SmartSVN 1.1 - A short introduction

Th. Singer and M. Strapetz, www.smartsvn.com

2005

Contents

1 Introduction

2 Project

2.1 Project Manager e
2.2 Project Settings
2.2.1 Repository Layout o
2.2.2 Working Copy
2.2.3 Global Ignores
2.2.4 Default Settings

Main Window

3.1 Directory Tree and File Table
3.1.1 Directory States/Directory Tree
3.1.2 File States/File Table
3.1.3 TheFocus
3.1.4 Refreshing

3.2 Menus e
321 EditMenu
322 Window Menu.
323 HelpMenu.

SVN Commands

4.1 Checkout. e

4.2 Create Module

4.3 Updating e
4.3.1 Update. e
4.3.2 Switch e
4.3.3 Switchto URL
4.3.4 Relocate
4.3.5 Merge
4.3.6 Merge from URL 0.

4.4 Commit e e e

4.5 Local Modifications e
451 Add
4.5.2 Ignore

Contents

453 Remove
4.5.4 Delete Physically
455 Rename
4.5.6 Move
4.5.7 Smart Move
458 COPY . - v v o
459 Revert
4.5.10 Resolve
4.6 Repository Copies
4.6.1 Copy URL-URL.
4.6.2 Copy URL-WC
4.6.3 Copy WC-URL
A7 Tags . ..o
471 AddTag
472 AddBranch
473 TagBrowser oL
4.8 Queries.o
4.8.1 Compare
4.82 Log. e
4.83 Annotate L.
4.8.4 Change Report
4.8.5 Create Patch
4.8.6 Create Patch between URLs
4.9 Properties
4.9.1 Edit Properties
4.9.2 Change File Type
4.9.3 Change Line Separators
4.9.4 Change Keyword Substitution
4.9.5 Change Executable Property
4.9.6 Edit Externals.
4.9.7 Edit Ignore Patterns
4.10 Remote State
4.10.1 Refresh Remote State
4.10.2 Clear Remote State
411 Locks. o .

4112 Lock
4.11.3 Unlock o
4114 ShowInfo
4.11.5 Change Needs-Lock

5 Repository Browser

5.1 Checkout.
5.2 Modifying the repository
5.3 Querying the repository

(© 2005 Th. Singer and M. Strapetz, www.smartsvn.com

Contents

6 Repository Profiles

6.1 Profiles.
6.2 SSL . . .
6.3 SSH
6.4 Proxies

7 Preferences

7.1 Refresh.
7.1.1 Refresh Behaviour
7.1.2 Refresh on frame activation
7.2 External Tools.
7.2.1 Directory Command

8 TMate

(© 2005 Th. Singer and M. Strapetz, www.smartsvn.com

Chapter 1

Introduction

SmartSVN is a graphical subversion (SVN) client. Its target audience are users who need
to manage a number of related files in a directory structure, to control access in a multi-
user environment and to track changes to this structure. Typically usecases are software
projects, documentation projects or website projects.

We’ve tried to make SmartSVN easy to use for new SVN users and powerful for advanced
users. Users of SmartCVS, our successful CVS client, will find switching to SVN using
SmartSVN very easy. Various convenient features will help you to make working with
SVN more efficient and comfortable.

We want to thank all users, who have participated in the Early Access Program of
SmartSVN and in this way helped to improve it by reporting bugs and giving feature
suggestions.

Special thanks goes to Alexander Kitaev from TMate Software (http://www.tmatesoft.com),
who provides the excellent base library JavaSVN which SmartSVN relies on.

Chapter 2

Project

SmartSVN internally manages your SVN working copies by “SmartSVN projects”. A
SmartSVN project (subsequently only denoted by “project”) points to a local SVN-
controlled directory and has a name and some settings attached to it. When working
with SmartSVN, you are always working with a project.

Projects can be created in different ways from the Project menu. To create a completely
new project from a not-yet-version-controlled local directory, use Create Module (see
Section 4.2). This will also create the corresponding directory (module) in the repository.
If you want to create a local working copy from a project which already lives in a repository,
use Check Out (see Section 4.1). To create a project from an already versioned local
directory, use Create from Directory and specify the local SVN-controlled directory.

One main window always shows one project. To work with multiple projects at the same
time, you can open multiple main windows by clicking Window|Open New Window.
Already managed projects can be opened in a main window by Open or closed by Close.

2.1 Project Manager

With the Project Manager (Project|Project Manager) you can manage your existing
SmartSVN projects.

You can Add a new project. This button has the same function as Project|Create Project
from Directory. Select the local SVN-controlled root directory of the working copy you
want to add as project and specify a corresponding Project Name. To change the name
of an already managed project, use Rename. Projects can also be deleted by Delete; the
local directory itself nor any other filesystem content will be touched by this operation.

You can rearrange the order of the project list with Move Up and Move Down. The
specified order is used for the Project|Open dialog and the directory tree’s pop-up in the
main window.

Chapter 2. Project

2.2 Project Settings

The project settings define the behaviour of SVN commands. Contrary to the global
preferences (see Section 7), the project settings only apply to an individual project. You
can edit the settings of the currently opened project by Project|Settings.

2.2.1 Repository Layout

The Repository Layout defines the project’s root URL (within the repository) and where
the trunk, branches and tags of the project are stored. Trunk, Branches and Tags must
be specified relative to the Project Root. Using here values trunk, branches and tags,
you are compatible with the SVN standard.

Example

The Subversion project itself is located at http://svn.collab.net/repos/svn/.
Hence for the corresponding SmartSVN project, Project Root must be
set to http://svn.collab.net/repos/svn/. Subversion’s trunk URL is
http://svn.collab.net/repos/svn/trunk, i.e. trunk is the relative path and
must be set for Trunk. This is similar for Tags and Branches.

The repository layout affects the basic Switch and Merge commands from the Modify-
menu and all commands related to tagging from the Tag-menu.

SmartSVN tries to automatically determine the repository layout when the Project Set-
tings dialog for a new project is opened for the first time. Nevertheless you should verify
that the suggested layout actually matches your intended or already existing repository
layout.

2.2.2 Working Copy

The option (Re)set to Commit-Times after manipulating local files advises SmartSVN
to always set a local file’s time to its internal SVN property commit-time. Especially in
case of an updating command (see Section 4.3), this option is convenient to get the actual
change time of a file and not the local update time.

2.2.3 Global Ignores

The Global Ignores define which files/directories should in general be ignored within the
current project. This is contrary to local ignores (see Section 4.9.7), which are only related
to a specific directory. You can completely deactivate Global Ignores by Deactivated.
With Use from SVN ’config’ file, the same ignore patterns will be used as by the
command line client. To be independent of the command line client, you can enter your

(© 2005 Th. Singer and M. Strapetz, www.smartsvn.com 6

Chapter 2. Project

own patterns by Use following patterns (separated with commas). The Patterns are
file name patterns, where “*” and “?” are wildcard symbols, interpreted in the usual way.

2.2.4 Default Settings

Projects are created by various commands. For reasons of simplicity, in most of these
cases, there is no configuration possibility for the corresponding project settings. Anyway,
you can specify default project settings (template settings), which will be applied to newly
created projects. With Project|Default Settings you can configure the same properties
as for a concrete project, except of the Repository Layout which always depends on the
specific project.

(© 2005 Th. Singer and M. Strapetz, www.smartsvn.com 7

Chapter 3

Main Window

The main window is the central place when working with SmartSVN projects. In the
center of the window, all directories and files below the project’s root directory are dis-
played. Various SVN commands on these directories and files are provided by the menu
bar and the toolbar.

In the bottom left area of the main window the Output window shows logged output
from executed SVN commands. The Output window is cleared automatically when a new
project is opened. Furthermore you have the choice to clear it manually via the clear
toolbar button at any time during your work with one project.

In the bottom right the TMate window lists the collected revisions as they happend in
the repository for the current project.

At the very bottom of the main window the status bar displays various kinds of infor-
mation, like information on the currently selected menu item, operation progress or the
repository URL of the currently selected file/directory.

3.1 Directory Tree and File Table

The directory tree and the file table show all local directories/files below the project’s
root directory. The only exception are .svn-directories and ignored directories and files
within other ignored directories. Such directories/files will never be shown.

3.1.1 Directory States/Directory Tree

The directory tree shows the project’s directories and their SVN states, which are denoted
by different icons. They are listed in Table 3.1. In case of a versioned directory, the
corresponding revision number is displayed behind the name of the directory.

Chapter 3. Main Window

3.1.2 File States/File Table

The file table shows the project’s files with their SVN states and various additional in-
formation. The meaning of the states/icons is listed in Table 3.3. The rest of this section
explains configuration options for the file table. They are always related only to the
current project and are also stored with the current project.

File Attributes

You can specify which file attributes shall be displayed in the file table by View|Table
Columns, see Table 3.2. Also, the order of the table columns can be defined here, alter-
natively to rearranging them directly in the file table. Select Make this configuration
the default to have the selected configuration applied to every new project.

Tip Certain table columns require additional time when scanning the
file system and therefore slow down scanning. The note within
the Table Columns dialog gives you information on which columns
these are.

Filters

With the menu items in the View menu, you can also set certain filters on which files
should be displayed. Files From Subdirectories enables the recursive view showing not
only files from the currently selected directory but also those from subdirectories. With
Ignored Files ignored files within versioned directories will be displayed. Files from
ignored directories are never displayed. With Unversioned Files unversioned files (also
within unversioned directories) are displayed. With Unchanged Files unchanged files are
displayed. It is sometimes convenient to hide them, as they don’t matter for most of the
SVN commands.

3.1.3 The Focus

The directory tree and the file table are the central components within SmartSVN’s main
window. A virtual focus is always assigned to exactly one of both components. The focus
and the currently selected directory/files define which commands/actions are available
from the menu bar and the tool bar.

3.1.4 Refreshing

The contents of the directory tree and the file table are read into memory when a project
is opened. When changes to files or directories occur from within SmartSVN, they are

(© 2005 Th. Singer and M. Strapetz, www.smartsvn.com 9

Chapter 3. Main Window

refreshed automatically. In case of external changes, an explicit refresh via View|Refresh
or the corresponding toolbar button is required. You can configure the kind of refresh
(“depth”) within the application preferences (Section 7.1).

3.2 Menus

This section summarizes actions which are available from the Edit, the Window and the
Help menu.

3.2.1 Edit Menu

Stop stops the currently running operation. Depending on the type of operation, this
action might not be applicable. On the other hand, while an operation is running, most
other actions are not applicable.

Open File opens the selected file/directory. If the directory tree has the focus, this action
is only applicable, if a Directory Command has been configured in the preferences (see
Section 7.2). If the file table has the focus and the file is not modified or unversioned (see
Table 3.3), the file will be opened in an editor (see Edit File command for details.) For
all other file states, the internal file compare will be launched (see Section 4.8.1).

Edit File opens a file editor for the selected file. The editor to open can be configured in
the Externals Tools section of the Preferences (see Section 7.2). If no editor is configured
there, the internal file editor will be launched.

Select Committable Files selects all committable files in the file table.

Note In the Professional Version, SmartSVN allows to automatically add
unversioned or remove missing files for a commit. Hence these files
are also selected.

Copy File Path copies the path of the selected file to the system clipboard.
Copy File Name copies the name of the selected file to the system clipboard.

Preferences shows the application preferences (see Section 7).

3.2.2 Window Menu

With Open New Window you can open a new main window to work with multiple
projects at the same time. The subsequent content of the Window menu depends on
which windows (frames) are currently open. For each window, there is a menu item to
switch to it.

(© 2005 Th. Singer and M. Strapetz, www.smartsvn.com 10

Chapter 3. Main Window

3.2.3 Help Menu

Help Topics shows the online version of SmartSVN’s help.

License Information shows information on your currently used license for running SmartSVN
and the licensing conditions for SmartSVN.

Register lets you upgrade SmartSVN to the professional version. You will need to pur-
chase a license file, but it’s definitely worth the money!

Enable Connection Logging can be used to trace and analyze problems when working
with SmartSVN. The dialog will give you further instructions on how to use Connection

Logging.

About SmartSVN shows some information on the current SmartSVN version.

(© 2005 Th. Singer and M. Strapetz, www.smartsvn.com 11

Chapter 3. Main Window

Icon Meaning Details

Unchanged Directory is under version control, not modified and equal
to its revision in repository.

Root or External Directory is either the project root or an external root. This
state might be combined with other directory states.

Unversioned Directory is not under version control and hence only exists
locally.
Ignored Directory is not under version control (exists only locally)

and is marked to be ignored.

Modified Directory itself is modified in its properties, i.e. differs from
the repository directory for the current revision.

Modified children At least one direct or indirect child of this directory has a
Non-Unchanged state.

Added Directory is scheduled for addition.
= Removed Directory is scheduled for removal.
Copied Directory has been added with history.

t History-Scheduled A parent directory has been added with history, which im-
plicitly adds this directory with history.

Missing Directory is versioned, but does not exist locally.

Conflict An updating command lead to conflicting changes in direc-
tories’ properties.

@ Incomplete A previous update was not fully performed. Do an update
again.
Nested Root Directory is a nested working copy root, but no external.
Remote This directory only exists in the repository. This state is

only used for the remote state command (see Section 4.10).

Obstructed The local working-copy is damaged here; backup your mod-
ifications and do a clean checkout.

Figure 3.1: Directory States

(© 2005 Th. Singer and M. Strapetz, www.smartsvn.com 12

Chapter 3. Main Window

SmartSVN Name SVN info Description

Name (same) The file’s name

Revision (same) Current revision of the file

Local State Schedule Textual representation of the local

Remote State
Lock
Last Changed Rev.

Last Changed Date
Text Last Updated

Properties Last Updated
Last Changed Author
EOL

Executable

Keyw.

Needs Lock

Type
Copy From

Ext.
Relative directory

Lock Owner
(same)

(same)
(same)

(same)

(same)
svn:eol-style
svn:executable
svn:keywords
svn:needs-lock

svn:mime-type

Copy From URL/Rev

state of the file
Remote state of the file (see Section

4.10)

Lock state of the file (see Section
4.11)

Revision, where this file has been
committed

Time of the last commit of the file
Time of the last (local) update of
the file’s text

Time of the last (local) update of
the file’s properties

Last author, i.e. who performed the
last commit on the file
End-Of-Line Type of the file (see
Section 4.9.3)

Whether the file has the executable
property set (see Section 4.9.5)
Keyword substitution options of
the file (see Section 4.9.4)
Whether the file should be locked
before working (see Section 4.11.5)
The file’s type (see Section 4.9.2)
Location and URL from which this
file has been copied (locally). This
value is only present if the file is in
Copied state

The file’s extension

Parent directory of the file relative
to the selected directory

Figure 3.2: File Attributes

(© 2005 Th. Singer and M. Strapetz, www.smartsvn.com 13

Chapter 3. Main Window

Icon Meaning Details

L1 Unchanged File is under version control, not modified and equal to its
revision in repository.

L:+ Unversioned File is not under version control, hence it only exists locally.

Ignored File is not under version control (exists only locally) and

marked to be ignored.

L1 Modified File is modified in its content or properties, i.e. differs from
the repository file for the current revision.

it

L4 Missing File is under version control, but does not exist locally.

L+ Added File is scheduled for addition.

L= Removed File is scheduled for removal.

L Copied File has been added with history.

L+ History-Scheduled A parent directory has been added with history, which im-
plicitly adds this file with history.

Lid Conflict An updating command lead to conflicting changes either in
content or properties.

L& Incomplete A previous update was not fully performed. Do an update
again.

... Remote This file does not exist locally, but only in the repository.
This state is only used for the remote state (see Section
4.10).

L!'h Obstructed The local working-copy is damaged here; backup your mod-

ifications and do a clean checkout.

Figure 3.3: File States

(© 2005 Th. Singer and M. Strapetz, www.smartsvn.com 14

Chapter 4

SVN Commands

The SVN commands provide functionality to manipulate SVN aspects of your working
copy. SmartSVN provides most of the command-line SVN commands in a standalone
version, but also combines them to poweful higher-level commands.

4.1 Checkout

Use the Checkout command to create a working copy from a project which is already
under SVN control.

Page “Repository”

First you need to select the repository from which you want to check out a project. If you
can’t find the repository profile in the combobox, click the Manage button to add it, see
Section 6 for details.

Click Next to continue.

Page “Location”

After switching to this page, the repository will be scanned. A few moments later you’ll
see the root content of the repository. Expand the tree nodes to dive into the repository
structure, for more details refer to Section 5.

Use the Filter Revisions button to define the revision you want to fetch. Of course the
repository content might change when filtering with a revision.

Select the repository directory you want to check out and click Next.

15

Chapter 4. SVN Commands

Page “Target Directory”
At this page you can select the local directory into which the working copy should be
checked out. Use the options to define, how the directory name should be created. The

Checkout Directory depends on these options and always shows the final directory into
which the checkout will occur (i.e. where the root .svn- directory will be created).

Click Next to proceed.

Page “Project Name”

At this page you can assign a name to the project, which will automatically be created
by the checkout. If you just want to check out the project without further working with
it, unselect the option Add to list of managed projects.

Click Next to proceed.

Page “Confirmation”

Use this page to review your choices. Click Back to change them or Finish to start the
checkout.

4.2 Create Module

Use this command to add a new locally available project to the repository and to create
the corresponding SmartSVN project.

Page “Directory to Import”

Select the local directory, for which you want to create a new project and a new module
in the repository.

Page “Repository”

Choose the repository you want the new module to be created in. If the profile does not
exist yet, click the Manage button to add it.

(© 2005 Th. Singer and M. Strapetz, www.smartsvn.com 16

Chapter 4. SVN Commands

Page “Location”

After switching to this page, it takes a few moments until the repository is scanned. You
are able to dive into the repository by expanding the directory nodes, for more details
refer to Section 5. Use the Create Directory to create a new directory for your project
in the repository.

After you've created the necessary structures in the repository, select the directory which
should be linked with the root of your local project and click Next.

Page “Project Name”

At this page you can assign a name to the project, which will automatically be created.
If you just want to check out the project without further working with it, unselect the
option Add to list of managed projects.

Page “Confirmation”

Use this page to review your choices. Click Back to change them or Finish to start the
Module creation.

The result of the Create Module command will be a new project, for which only the local
root directory is under SVN control. This gives you many possibilities to configure which
files/directories of your local file system should actually be versioned in the repository.
From the Edit menu you can use Add and Ignore on files and directories. Furthermore for
files you can adjust properties, like File Type, Line Separators and Keyword Substitu-
tion (Properties menu). After the project has been fully configured, use Modify|Commit
to do the final import into the repository.

4.3 Updating

Updating from the repository can happen in various ways, by a simple update of the
working copy, by switching the working copy to another repository, or by merging changes
from the repository into the local working-copy. Following commands are available from
the Modify menu.

4.3.1 Update

Use the Update command to get the latest changes or a specified revision from the repos-
itory.

(© 2005 Th. Singer and M. Strapetz, www.smartsvn.com 17

Chapter 4. SVN Commands

Select HEAD to get the latest changes. To get a revision, select Revision and enter the
revision number. Select Recurse into subdirectories to perform the update command
not only for the current selected directory, but also for all subdirectories.

4.3.2 Switch

Use the Switch command to switch the working copy from operating on the trunk, a tag
or a branch.

Select Trunk to switch back from a branch or tag to the main trunk. Select Branch or
Tag and enter the branch or tag name to switch to a tag or branch. Select Recurse
into subdirectories to perform the switch command not only for the currently selected
directory, but also for all subdirectories.

This Switch command only works on directories, which are covered by the Repository
Layout (Section 2.2.1), defined in the Project Settings. To switch to arbitrary locations
or other revisions than HEAD, use the Switch to URL command.

4.3.3 Switch to URL

Use the Switch-to-URL command to update your working copy to an arbitrary repository
URL/revision.

Select the Repository Profile to define the repository you want to switch to. Enter the
Repository Path or select it with the help of the Repository Browser which occurs when
clicking the ellipsis button. To switch to the latest revision, select HEAD. To switch
to a certain revision, select Revision and enter the revision number. Select Recurse
into subdirectories to perform the Switch command not only for the currently selected
directory, but also for all subdirectories.

4.3.4 Relocate

Use the Relocate command to locally “switch” the working copy to another repository or
root directory.

Relocate shows the directory, relative to the project’s root directory, which will be relo-
cated. From URL shows the current full URL of this directory. For To URL, enter the
new full URL to which the directory shall be relocated. After proceeding with OK, the
relocation will be performed.

(© 2005 Th. Singer and M. Strapetz, www.smartsvn.com 18

Chapter 4. SVN Commands

4.3.5 Merge

Use the Merge command to merge changes from other source-branches to the current
working copy.

Select Trunk to merge from the main trunk. Select Branch or Tag and enter the branch
or tag name to merge changes from a branch or tag. Location shows the final merge
source.

Select the From Revision and To Revision to define the range of the changes to be
merged. The range corresponds exactly to the difference between both revisions. If the
revision number in From Revision is greater than the one in To Revision, the “reverse”
changes will be merged.

By default, merging takes the ancestry into account. This can be important when you
merge from one branch to another, but have renamed a file in one branch only. If you
don’t need this behaviour, select Ignore ancestry.

Select Recurse into subdirectories to merge not only the files in the currently selected
directory, but also those from subdirectories.

This Merge command only works on directories, which are covered by the Repository
Layout (see Section 2.2.1), defined in the Project Settings. To merge from arbitrary or
different locations or other revisions than HEAD, use the Merge from URL command.

4.3.6 Merge from URL

Use the Merge from URL command to merge changes between two arbitrary URLs to the
local working copy.

Profile 1, corresponding Path 1 and Revision 1 define the first merge source. Profile
2, corresponding Path 2 and Revision 2 define the second merge source. The difference
between first and second merge source (the order of the sources is important) will be
merged to the local working copy.

For details regarding the options, refer to Section 4.3.5.

4.4 Commit

Use the Commit command to write back (commit) the changes from your working copy
into the repository.

(© 2005 Th. Singer and M. Strapetz, www.smartsvn.com 19

Chapter 4. SVN Commands

Page “Configuration”

Select Recurse into subdirectories to commit not only changes from the selected local
directory, but also from subdirectories. Select Keep Locks to keep currently locked files
also locked after the commit. If not selected, the files will be automatically unlocked after
a successful commit. For more information regarding locking, see Section 4.11. Select
Automatically add unversioned and remove missing files if you want SmartSVN to
automatically add unversioned (most likely new) files and remove missing (most likely
obsolete) files before the commit. Select Detect moved and renamed files if you want
SmartSVN to detect files which are most likely renamed or moved.

Enter a meaningful Commit Message, so you and your team mates easily can track your
changes.

Clicking Next might take a few moments, because the file system of your project needs
to be scanned.

Page “Smart Move”

This page only occurs, if the option Detect moved and renamed files on the “Configu-
ration” page is selected and a moved or renamed file pair was detected. For details, refer
to Section 4.5.7.

Page “Confirmation”

At this page you'll get a list of all files and directories which were found to be committable.
To skip a file/directory from commit, deselect the corresponding checkbox.

Click Finish to commit the selected files and directories.

4.5 Local Modifications

Local commands can be performed without a connection to the repository. They are
used to prepare the working copy state for a final commit. Following local commands are
available from the Modify menu.

4.5.1 Add

Use this command to schedule files or directories for beeing added to SVN control.

In case of directories you have the option to Recurse into subdirectories, which - when
selected - causes all subdirectories and files from subdirectories to be added as well.

(© 2005 Th. Singer and M. Strapetz, www.smartsvn.com 20

Chapter 4. SVN Commands

4.5.2 Ignore

Use this command to mark unversioned files or directories to be ignored. This is useful for
files or directories which should not be stored under SVN control. Usually .obj or .class
files or even their whole containing directories should be marked as to be ignored. This

command is a shortcut for alterering the svn:ignore property, which can also be edited by
Properties|Edit Ignore Patterns. Refer to Section 4.9.7 for details.

4.5.3 Remove

Use this command to schedule a file or directory for being removed from SVN control.

4.5.4 Delete Physically

Use this command to delete local files or unversioned directories.

Note Be careful before deleting a file (or directory) as there will be no
way to recover unversioned items.

4.5.5 Rename

Use this command to rename a file or directory which is already under SVN control. The
file with the old name will be scheduled for removal, the file with the new name for adding.
This command will preserve the file’s history.

4.5.6 Move

Use this command to move and/or rename a file or directory which is already under SVN
control. The file with the old name will be scheduled for removal, the file with the new
name for adding. This command will preserve the file’s history.

Tip There is also a special variation of this commands, which works on
exactly two selected files, where one of the files is missing and the
other one is unversioned. SmartSVN interprets this as a “belated”
move and moves the missing file to the unversioned file without
displaying any dialog.

(© 2005 Th. Singer and M. Strapetz, www.smartsvn.com 21

Chapter 4. SVN Commands

4.5.7 Smart Move

Use this command to reproduce an already performed moves/renamings of files. Typi-
cally, you will not perform moves/renamings within SmartSVN itself, but with system
commands, by IDEs, etc. One such external move/renaming results in a missing and a
new unversioned file. Both files could then be added resp. removed and committed, what
will result in a correct repository content, but will not preserve the relation between both
files (which is actually one moved/renamed file). This has especially effects on the log of
both files: The log of the removed file will end at the committed revision, while the log of
the added file will start at the committed revision. To preserve the relation (and hence
history/log), a belated move on both files has to be performed.

Smart Move detects possibly performed moves (based on the file content) and displays the
corresponding files (moved From to To) as well as the likelyhood, based on the Similarity
of both files, for this move/renaming. If you agree to a move suggestion, keep it selected.
This will establish the necassary relation between missing and unversioned file as if the
file had been moved directly by SmartSVN or any other SVN client. Otherwise, if you
decide that a suggestion would relate two actually unrelated files, deselect it.

Click OK to actually apply the selected move suggestions.

4.5.8 Copy

Use this command to create a copy of a file or directory which is already under SVN
control. This command will preserve the file’s history.

4.5.9 Revert

Use this command to revert local changes of files or directories. In case of directories you
have the option to Revert files and subdirectories recursively. If deselected, only the
properties of the directory itself will be reverted.

Files/directories scheduled for adding will be unscheduled. Files/directories scheduled for
removal will be unscheduled. Copied files/directories which are not added (i.e. only copied
with history) will completely be removed. Modified files/directories will be restored with
their content and properties as existing in the corresponding repository revision (over-
writing local changes!). Missing files will be restored with their content and properties
as existing in the corresponding repository revision. Conflicted files/directories will be
restored with their content and properties as existing in the corresponding repository
revision (ignoring local changes which caused the conflict!).

(© 2005 Th. Singer and M. Strapetz, www.smartsvn.com 22

Chapter 4. SVN Commands

4.5.10 Resolve

Use this command to mark conflicting files/directories as resolved. You need to resolve
conflicts to be able to commit the files/directories. In case of directories you have the
option to Resolve files and subdirectories recursively. If deselected, only the property
conflicts of the directory itself will be resolved.

4.6 Repository Copies

The Modify menu contains three advanced copy commands, which are directly interacting
with the repository.

4.6.1 Copy URL-URL

With Copy URL-URL you can perform pure repositories copies. This is for instance a
convenient and fast way to create repository tags/branches.

Select the Repository Profile to which the copy shall occur. Copy From and the Source
Revision specify the copy source. Copy Into specifies the directory into which the selected
Copy From directory shall be copied. With Name specifies the new name of the copied
directory (first component of the path). As the copy is directly performed in the repository,
you also have to specify a Commit Message.

4.6.2 Copy URL-WC

With Copy URL-WC you can copy a file or directory from the repository to your local
working-copy. This command is useful to resurrect dead files or directories from earlier
revisions.

Select the From Repository from which you want to copy the file/directory Copy at
the specified Source Revision. Specify the local directory Into Local into which the
file/directory shall be copied. The actual name (first component of the path) will be
With Name.

4.6.3 Copy WC-URL

With Copy WC-URL you can copy your local working-copy content to the repository.
This is the foundation for creating tags, although SmartSVN provides more convenient
functions for this task (see Section 4.7).

The local directory Copy Local will be copied to the repository specified by To Repos-
itory. The target directory is Into Directory, the actual name (first component of the

(© 2005 Th. Singer and M. Strapetz, www.smartsvn.com 23

Chapter 4. SVN Commands

path) will be With Name. As the copy is directly performed into the repository, you also
have to specify a Commit Message.

4.7 Tags

SmartSVN simplifies the handling of “Tags” and “Branches”, which are no native SVN
concepts, but managed with the help of copy commands. Following commands are avail-
able from the Tag/Branch menu.

4.7.1 Add Tag

Use this command to create a copy (“Tag”) of your local working-copy in the “tags” direc-
tory of your repository. This command is similar to Repository|Copy WC to URL (see
Section 4.6.3), but simplifies the special task of “Tagging”. This command requires you
to have your repository layout properly configured in the Project|Settings (see Section
2.2).

4.7.2 Add Branch

Use this command to create a copy (“Branch”) of your local working-copy in the “branches”
directory of your repository. This command is similar to Repository|Copy WC to URL
(see Section 4.6.3), but simplifies the special task of “Branching”. This command re-
quires you to have your repository layout properly configured in the Project|Settings
(see Section 2.2).

4.7.3 Tag Browser

Use the Tag Browser to display all tags and branches of your project at one glance.
This command requires you to have your repository layout properly configured in the
Project|Settings (sec Section 2.2).

Tip You can invoke the Tag Browser also from tag or branch name input
fields by clicking the right ellipsis button.

4.8 Queries

SmartSVN offers following non-modifying commands (locally and on the repository) by
the Query menu.

(© 2005 Th. Singer and M. Strapetz, www.smartsvn.com 24

Chapter 4. SVN Commands

4.8.1 Compare

Use this command to compare single, local files with the corresponding (backup copy of
the) revision from the repository. No connection to the server is required.

4.8.2 Log

Use this command to display the change history of a file or directory. You can specify
how far back in history the changes should be displayed.

If the Log was invoked on a directory, it will show the revisions including all affected files.
If it was invoked on a file, only the revisions which contain the file will be displayed.

4.8.3 Annotate

Use the Annotate command to view the “history” of a file on a per-line basis.

Similar to the Log command (see Section 4.8.2), you can configure the period of time for
which the annotated view shall be calculated.

After performing this command, an Annotate window of the selected file will come up.
It shows each line prefixed by the line number, revision number, author and date. These
values are corresponding to the revision for which the line has been added or has been
changed for the last time. You can use the Color By to change the way of the line
coloring. With Revision two colors are used, denoting lines older or younger than the
selected revision. Age fades colors from blue to red denoting the age of the line. The age
itself is either linearily interpolated by the corresponding Revision or by the actual Time.
With Author, each line gets the color of its author, where author colors are randomly
assigned.

4.8.4 Change Report

Use the Change Report to get a quick overview over all your local file changes. You either
can invoke it on multiple selected files or direct from a directory.

4.8.5 Create Patch

Use the Create Patch command to create a “Unidiff” patch for the selected files or di-
rectory. Such patches show the changes on a per-line basis of you working, which can for
instance be sent to other developers.

The patch will be written to the local Output File. In case of creating a patch for a
directory, you can select Recurse into subdirectories to create the patch+ recursively

(© 2005 Th. Singer and M. Strapetz, www.smartsvn.com 25

Chapter 4. SVN Commands

for all files within the selected directory.

4.8.6 Create Patch between URLs

Use the Create Patch between URLs command to create a “Unidiff” patch between to
arbitrary SVN URLs. See also Section 4.8.5 for more details on patches.

The base URL is specified by Profile 1, Path 1 and Revision 1. The URL to which the
differences shall be calculated is specified by Profile 2, Path 2 and Revision 2. The patch
itself will be written to the local Qutput File.

By default, creating patches takes the ancestry into account. This can be important
when you are creating a patch from one branch to another, but have renamed a file in
one branch only. If you don’t need this behaviour, select Ignore ancestry.

Select Recurse into subdirectories to patch not only the files in the directory itself which
has been specified by the URL, but also those from subdirectories.

4.9 Properties

Both, files and directories can have properties attached to them. There exists a set of
predefined properties, which are used by SVN itself to manage the working copy. All other
properties are “User-defined” properties. Following commands are related to properties
and are available from the Properties menu.

4.9.1 Edit Properties

This command allows you to display and edit properties of a file or directory.

The table displays all properties of a file/directory with their Name, Current Value and
Base Value (the value as found in the repository for the current’s file revision). Similar
to the File Compare, changes in property values between current and base value are
hightlighted by different colors.

To enter a new property, select the last (empty) line in the table, enter the property’s
name and its value, then click Add. To create a copy from another property, select the
original property, change the property’s name and maybe its value, then click Add. To
change a property, select it in the table, change the name or the value and click Apply.
To delete a property, select it and click Delete.

Note Internal SVN properties starting with svn can’t be edited directly.
However, SmartSVN offers special commands in the Properties
menu for most of them.

(© 2005 Th. Singer and M. Strapetz, www.smartsvn.com 26

Chapter 4. SVN Commands

4.9.2 Change File Type

Use this command to change the SVN-type of the selected files. The file type can be either
a Text or Binary type, choose Don’t change to leave all file types as they are currently.

The file types are relevant for some SVN operations, for instance updating, where in case
of Text files, line endings, etc. can be replaced. By default, when adding files (see Section
4.5.1), the file type is automatically determined by SmartSVN. In general this dectection
is correct, but in certain cases you may want to explicitly change the type of the file by
this command.

4.9.3 Change Line Separators

Use this command to change the line separators of the selected files. Line separators are
important when updating or checking out a file. The option Platform Dependent uses
platform’s native line separators. This option is set by default to all added text files. It
is the preferred option if you develop the same project on different platforms.

4.9.4 Change Keyword Substitution
Use this command to select the keywords for the selected files, which should be substituted
(expanded) locally. Keyword substitution only works for text files.

For each keyword you have the option to Set or Reset it. Select Don’t change, to leave
this special keyword set as it was.

4.9.5 Change Executable Property

Use this command to change the “Executable Property” of the selected files. The “Exe-
cutable Property” is a versioned property, but only used on Unix(-like) platforms, where
it defines wether the “Executable Flag” should be set to a file or not.

Choose Executable if the “Executable Property” should be assigned to the file(s), Don’t
Change to leave the executable property as it is currently set for each file or Non-
Executable to remove the property form the selected file(s).

4.9.6 Edit Externals

Use this command to define or change externals.

(© 2005 Th. Singer and M. Strapetz, www.smartsvn.com 27

Chapter 4. SVN Commands

Example

To include the external http://server/svn/foo as directory bar/bazz at revision
4711 into your project, select directory bar and invoke Properties|Edit Externals.
Enter bazz into the Local Path input field, http://server/svn/foo into the URL
input field, 4711 to the Revision input field and click Add. After committing your
property change, an update on bar will create the subdirectory bar/bazz with the
content from http://server/svn/foo.

Tip It is safer to always set a Revision to externals definitions. In this
way you always know what you are currently working with and you
later have the control over evaluating younger versions (revisions)
of the used external.

4.9.7 Edit Ignore Patterns

Use this command to add, change or delete ignore patterns for the current directory, which
define files/directories to be ignored within this directory. To add an ignore pattern, you
can also use the Modify|lgnore command.

4.10 Remote State

The remote state signals, what would happen in case of an update on HEAD (see Section
4.3.1). The remote state of files is displayed in the file table column Remote State. See
Table 4.1 for the list of possible remote states of files an directories.

Name

Meaning

Latest

Will be modified

Will be removed

Will be added

Obstructed

The local file is equal to the latest revision of this file in the reposi-
tory. An update on this file will bring to changes.

For the local file there exists a newer revision in the repository. An
update will bring the corresponding changes for this file.

The local file has been removed in the repository. An update will
remove the file locally.

This file does not exists locally currently in a versioned state. An
update will add this file.

For the local there is something wrong, either locally or locally in
combination with the repository. For instance for the local file, the
the latest repository revision might contain a directory with the
same name.

Figure 4.1: Remote State Types

To display the complete remote state information, especially the “Will be added” state,
it may be necessary to add directories and files to tree resp. table, which do no exists

(© 2005 Th. Singer and M. Strapetz, www.smartsvn.com 28

Chapter 4. SVN Commands

locally. To such directories and files the special local state “Remote” is assigned, see Table
3.3 and Table 3.1.

4.10.1 Refresh Remote State

With Refresh Remote State SmartSVN will query the repository and compare the latest
repository revision with your local working copy. In this way to each file the corresponding
remote state is assigned. This command will also automatically show the Remote State
column within the file table.

Additionally to the remote state, this command will also refresh the lock states of the
selected files/directories (see Section 4.11).

4.10.2 Clear Remote State

Use this command to clear and hide the remote state. This will remove all directories
and files which have the local state “Remote” (see Table 3.3 and Table 3.1) and hide the
Remote State file table column.

4.11 Locks

With Subversion 1.2, explicit file locking is supported. File locking is especially useful
when working with binary files, for which merging is not possible.

For each file, its’s lock states is displayed in the file table column Lock. For the list of
possible lock states, refer to Table 4.2.

Name Meaning

(Empty) The file is not locked.

Self The file is locked for the local working copy.

Stolen The file was locked for the local working copy but in the meanwhile has
been stolen by someone other in the repository.

Broken The file was locked for the local working copy, but in the meanwhile has

been unlocked (by someone other) in the repository.
(Username) The file is currently locked by the named user.

Figure 4.2: Lock States

The “Selt” state can be filled by SmartSVN when scanning the local working copy. Please
note, that this state can change, when scanning the repository (see Section 4.11.1), as the
lock might actually be “Stolen” or “Broken”.

(© 2005 Th. Singer and M. Strapetz, www.smartsvn.com 29

Chapter 4. SVN Commands

4.11.1 Scan Repository

With this command, SmartSVN will scan the selected files or all files within the selected
directory in the repository for locks. The result is displayed in the file table column Lock.
This column is automatically made visible, if necessary.

4.11.2 Lock

With the Lock command, you can lock the selected files in the repository. You can enter
a Comment, why you have locked these files.

The option Steal locks if necessary, will lock the requested files regardless of their current
lock state (in the repository). In this way it can happen that you “steal” the lock from
other users, what can lead to confusion, when the other user continues working on the
locked file. Hence, use this option only if necessary (e.g. if someone is on holiday and has
forgotten to unlock important files).

4.11.3 Unlock

With the Unlock command, you can unlock the selected files in the repository.

The option Break locks, will unlock the requested files even, if they are not locked locally.
In this was it can happen that you “break” the lock from others users, what can lead to
confusion for the other one.

4.11.4 Show Info

This commands shows information on the lock state (in repository) of the selected file.

State shows the current lock state (see Table 4.2). Token ID is the SVN Lock Token ID,
which is normally to relevant for the user. Owner is the name of the user, who currently
owns the lock. Created At is the time, when the lock has been set. Expires At is the
time, when the lock will expire. Needs Lock indicates, whether this file needs locking,
i.e. the “Needs-Lock” property is set (see Section 4.11.5. Comment is the lock comment,
as entered by the user at the time of locking.

4.11.5 Change Needs-Lock

By this command, files can be marked/unmarked to require locking. This is useful to
indicate to users, that they should lock the file before working with it. One aspect of this
indication is, that SmartSVN will set files which require locking (due to this property) to
read-only when checking out, or updating.

(© 2005 Th. Singer and M. Strapetz, www.smartsvn.com 30

Chapter 5

Repository Browser

The Repository Browser allows direct scanning and manipulations of the repository. You
can start the repository browser by Repository|Browse. Commands like Checkout or
Create Module provide inbound repository browsers. Commands like Copy WC-URL
provide editors, from which a repository browser can be launched.

The repository browser displays the repository content with a directory tree and a file
table, similar to the Main Window. In contrast to the Main Window, the repository
file system is only scanned on demand. This happens when currently unscanned (gray)
directories are expanded. To change the browsed repository, use Repository|Open.

From the Repository Menu you can use Filter Revisions to change the browsed revision.
This results in a complete refresh of the displayed repository content and may take a
while. You can also explicitly refresh the content by View|Refresh.

5.1 Checkout

You can checkout the selected directory by Repository|Checkout. SmartSVN will then
display a simplified Checkout wizard. For details refer to Section 4.1.

5.2 Modifying the repository

The Modify menu provides different ways for direct modifications of the repository.

You can use Create Directory to create a new directory in the currently selected directory.
Enter Directory Name and a Commit Message, which is automatically constructed, as
long as you don’t modify it manually.

With Remove you can remove the currently selected directory or file from the reposi-
tory and enter a corresponding Commit Message. Of course, the directory/file is not

31

Chapter 5. Repository Browser

destroyed, but only removed for the next revision.

Use Copy to create a copy of the selected directory. The directory Copy From will be
copied to Destination Path with the attached Commit Message. See also Section 4.6.1.

5.3 Querying the repository

The Query menu provides commands to query for certain information from the repository.

With Log you can display the log for the currently selected directory or file. For details
refer to Section 4.8.2.

With Annotate you can display an annotated view of a file’s content. For details refer to
Section 4.8.3.

(© 2005 Th. Singer and M. Strapetz, www.smartsvn.com 32

Chapter 6

Repository Profiles

The Repository Profiles contain all settings which are necessary to establish a connection
to a repository. They can be configured from the Main Window and from the Repository
Browser by Repository|Manage Profiles.

6.1 Profiles

On the Profiles tab, you can configure connection settings for the SVN Repository itself.
The table shows all currently known profiles. You can Add, Edit or Delete a profile.
To change the order of the profiles, use Move Up and Move Down. The order of the
profiles affects the search for a matching profile, when connecting to a repository; the
list is searched from top to bottom. In this way you can create multiple profiles for one
repository with different settings, e.g. authenticated access for certain subdirectories and
anonymous access for the whole repository.

For a profile you have to configure the URL by protocol type, e.g. Http, etc., Server
Name, Repository Path and Server Port. For the Server Port you have the option to
use the Default port, or use a Non-Default port. Alternatively, you can use Enter SVN
URL to configure this part of the profile.

In cases of Http or Https connections, choose Use Proxy if you want to connect via a
proxy server (see Section 6.4 for more details). For the Login you can either choose to
login Anonymously or with User Name/Password. In the second case, you have the
option to store the Password on disk.

Note All passwords are stored in a file called passwords.xml, which
can be found in SmartSVN’s home directory, which is by default
the .smartsvn within your home directory. Passwords are en-
crypted in a simple way which is NOT SAFE! Therefore don’t
store valuable passwords on a machine, where other users can access
passwords.xml file.

33

Chapter 6. Repository Profiles

For displaying on the Ul, a name is assigned to every repository profile. Choose either Use
Repository URL As Profile Name or Use This Profile Name and enter a corresponding
name.

With Verify connection when pressing 'OK’ selected, SmartSVN will try to connect to
the specified repository. This test requires only read access. Therefore, depending on the
configuration of your repository, User Name and Password might not be required and
hence are not verified.

6.2 SSL

On the SSL tab, you can configure SSL connection settings, which might be required when
connecting to an SVN Repository. For every host (and port) the table shows exactly one
SSL configuration. You can Edit or Delete existing configurations.

In the configuration window for one host, you have the option to Enable Client Authen-
tication if this is required by your SSL server. In this case choose the required Client
Certificate File and enter the corresponding Client Certificate Passphrase which is used
to protect your certificate. You can choose to Store passphrase on disk, but note that
passwords are NOT SAFE (see Section 6.1)!

In the bottom of the window, the internally stored MD5 Fingerprint and SHA Fin-
gerprint are displayed. Both fingerprints are calculated by the last certificate in the
certificate chain (this is the certificate of the site you are connecting to), which is sent
when connecting to the SSL server.

For the first connection to an SSL server, SmartSVN will ask if you are willing to trust
the server by presenting these fingerprints. For subsequent connections, SmartSVN will
check against those accepted fingerprints and will warn you in case of a mismatch.

6.3 SSH

On the SSH tab, you can configure SSH connection settings, which might be required
when connecting to an SVN Repository. For every host (and port) the table shows exactly
one SSH configuration. You can Edit or Delete existing configurations.

In the configuration window for one host, enter the Username for the SSH login. You have
the option to either authenticate by Password or by a Public Key. In case of Password
authentication, enter the corresponding password. You can choose to Store password
on disk, but note that passwords are NOT SAFE (see Section 6.1)! In case of Public
Key authentication, enter the path to your public key file and the Passphrase, if required
to access your public key. You can choose to Store passphrase on disk, but note that
passwords are NOT SAFE (see Section 6.1)!

(© 2005 Th. Singer and M. Strapetz, www.smartsvn.com 34

Chapter 6. Repository Profiles

6.4 Proxies

On the Proxies tab, you can configure a proxy, which can be used to connect to SVN
repository over protocol HTTP/HTTPS. Even if a proxy is configured, the actual use
for connecting to certain repository also depends on the Use Proxy option within the
corresponding profile’s configuration (Section 6.1).

First, you have to decided whether to Use this proxy for HTTP- and HT TPS-connections
or to completely deactivate the proxy.

For the proxy host, you need to enter Server Name and Server Port. For Login, select
Anonymous if the proxy itself requires no authentication or User Name/Password. In
the second case, specify the required Username and Password. You can choose to Store
password on disk, but note that passwords are NOT SAFE (see Section 6.1)!

(© 2005 Th. Singer and M. Strapetz, www.smartsvn.com 35

Chapter 7

Preferences

The application preferences define the global behaviour of SmartSVN, regarding UI, SVN
commands, etc. Contrary to the project settings (see Section 2.2), these preferences apply
to all projects.

Tip The preferences are stored in a file called settings.xml in
SmartSVN’s home directory.

7.1 Refresh

These settings configure the behaviour of refreshing the file system.

7.1.1 Refresh Behaviour

Here you can configure how the manual Refresh by View|Refresh (see Section 3.1) be-
haves.

You have the option to refresh Always root directory. In this case the directory selection
in the tree does not matter, but always the whole project is refreshed. This option requires
the most effort, but will guarantee that after changing the selection in the tree, displayed
data is still up to date (relative to the last refresh time).

You can also choose to refresh only the Selected directory recursively. This option can
be useful, if you know, that you are only working a specific part of your whole SVN
project.

The option Selected directory (recursively if set for view) also refreshes only the se-
lected directory. Whether this refresh is recursive or not, depends on if View|Files From
Subdirectories is selected. This option is the fastes way of refreshing as it is most selec-
tive, but it requires you to be always aware of which directories you have refreshed and
hence which information displayed in directory tree and file table are actually up to date.

36

Chapter 7. Preferences

7.1.2 Refresh on frame activation

SmartSVN can also automatically perform a full refresh of the project after it gets the
focus back. This can be useful if you are working a time on your project (e.g. in an IDE),
then decide to check and commit your changes and hence get back to SmartSVN.

You have either the option to disable automatic refresh by Never, have an immediate
refresh by Immediately or have only a refresh, if SmartSVN has been inactive for at least
5 seconds by After more than 5 seconds of deactivation. This option is useful, if you
typically switch to other applications for a short period of time and do not want to trigger
automatic refresh. This last option is only available on non-Windows platforms, as on
windows as special d11 is loaded, which makes the refresh more efficient and will only
refresh if necessary.

7.2 External Tools

These settings configure external tools, which can be invoked by the Open/Edit command,
available from Edit menu.

You can link a specific File Patterns to externals tools. A tool is defined by the Operating
System Command to be executed, and its Arguments. Arguments are passed to the
Command as it would occur from OS command line. Additionally the place holder
${filePath} should be used, which is substituted by the absolute file path of the file
(from the file table), on which the command is invoked. You can also choose to run the
command in SmartSVN'’s working directory or in the File’s directory.

Example

To configure Acrobat Reader (TM) as the default editor (viewer) for PDF-files, enter
*.txt for File Pattern, the path of Acrobat Reader Executable (e.g. on Windows
acrord32.exe) for Command and leave ${filePath} for Arguments.

7.2.1 Directory Command

The View|Open command can also be performed on directories. For this case a Directory
Command can be configured.

To be able to use View|Open on a directory, you need to Enable Open Directory Com-
mand. Then you can configure as for files, the Command which shall be executed and
the Arguments to be passed. The directory command will always be executed in the
selected directory.

Example
On Windows, to open the command shell for a selected directory, enter cmd.exe for
Command and /c start cmd.exe for Arguments.

(© 2005 Th. Singer and M. Strapetz, www.smartsvn.com 37

Chapter 8

TMate

The TMate feature is a simple version of TMate’s plugins (http://www.tmatesoft.com)
for IntelliJ] IDEA. It collects information on repository transactions in the background
and presents them in the lower left TMate window.

The window lists the collected transactions, starting with the youngest one. By the
selector toolbar button you can switch to different predefined views. Depending on the
selected view, the layout of the tree might differ, but transaction nodes will always be
displayed. Within a transaction node the contained directories/and files are displayed.

The main menu bar contains a separate TMate menu, which allows you to Refresh or
Reindex the local TMate database. Refresh collects new information on transactions
since the last known (and displayed) transaction. Reindex can be used to completely
rebuild the database by recollecting all information since repository birth. Reindexing is
usually not necessary, but it can be helpful, if the local database should get corrupted by
a system crash, etc. For a selected transaction you can open the Change Report, which
displays the inner-file changes.

With Settings you can configure TMate. Select Manual Refresh to leave the task of
updating the TMate database to yourself. Otherwise you can instruct TMate to do an
Automatic Refresh which will be performed repeatedly after the specified Refresh Each
time. You can also customize the display text of transactions by Display transaction
time, Display transaction author and Display transaction file count.

38

	Introduction
	Project
	Project Manager
	Project Settings
	Repository Layout
	Working Copy
	Global Ignores
	Default Settings

	Main Window
	Directory Tree and File Table
	Directory States/Directory Tree
	File States/File Table
	The Focus
	Refreshing

	Menus
	Edit Menu
	Window Menu
	Help Menu

	SVN Commands
	Checkout
	Create Module
	Updating
	Update
	Switch
	Switch to URL
	Relocate
	Merge
	Merge from URL

	Commit
	Local Modifications
	Add
	Ignore
	Remove
	Delete Physically
	Rename
	Move
	Smart Move
	Copy
	Revert
	Resolve

	Repository Copies
	Copy URL-URL
	Copy URL-WC
	Copy WC-URL

	Tags
	Add Tag
	Add Branch
	Tag Browser

	Queries
	Compare
	Log
	Annotate
	Change Report
	Create Patch
	Create Patch between URLs

	Properties
	Edit Properties
	Change File Type
	Change Line Separators
	Change Keyword Substitution
	Change Executable Property
	Edit Externals
	Edit Ignore Patterns

	Remote State
	Refresh Remote State
	Clear Remote State

	Locks
	Scan Repository
	Lock
	Unlock
	Show Info
	Change Needs-Lock

	Repository Browser
	Checkout
	Modifying the repository
	Querying the repository

	Repository Profiles
	Profiles
	SSL
	SSH
	Proxies

	Preferences
	Refresh
	Refresh Behaviour
	Refresh on frame activation

	External Tools
	Directory Command

	TMate

