Jochen Liedtke in [17]. It was

2Unless, of course, both sides explicitly agree on a transaction

50



Figure 1. Partitioned system

targeted at embedded systems, therefore, unlike the other

then-current L4 implementations, it was written almost en-

tirely in C to facilitate porting, and it was designed to be

fully preemptive to support real-time applications.

Over the years of using this kernel in the embedded

space, we identified a number of issues with the original

L4 version 2.0 interface. These prompted changes of the

programming interface and thus, although it is still based

on the principles laid out in [16], the PikeOS microker-

nel’s interface today resembles none of the other existing

L4 API versions. In the following sections, we will discuss

the problems we encountered, and we will outline some of

the solutions we chose to apply.

2 Issues

Scheduler Functionality

As already mentioned, there is often a need in embedded

systems for programs and operating systems with different

temporal requirements to coexist. Real-time programs need

to have guaranteed amounts of time at their disposal so they

can meet their deadlines. Non-real-time programs need to

use all the resources they can get in order to deliver optimal

performance. Time allocations for real-time programs must

be dimensioned according to worst-case assumptions which

are conceivable, but are generally very unlikely to apply.

The discrepancy between such a worst case and the average

case can easily span multiple orders of magnitude, mainly

due to the caches found in every modern computer archi-

tecture. Therefore, in the average case, real-time programs

usually complete well before their deadlines. In order to put

the remaining, excess time to good use, the system should

be able to dynamically re-allocate it for use by non-real-

time programs.

The classical priority-driven scheduling used by L4 sup-

ports this: By assigning sufficiently high priorities to all

threads which have temporal requirements, these threads

obtain access to the CPU first, and any time not consumed

by them is then dynamically made availabe to the lower-

priority, non-real-time parts of the system.

However, there is a general problem with this: Any pro-

gram with a sufficiently high priority has the ability to block

all other programs with priorities below its own indefinitely.

So, conversely, every program with a given priority is forced

to trust in the cooperation of all programs that have a prior-

ity higher than its own. There is an implicit dependency

between the priority level and the level of trust attributed to

a program. But these two attributes do not necessarily co-

incide: A high priority level may need to be granted to a

program because it has a requirement regarding timely ex-

ecution, whereas a high level of trust should only follow

from a thorough inspection of the program code. If a high-

priority program exists in one partition and a lower-priority

one exists in another, the low priority program must still

trust the high-priority one, so this defeats the secure isola-

tion between partitions.

A method is needed here to guarantee (and to enforce)

sufficient time quanta for partitions hosting real-time pro-

grams, thus enabling them to on the one hand provide timely

service, while on the other hand keeping them from affect-

ing other partitions by consuming more CPU time than they

are entitled to.

Memory Requirements and Memory Ac-
countability

Embedded systems are designed for a specific purpose

and they are expected to perform their job at the lowest

possible cost. Therefore, an embedded system is usually

equipped with just enough memory to do what it is made

for, and it is difficult to justify a new concept in the embed-

ded market if it implies a need for more memory.

However, experience using a microkernel like L4 shows

that it does increase a system’s overall memory require-

ments. One reason for this is related to the need (or ten-

dency) of using threads to implement certain concepts: In-

terrupt handlers, for example, are implemented as threads.

In L4Linux, every user process needs two L4 threads for

its implementation [10]. User-level synchronisation objects

(e.g. counting semaphores) are implemented as threads. In

result, systems based on L4 tend to employ a rather large

number of threads. Each of them requires at least one page

of kernel memory for kernel stack and data structures and

another page of user memory for the user stack. With a

typical load of more than a hundred threads, the resulting

memory consumption (8 KB per thread) can be prohibitive

for many embedded applications.

Another reason is the kernel’s mapping database which

is used to store the mapping trees of all of the system’s phys-

ical pages. It grows and shrinks dynamically as mappings

are created or deleted. There is no conceptual limit to the

amount of memory that the mapping database might con-

sume. In [18], Liedtke et al describe a problem which has

been a topic of ongoing work in the L4 community until

today: Malicious (or faulty) programs are able to exhaust

51



the kernel’s memory resources, for example, by requesting

a sufficiently large number of mappings to be made. In this

way, programs running in one partition can adversely affect

programs in other partitions, thereby again defeating the se-

cure isolation between partitions. Furthermore, the map-

ping database requires a kernel heap allocator3 to deliver

memory blocks which are used to store mapping entries.

These entries are made on behalf of different user programs.

So, while programs can be charged individually for the ker-

nel memory they consume to store page tables, there is no

straightforward way to do this also for the amounts of ker-

nel memory that the mapping database consumes on their

behalf.

Code Complexity

The PikeOS kernel is targeted for use in safety-critical

applications. Thus it must be prepared for a comprehensive

validation according to safety standards such as [20]. Since

the kernel runs in privileged mode, all of its code contributes

to the trusted code base of every application that might run

on top of it. Therefore, the amount of kernel code must be

kept minimal. L4 implementations have traditionally been

very good in this respect. However, even in L4 there is

a kernel mapping database which, besides its problematic

consumption of kernel memory, is also a complex piece of

code, and so is the underlying slab allocator. This makes it

hard (read: costly) to validate.

On the other hand, some L4 concepts tend to force un-

necessary complexity on user level code. An example for

this would be the construction of address spaces by means

of IPC: The creator of an address space has to provide a

client thread to run in the new address space for the sole

purpose of accepting its mappings. Creation of an address

space is an operation that all user-level programs (including

safety-critical ones) need to do at some point, so it does not

help to reduce kernel complexity at the cost of making these

operations overly complex at the user level: either way, the

complex code will be part of the trusted code base.

Access Privileges

Application programs running under a guest operating

system need not (and, according to the principle of least

privilege, should not) be able to access the microkernel’s

system call interface directly. In fact, they should not even

be aware of the microkernel’s presence. Otherwise, for ex-

ample, a Linux user process could change its address space

layout without the Linux kernel knowing about it. However,

the L4 version 2.0 interface does not provide any means to

restrict access to its system call interface. Thus, any thread

3The PikeOS kernel originally employed a ”slab” allocator ([4]) for this

purpose.

is able to consume kernel resources (e.g. by installing map-

pings), to manipulate system settings or to delay a given

schedule, etc.

Furthermore, L4 lacks a flexible but powerful IPC con-

trol mechanism to manage the information flow of a com-

plex system easily and effectively. The ”clans and chiefs”

method introduced in [15] is generally regarded to be a sim-

ple, but too inflexible solution.

3 Approaches

The scope of this paper does not allow for an exhaus-

tive discussion of the details of all the changes that were

made. Therefore, we will concentrate mainly on the two

changes that will probably be considered the most radical

ones by the L4 community, namely the addition of partition

scheduling and the removal of the mapping database. Sub-

sequently, we will briefly discuss some more modifications,

ordered by relevance.

Partition Scheduling

The goal of PikeOS is to provide partitions (or virtual

machines) that comprise a subset of the system’s resources.

Processing time is one of those resources. We expect the

partitions to host a variety of guest operating systems with

different requirements regarding timely execution. There

will typically be real-time as well as non-real-time systems,

and the real-time systems will generally fall into one of two

categories:

• Time-triggered: Threads are executed according to a

static schedule which activates each thread at predeter-

mined points in time and for a predetermined amount

of time.

• Event-triggered: Threads are activated in response to

external events. Scheduling priorities are used to de-

cide which thread is activated first in case multiple

events occur at the same time.

Both approaches have their specific advantages and

disadvantages[7]. They are mutually exclusive: Allowing

for events to interrupt a time-triggered schedule affects its

determinism (it increases jitter). On the other hand, reserv-

ing a time slot in the schedule for processing any pending

events leads to poor worst case response times and –again–

jitter of event-triggered threads. So, whenever the two ap-

proaches are combined in a system, one of them has to be

given precedence and as a consequence, the other is des-

tined to perform poorly.

We can not expect guest operating systems to trust each

other. Therefore, a scheduling technique had to be devised

52



that on one hand allows real-time and non-real-time sys-

tems to coexist efficiently, but that on the other hand avoids

the implicit dependency between priority and trust we de-

scribed earlier. This method had to be efficient and simple

in order to not add to the complexity of trusted code. To

our knowledge, the scheduling method used in the PikeOS

kernel is both unique and new ([13]). It is a superset to the

method described in the ARINC 653 standard [1], which is

commonly applied in the field of avionics:

Like L4, the PikeOS microkernel uses threads with static

priority levels to represent activities. But unlike L4, they

are grouped into sets which we refer to as ”time partitions”,

τi. The microkernel supports a configurable number of such

time partitions. Each of them is represented in the micro-

kernel as an array of linked lists (one list per priority level).

Threads that have the same priority level are linked into the

same list in a first in/first out manner, and the thread at the

head of the list is the first to be executed. When a thread

blocks, it is appended to the end of the list. So, within

each time partition, there is the same scheduling method

that L4 uses, i.e. a classical, priority-driven scheduling with

round robin scheduling between threads at the same priority.

However, unlike L4, the PikeOS microkernel supports mul-

tiple time partitions instead of just one. Threads can only

execute while their corresponding time partition is active,

regardless of their priority. If we cycled through the time

partitions, activating each one at a time for a fixed duration,

we would obtain the behaviour of an ARINC 653 scheduler.

But in contrast to this, the PikeOS kernel allows two of the

time partitions to be active at the same time:

• The first time partition, τ0 plays a special role in that it

is always active. It is referred to as the ”background”

partition.

• Of all other partitions τi(i 6= 0), only one can be ac-

tive at a time. The microkernel provides a (privileged)

system call to select the currently active time partition.

It is referred to as the ”foreground” partition. Switch-

ing happens cyclically, according to a pre-configured,

static schedule.

The microkernel scheduler always selects for execution

the thread with the highest priority from the set union of τ0

and τi. Figure 2 shows the principle.

The threads have different semantics, depending on their

priorities and on their time partitions:

• τi(i 6= 0): The system cyclically activates each of the

possible τi in turn, giving each of them a configurable

portion of the cycle time. So, the totality of all threads

in any of these time partitions receives a fixed amount

of time at fixed points in time. During their active time

slice, the threads compete for the CPU according to

Figure 2. PikeOS partition scheduler: princi-
ple of operation.

their priorities. Generally, these threads will be con-

figured to use a mid-level range of priorities (though

this is not technically necessary).

• τ0: The semantics of the threads assigned to the back-

ground partition, τ0, depend on their respective priori-

ties.

– Low-priority threads within τ0 will receive the

processing time that was assigned to, but not used

by the mid-priority threads in τi. All threads that

do not have any real-time requirements are there-

fore assigned to τ0, and they are all given the

same, low priority level. Since their priorities

are equal, they run under a round robin scheduler,

sharing their amount of computation time evenly.

– Mid- or high-priority threads in τ0 compete with

the currently active foreground partition. If their

priorities are higher, they can preempt any low-

or mid-priority threads at any time. This is used

to implement event-driven real-time threads.

The relation between the priorities of the foreground and

the background partition decides wether time-driven threads

take precedence over event-driven ones or vice versa: If an

event-driven thread’s priority is higher, it can preempt time-

driven threads at any time, effectively ”stealing” its execu-

tion time from them. Therefore, the points in time when

time-driven threads are activated become undeterministic to

some extent (i.e. they ”jitter”). The maximum jitter is in-

creased by the cumulative worst case execution times of all

high-priority threads (which has to be bounded). It should

be noted that in this case, the high-priority threads have to

be trusted to not exceed their execution time.

In the opposite case, i.e. the time-triggered threads hav-

ing a higher priority, the situation is reversed: the event-

triggered threads need to trust in the time-triggered threads

53



to leave over sufficient time for processing events. This can

simply be done by leaving a part of the schedule unallo-

cated.

The PikeOS partition scheduler can not completely solve

the dilemma between time-triggered and event-triggered

real-time systems, but it does offer good flexibility in this

respect: The decision wether to give precedence to time-

triggered or event-triggered threads can be made individu-

ally for every time-triggered partition, by selecting the pri-

orities of its threads to be either above or below those of the

event-triggered threads.

The microkernel implements only the mechanism4 to se-

lect one of the time partitions as active foreground partition.

The policy part of deciding which of the time partitions is

activated when is left to the user level. This can be done

by an interrupt handler thread which runs at a high priority

in τ0. In a typical configuration, this thread gets activated

by an external one-shot timer whenever the timeslice of the

currently active foreground partition has expired. It then

activates the next time partition, re-programs the one-shot

timer to trigger an interrupt when the next partition’s time

allocation expires and then waits for this interrupt. How-

ever, this is only one possible scenario: Since it is imple-

mented at the user level, the partition switching policy can

easily be replaced without any changes to the microkernel.

In practice, for a safe coexistence of multiple real-time

systems, each of them should have its own time slot, i.e.

its threads should be assigned to one of the foreground par-

titions τi(i 6= 0). In this way, each of them can trust to

receive a guaranteed amount of time at cyclically repeated

(i.e. fixed) points in time. This is a necessary requirement

when applying scheduling analysis to a real-time subsys-

tem (see, for example [3]). The possibility to override this

strict time-driven scheduling scheme by high-priority back-

ground partition threads is reserved for selected activities

which can be trusted to consume only negligible amounts

of CPU time 5. With all real-time systems being confined

to their individual time slots, their worst case response time

and jitter directly depend on the cycle frequency at which

their time slots are repeated (see [12]). It would be desir-

able to make this frequency as high as possible but this is

limited by the cost of switching between time partitions.

Therefore, the scheduling algorithm that is executed as part

of these switches has to be to be both fast (i.e. non-complex)

and bounded. The PikeOS partition scheduler meets these

requirements: since it has to consider only two partitions

for each switch, its execution time is constant (i.e. O(1)).

Practical experience with a PowerPC platform6 has shown

worst case partition switch times to be in the range of 25µs.

4Called switch tp() in Figure 2
5The microkernel maintains a ”maximum controlled priority” as de-

fined in the L4 version 2.0 API [17] to ensure that untrusted activities can

not assume priorities above their limit.
6Motorola MPC5200 at 400 MHz.

Therefore, if an application can live –for example– with

a context switch overhead of 10%, minimum per partition

time allocations can be made as low as 250µs.

Recently, a new scheduling method called ”adaptive par-

titioning” [5] has been announced by QNX software sys-

tems. Like the PikeOS scheduler, this approach pursues the

goal of combining deterministic time allocation with good

processor utilisation. It also represents groups of threads

as partitions and uses a combination of priority-driven and

time-driven scheduling, but no per-partition time slots are

defined, i.e. all partitions can compete for the CPU at all

times, based on their thread’s priorities. This would suggest

an O(n) complexity of the scheduler, however sufficient de-

tails about the implementation are not available. The guar-

anteed time allocations of partitions are specified as relative

values (percentages of the total CPU processing capacity),

but it is not clear how these could be mapped to time slots,

i.e. points in time when a partition receives the CPU and

durations for how long it will be able to retain it. The ap-

proach uses an ”averaging window” 7 during which a par-

tition is entitled to receive its percentage of CPU capacity,

but it also allows special ”critical partitions” to exceed their

allocations during an averaging window, as long as they

later repay the ”debt” which they accumulate in this way.

In summary, this approach seems to be more complex than

the PikeOS partition scheduler, which would imply a more

complex trusted code base. It appears to be targeted mainly

towards soft real-time applications: while it is able to guar-

antee a deterministic average distribution of CPU resources

to its partitions, the exact time slot during which a particular

partition has access to the CPU is not very well defined.

Abandonment of the Mapping Database

The method of creating address spaces recursively on top

of other address spaces as described by Liedtke in [16] is an

intriguingly elegant mechanism. However, the concept calls

for a recursive unmap operation which in turn necessitates a

mapping database to keep track of the mapping history of all

pages. This mapping database is the source of many prob-

lems, most of which have already been introduced (i.e. po-

tentially unlimited kernel memory consumption, difficulty

to attribute the memory to individual kernel resource par-

titions, general code complexity). An additional problem

which is relevant especially for real-time systems is the dif-

ficulty in estimating the worst case execution time needed

for the recursive termination of task trees. The sum of all

these problems provided a strong motivation to question the

need for a mapping database in general, and an analysis of

the practical use cases in the context of PikeOS revealed

that recursive unmap operations normally do not occur:

7The size of this window, according to [5], is typically in the range of

100 milliseconds.

54



The address spaces in which guest operating systems ex-

ist are constructed and destroyed by so-called ”head tasks”

(see figure 3). The only time when these head tasks unmap

pages is when they destroy their child’s address space. In

this special case, recursive unmapping is not needed since

all address spaces that have been constructed on top of the

one being destroyed are also destroyed anyway. Techni-

cally, a head task could revoke mappings without destroying

the child’s address space, but the PikeOS head tasks can be

trusted to not do this. Since they are the parents of all user

level processes and since a task must fully trust its parent

anyway, this is not a new requirement.

Figure 3. Simplified mappings in PikeOS

The range of guest operating systems that PikeOS can

host in its partitions goes from relatively ”simple”, typi-

cally real-time and/or safety-critical systems, up to ”com-

plex” operating systems with virtual memory support (e.g.

Linux). The former usually exist in a single, static address

space. They do not require any mapping functionality them-

selves. In fact, these subsystems could do just as well with

memory protection only. The latter implement their own

memory management. These create tasks to whom they

map pages, but those tasks do not create any subtasks them-

selves8 to whom they could map pages. Thus, all requests to

revoke a mapping are either made from within a task itself

or from its direct parent. These non-recursive unmap op-

erations, however, can be implemented without a mapping

database. Therefore, it was possible to remove it without

substitution.

Recent research has shown formal verification of an L4

mapping database to be feasible ([23]). Thus, the code com-

plexity argument made above against the mapping database

may have lost some of its weight in the meantime. Nev-

ertheless, the fact remains that validation/verification of a

mapping database is a major task and, since its functional-

ity is not required in the context of the PikeOS system, its

removal still remains justified.

8This is usually enforced by not giving the tasks the ”ability” (see be-

low) to access the microkernel interface. And even without such an en-

forcement, the effects of then-possible violations would still remain con-

fined to their partitions.

There exists at least one other L4 variant which, accord-

ing to [19], also works without a mapping database [21].

Like PikeOS, this L4 variant explicitly addresses real-time,

embedded systems, which suggests a similar motivation for

this modification (although it has not been discussed in any

paper we are aware of).

Kernel Resource Partitioning

To facilitate the accounting of kernel resources and

thereby to avoid the possibility of denial-of-service attacks

as described in [18], the concept of kernel resource parti-

tions was introduced into the PikeOS microkernel. The ap-

proach is straightforward: The global kernel memory pool

of L4 was split into a configurable subset of pools, which

we refer to as kernel resource partitions. Every task is as-

signed to one of these partitions at creation time. Whenever

the kernel allocates memory on behalf of a user thread, that

memory is taken from the corresponding kernel resource

partition. If the memory resources of a partition are ex-

hausted, no further allocation for this partition is possible.

Other resource partitions, however, are not affected. Thus,

denial-of-service attacks are only possible among threads

which belong to the same resource partition. The configu-

ration of the resource partitions is done by a specific system

call. The initial task, σ0, has the ”ability” (see below) to

make this call. Since all other tasks are ultimately children

of σ0, and since σ0 can be trusted to not pass this ability on

to any of them, it is effectively the only task that is able to

use this system call.

Clearly, this approach is a simplistic solution to the prob-

lem of kernel resource allocation: it is quite inflexible since

all kernel memory resources have to be statically defined at

boot time. Nevertheless, for the PikeOS system, it serves

the purpose of enabling safe isolation between partitions

while keeping the trusted code base small. Its inflexibility

is not as big a problem in practice as it may seem: For real-

time systems, it is usually not difficult to determine their

worst-case kernel memory requirements beforehand and –

unlike their time requirements– the discrepancy between

worst case and average case is generally not as big. For

general-purpose systems like Linux, kernel memory con-

sumption is definitely not easy to predict. However, these

systems can implement strategies for graceful degradation:

The PikeOS Linux server, for example, flushes its client’s

mappings when its kernel resource partition runs out of

memory, thus freeing up the kernel memory used for their

page tables. This leads to a performance degradation akin

to TLB thrashing, but, at least, the system remains stable.

The problem of managing kernel memory requirements

has been a topic of active research in the L4 community for

several years, and it still is. Several approaches have been

proposed (e.g. [8, 6], but apparently, the final solution is

55



yet to be determined. These approaches aim to solve the far

more challenging problem of dynamically changing kernel

memory requirements, while PikeOS can live with a static,

per partition allocation.

Mapping system call

To enable fast and simple creation of entire address

spaces, the PikeOS kernel provides a special mapping sys-

tem call. This system call is restricted to either the caller’s

address space, or to its child’s address space. The receiver

of such a mapping does not have to explicitly agree to re-

ceive the mapping. At first glance, this looks like a violation

of Liedtke’s principle that any transactions between address

spaces must be explicitly agreed upon by all parties [16].

However, since the source of the mapping in this case is ei-

ther the task itself (i.e. a trusted party), or its parent, which

could just as well create a thread in the target address space

under its own control that would then accept the mappings,

this is not really a security risk. Although not strictly neces-

sary, this facility greatly simplifies the process of construct-

ing address spaces at the user-level side, while the added

complexity at the kernel side is almost negligible.

Events

Many of the services that where implemented on top

of the PikeOS microkernel have a requirement for a ba-

sic, asynchronous communication primitive (e.g. a count-

ing semaphore). The L4 API only supports synchronous

IPC. A counting semaphore can easily be implemented in

user space based on the IPC call, so, according to the prin-

ciple of minimality, this is how it should be done. However,

this would require a user thread managing the semaphore

object. The resulting memory overhead9 was considered

high enough to justify a slight violation of the minimality

principle by introducing a new concept, the event, into the

kernel interface.

Events are counting semaphores associated to threads

(i.e. every thread implicitly has one). A thread can wait

on its event by making an appropriate system call. This

decrements the event counter and it blocks the caller if the

resulting counter is less than zero. The counter is incre-

mented by other threads signalling events to the thread. If

the counter is incremented to zero, its associated thread is

unblocked again. The rules for sending events are similar

to those for IPC, i.e. the recipient must explicitly allow any

potential sender threads to signal events.

9I.e. 8 kB for a thread that implements a counter – a 32-bit object!

Access Privileges

The PikeOS kernel provides functionality to restrict

access to the microkernel’s system call interface on a per

task basis. To implement this, the concept of abilities was

added to the kernel: Each ability enables access to a set of

system calls. The kernel checks a task’s abilities with each

system call. Depending on the settings, attempting a system

call without sufficient abilities either results in an error, or

an exception message being sent to the caller’s exception

handler. The latter can be used to virtualise system calls.

Abilities are assigned to a task during its creation by the

creating parent task. They are thus a task property and are

stored in the corresponding task descriptor data structure

which is maintained by the microkernel. They can not

be changed during the lifetime of the task. The kernel

ensures that a parent can not give its child any abilities that

it does not have itself, i.e. a parent can further restrict its

child’s abilities, but it can not extend them. It is possible

to either disallow certain groups of system calls based on

their specific functionality (like system-calls manipulating

threads, etc.), or to disallow any system calls at all.

The concept of abilities –although developed

independently– is similar to the fine-grained kernel

access privileges of MINIX 3 ([9]). The L4::Pistachio

kernel variant supports the notion of ”privileged threads”,

which are entitled (by virtue of being members of an elite

group of tasks) to make certain system calls. This also

bears some similarity with PikeOS’s abilities, however the

selection of accessible system calls is pre-set and the right

to access them can not be passed to tasks outside of the

elite group.

To control IPC communication, the PikeOS kernel assigns

communication rights to each task. A thread is only

allowed to send an IPC or to signal an event to another

thread if its task has the right of communication with the

destination task. By default, every task is only allowed to

communicate with its parent, but a parent is able to both

grant the communication right between any of its children

(i.e. siblings) and to grant communication rights with

arbitrary, unrelated tasks.

4 Conclusion

The PikeOS microkernel is an early spin-off from the

line of L4 kernel development, which has been adapted to

the specific needs of safety-critical real-time embedded sys-

tems. It features partitioning of both temporal as well as

spatial resources. Compared to other L4 variants that have

been developed in parallel, it focuses on real-time comput-

ing and minimising trusted code, sacrificing flexibility in

some cases.

It currently runs on various PowerPC, MIPS and ia-32

56



machines. A number of different real-time as well as non

real-time operating system interfaces have been ported to

run in the microkernel’s partitions. Among them are Linux,

POSIX PSE51, ITRON, OSEK OS, an Ada runtime sys-

tem, a JVM and a Soft-PLC runtime system. Some per-

formance comparisons between the PikeOS Linux server

and native Linux on x86 platforms have been published in

[14]. The average performance impact of 22% is slightly

higher than that of other microkernel-based Linux imple-

mentations, however, optimizing the performance of Linux

has always been a secondary concern for this system.

5 Outlook

Current development of PikeOS goes in several direc-

tions:

• Single threaded kernel: The PikeOS microkernel –like

Fiasco ([11])– was designed to be fully preemptive.

However, a fully preemptive kernel is always more

complex, opening up many possibilities for, e.g., race

conditions which are hard to detect. It also requires

more resources, and the transient time spent in the ker-

nel is very short anyway, so, a preemptive kernel may

not really be worth the effort. Thus, in hindsight, this

idea should be reconsidered.

• Multiprocessor: With the advent of multicore-CPUs,

embedded multiprocessor systems are becoming fea-

sible. The PikeOS microkernel was not designed for

multiprocessors, so this must be remedied. Besides be-

ing a necessary step to support future processor gener-

ations, this also opens up the interesting new prospect

of finally solving the conflict between time-driven and

event-driven threads by binding them to separate pro-

cessor cores.

• Certification: An effort to certify an appliance using

PikeOS to DO-178B ([20]) is currently underway.

References

[1] ARINC. Avionics Application Software Standard Interface.

Technical Report ARINC Specification 653, Aeronautical

Radio, Inc., 1997.

[2] P. Barham, B. Dragovic, K. Fraser, S. H, T. Harris, A. Ho,

R. Neugebauer, I. Pratt, and A. Warfield. Xen and the Art of

Virtualization, 2003.

[3] G. Bollella. Slotted priorities: supporting real-time comput-

ing within general-purpose operating systems. PhD thesis,

University of North Carolina at Chapel Hill, 1997. Advisor:

Kevin Jeffay.

[4] J. Bonwick and Sun Microsystems. The slab allocator: An

object-caching kernel memory allocator. In USENIX Sum-

mer, pages 87–98, 1997.

[5] D. Dodge, A. Dank, S. Marineau-Mes, P. van der Veen,

C. Burgess, T. Fletcher, and B. Stecher. Process scheduler

employing adaptive partitioning of process threads. Cana-

dian patent application CA000002538503A1, March 2006.
[6] D. Elkaduwe, P. Derrin, and K. Elphinstone. Kernel data

- first class citizens of the system. Technical Report

PA005847, National ICT Australia and University of New

South Wales, December 2005.
[7] G. Fohler. Flexible Reliable Timing - Real-Time vs. Reli-

ability. In Keynote Address, 10th European Workshop on

Dependable Computing, 1999.
[8] A. Haeberlen. User-level Management of Kernel Memory.

In Proc. of the 8th Asia-Pacific Computer Systems Architec-

ture Conference, Aizu-Wakamatsu City, Japan, September

2003.
[9] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S. Tanen-

baum. Modular System Programming in MINIX 3. j-

LOGIN, 31(2):19–28, April 2006.
[10] M. Hohmuth. Linux-Emulation auf einem Mikrokern.

Diploma Thesis, TU Dresden, August 1996.
[11] M. Hohmuth. The Fiasco kernel: Requirements definition,

1998.
[12] R. Kaiser. Scheduling Virtual Machines in Real-time Em-

bedded Systems. In S. A. Brandt, editor, OSPERT 2006

Workshop on Operating Systems for Embedded Real-Time

applications, pages 7–15, July 2006.
[13] R. Kaiser and R. Fuchsen. Verfahren zur Verteilung

von Rechenzeit in einem Rechnersystem. German patent

DE102004054571A1, November 2004.
[14] R. Kaiser, S. Wagner, and A. Zuepke. Safe and Cooperative

Coexistence of a SoftPLC and Linux. 8th Real-Time Linux

Workshop, Lanzhou, China, September 2006.
[15] J. Liedtke. Clans & chiefs. In Architektur von Rechensyste-

men, 12. GI/ITG-Fachtagung, pages 294–305, London, UK,

1992. Springer-Verlag.
[16] J. Liedtke. On µ-Kernel Construction. In SOSP, pages 237–

250, 1995.
[17] J. Liedtke. L4 Reference Manual - 486, Pentium, Pentium

Pro, 1996.
[18] J. Liedtke, N. Islam, and T. Jaeger. Preventing Denial-of-

Service Attacks on a µ-Kernel for WebOSes, 1999.
[19] NICTA – National ICT Australia. Embedded - ERTOS. On-

line: http://ertos.nicta.com.au/research/l4/embedded.pml,

2006.
[20] RTCA. Software Considerations in Airborne Systems and

Equipment Certification. Guideline DO-178A, Radio Tech-

nical Commission for Aeronautics, One McPherson Square,

1425 K Street N.W., Suite 500, Washington DC 20005,

USA, March 1985.
[21] S. Ruocco. Real-Time Programming and L4 Microkernels.

National ICT Australia, 2006.
[22] J. Sugerman, G. Venkitachalam, and B.-H. Lim. Virtualiz-

ing I/O Devices on VMware Workstation’s Hosted Virtual

Machine Monitor. In Proceedings of the General Track:

2002 USENIX Annual Technical Conference, pages 1–14.

USENIX Association, 2001.
[23] H. Tuch, G. Klein, and G. Heiser. Os verification — now!

In M. Seltzer, editor, Proc. 10th Workshop on Hot Topics in

Operating Systems (HotOS X), 2005.

57


