
The Scrap Your Boilerplate Pattern in Java

(Draft)

Sven Eric Panitz
www.panitz.name

29th March 2005

Abstract

It is shown how the scrap your boilerplate design pattern, which has been presented in
the functional programming community, can easily be implemented in Java. It addresses
generic programming of tree traversal. Generic methods for traversing an arbitrary tree
structure are presented. The actual application logic will be clearly seperated from the
boilerplate traversal code. A crucial rôle for the basic tree traversion plays the interface
Iterable, which has been added to the latest version of the Java API .

1 Introduction

Genericity is the key to software reuse. Generic code solves general problems and can be
specialized to specific problems. A general problem is the handling of hierarchical data. Almost
all interesting data is hierarchical data. XML[T. 04], the universal data exchange format pays
tribute to this fact. XML documents represent a hierarchical structure. In object oriented
languages tree nodes are represented by different classes. Child nodes are represented as fields
of these classes. Number, type and name of fields representing child nodes are arbitrary.

Quite often the classes representing tree nodes are generated by some tool, as e.g. by the parser
generator tool javacc or for some XML DTD.

A common programming task for tree like structures is to traverse through the tree. Generally
two different task may be archieved during traversal:

• certain tree nodes may be modified,

• or certain information may be collected from the tree.

In object oriented languages there are mainly two ways how tree traversal may be put into
realization:

• in a pure object oriented manner: classes representing tree nodes contain specialized
methods for different tasks.

• in a functional way by means of the visitor pattern[GHJV95]: tree classes implement an
interface Visitable. Algorithms can be expressed by terms of visitor classes. A visitor
class overloads a function for every kind of tree node.

1

2 THE PROBLEM 2

Both ways are not generic. Both require that the tree traversal code is implemented for every
node type. Even worse, in both cases the tree traversal code mixes with the actual application
logic. Thus the tree traversal code gets duplicated for every algorithm working on the tree.
The methods in the tree node classes or the overloaded methods visits in the visitor need to
code, how to access the child nodes.

Furthermore, both techniques are not very flexible as in respect to program evolution. If in the
object oriented scenario a new class is added, then this class needs to implement all methods,
which for some reason traverse over the tree. A visitor class, on the other hand is only applicable
to a certain type of tree node. It is specialized for some type. If a new node class is added to
the tree type, then every visitor needs to implement a new overloaded method variant for the
new class.

A generic way for tree manipulation will clearly seperate the tree traversal code and the actual
application logic. Furthermore it will be very flexible in terms of programm evolution: new
classes arriving on the scene will not force any changes in the existing code.

A simple pattern for tree traversal has been proposed for the programming language
Haskell[PJ03]. The scrap your boilerplate code pattern[LP03][LP04] factors out the tree traver-
sal code and makes it reusable for different algorithms. We will apply this pattern to the
programming language Java.

The paper is structured as follows: in section 2 the problem to be solved is presented by
way of a concrete example taken from [LP03]. Section 3 gives some näıv non generic so-
lutions to the problem. Section 4 implements a generic tree transformer and section 5
implements a generic query method for trees. Both implementations are refined in sec-
tion 6. The Java code within this paper is complete and can be downloaded from the web
(http://panitz.name/paper/boilerplate/index.html) .

2 The Problem

We use the same example as presented in [LP03]. It is a simple company structure, which can
be expressed by the following XML document type definition.

company.dtd
1 <!DOCTYPE Company SYSTEM "company.dtd" [
2 <!ELEMENT Company (Dept)*>
3 <!ELEMENT Dept (Name,Employee,(PU|DU)*)>
4 <!ELEMENT PU (Employee)>
5 <!ELEMENT DU (Dept)>
6 <!ELEMENT Employee (Person,Salary)>
7 <!ELEMENT Person (Name,Address)>
8 <!ELEMENT Salary (#PCDATA)>
9 <!ELEMENT Name (#PCDATA)>

10 <!ELEMENT Address (#PCDATA)>
11]>

This definition gives directely rise to a Java implementation. For every element type defined
in the DTD we can provide a Java class. The child elements are represented by way of fields
in these classes. For the alternative operator | of several child elements as e.g. expressed in
(PU|DU) a common superinterface for the classes PU and DU can be defined. For the repetitive
occurrence of child elements as e.g. (Dept)* the standard Java interface List is used.

Java classes for the DTD above are given in appendix A. Usually some generator tool can be
used to generate classes from a DTD or from a XML schema definition.

2 THE PROBLEM 3

Throughout this paper we will work with an example instance of Company. It is the same
example instance as used in [LP03].1

MyComp.java
1 package name.panitz.boilerplate;
2 import java.util.*;
3 class MyComp{
4 static Company getCompany(){
5 Company company= new Company();
6 Employee blair= new Employee(new Person("Blair","London"),new Salary(100000.0));
7 Employee nn=new Employee(new Person("NN","Mars"),new Salary(90000.0));
8 Employee marlow=new Employee(new Person("Marlow","Cambridge"),new Salary(2000.0));
9 Employee joost = new Employee(new Person("Joost","Amsterdam"),new Salary(1000.0));

10 Employee ralf = new Employee(new Person("Ralf","Amsterdam"),new Salary(8000.0));
11 List<SubUnit> ralfSu = new ArrayList<SubUnit>();
12 ralfSu.add(new PU(joost));ralfSu.add(new PU(marlow));
13 company.add(new Dept("Research",ralf,ralfSu));
14 company.add(new Dept("Strategy",blair,new ArrayList<SubUnit>()));
15 ralfSu.add(new DU(new Dept("Research2",nn,new ArrayList<SubUnit>())));
16 return company;
17 }
18 }

Tasks to be solved for a structure like the company above are:

• increase the salary of each employee.

• liquidate a certain sub department.

• sum up all salary numbers for an overall salary bill of the company.

• represent the company by a String.

• compare two companies for equality.

• represent the company in an XML document.

All these task need to travers the company. This will make it necessary to rewrite the traversal
code for each of these tasks. We want traverse tree structures in a generic way, i.e. write the
traversal code once for all.

The domain specific language XSLT[Wor99], the for transforming XML documents gives us some
hints on how this can be achieved in Java. In XSLT rules for nodes with a certain condition
can be expressed. Elements nodes, which do not match any of these conditions simply traverse
to the child nodes. XSLT allows to express default templates of how to traverse for elements,
which do not match any specific rule. The first of the above tasks can easily be expressed in
XSLT by:

IncreaseSalary.xsl
1 <?xml version="1.0" encoding="iso-8859-1" ?>
2 <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
3 <xsl:template match="Salary">
4 <xsl:variable name="arg1"><xsl:apply-templates select="text()"/></xsl:variable>
5 <Salary><xsl:value-of select="$arg1 * 1.17" /></Salary>
6 </xsl:template>
7 <xsl:template match="*">
8 <xsl:copy select="*" ><xsl:apply-templates/></xsl:copy >

1Not quite it is extended with a subdepartment, otherwise one of the algorithms in this (as well as in the
original paper) does not have any effect.

3 NAÏVE HAND CODED INSTANCES 4

9 </xsl:template>
10 </xsl:stylesheet>

Note that this XSLT program will work on any XML document. It is not necessary that the
document is structured according to some schema or DTD. It will automatically traverse the
complete document and increase the numbers found within every Salary node. XSLT relies on
the fact that XML documents are trees. The <xsl:apply-templates/> apllies to the direct
children of the current node. We would like to get an comparatively simple solution for this
task in Java.

3 Näıve hand coded instances

In the previous section it turned out that the notion of child nodes is crucial for any tree
traversal. In order to result in some generic tree traversal code, we will need some uniform
method of how to retrieve the direct child nodes of some node. For this we can instrumentalize
Java’s standard interface Iterable. We will use Iterable such that it will not iterate over
all descendents of a tree node, but only its direct children. In fact this is what we did for
the classes representing the Company DTD as can be found in appendix A. Since the type of
the child nodes is arbitrary we implemented the most general instantiation of the interface:
Iterable<Object>.

3.1 Show

With iterator over the direct child nodes, the boilerplate code allready implodes to a minimal
amount. As an example we give an implementation of a generic show method. Thanks to Java’s
new for-each loop the tree traversal boilerplate code is just one line.

Show.java
1 package name.panitz.boilerplate;
2 class Show{
3 static String show(Object o){
4 StringBuffer result = new StringBuffer();
5 if (o instanceof Iterable) {
6 result.append("new "+o.getClass().getSimpleName()+"(");
7 boolean first = true;
8 for (Object x:((Iterable)o)){ //the tree traversal code
9 if (first) first=false;else result.append(",");

10 result.append(show(x));
11 }
12 result.append(")");
13 }else result.append(o);
14 return result.toString();
15 }
16 }

This method calculates a String representation for any object. If the object is iterable, we will
traverse its child nodes.

TestShow.java
1 package name.panitz.boilerplate;
2 class TestShow{
3 public static void main(String [] args){
4 System.out.println(Show.show(MyComp.getCompany()));}}

4 GENERIC TRANSFORMERS 5

4 Generic Transformers

In this section, we will generalize the traversal code. The actual application logic will be
encapsulated in a method transform. We can define an interface for this method:

Transformer.java
1 package name.panitz.boilerplate;
2 interface Transformer{void transform(Object o);}

The generic tree traversal code is divided onto two methods. The first method is a generic map
function. It iterates over the direct child nodes of the argument node and applies the transform
method to these:

Transform.java
1 package name.panitz.boilerplate;
2 abstract class Transform implements Transformer{
3 public void gmap(Object x){
4 if (x instanceof Iterable) for (Object a:((Iterable)x)) transform(a);
5 }

For the complete traversal of the tree, the method everywhere is provided. it needs an inner
Transform object, which will be cached:

Transform.java
6 Transform everywhereT = null;
7 public void everywhere(Object x){

The inner everywhere transformer will recursively call the method everywhere of this trans-
former:

Transform.java
8 final Transform dies = this;
9 if (everywhereT==null)

10 everywhereT
11 = new Transform(){public void transform(Object o){dies.everywhere(o);}};

Now we can use the generic map function to recurse everywhere into the child nodes. Afterwards
we can apply the actual transform method to the root node:

Transform.java
12 everywhereT.gmap(x);
13 transform(x);
14 }
15 }

The technique of providing a general map function for the direct children of an node is not very
novel, e.g. [CF92] a tree like data definition induces the compiler to generate a map function.

4.1 Example: increase of all salary

Now we can implement a very simple solution to the first task of increasing the salary in every
salary node of the tree. We can achieve this by extending the abstract class Transform where
we implement the method transform according to our needs.

4 GENERIC TRANSFORMERS 6

Increase.java
1 package name.panitz.boilerplate;
2 import java.util.*;
3 class Increase extends Transform{
4 Double k; Increase(Double k){this.k=k;}
5 public void transform(Object o){
6 if (o instanceof Salary){Salary s = (Salary)o;s.amount=s.amount*(1+k) ;}
7 }
8 }

This looks even simpler than the XSLT solution. We do not need to bother about the tree
traversal code. Applying this transformer to out company is equally as easy and straightfor-
ward.2

TestIncrease.java
1 package name.panitz.boilerplate;
2 class TestIncrease{
3 public static void main(String [] args){
4 Company company = MyComp.getCompany();
5 for (int i=0;i<100000;i++)
6 new Increase(.000017).everywhere(company) ;
7 System.out.println(Show.show(company));}}

4.2 Example: flatten company structure

The second of the task stated in the beginning of this paper, was to liquidate certain subdepart-
ments and integrate its employees into the next upper department. As we see, this is allready a
rather complex application taks. Fortunatly we no longer are concerned with the tree traversal
code and can concentrate on the actual task at hand:

Flatten.java
1 package name.panitz.boilerplate;
2 import java.util.*;
3 class Flatten extends Transform{
4 String deptName;
5 Flatten(String deptName){this.deptName=deptName;}
6 public void transform(Object o){
7 if (o instanceof Dept){
8 List<SubUnit> newSus=new ArrayList<SubUnit>();
9 Dept d = (Dept)o;

10 for (SubUnit su:d.subUnits){
11 if (su instanceof DU){
12 Dept du= ((DU)su).dept;
13 if (du.name.equals(deptName)){
14 newSus.add(new PU(du.manager));newSus.addAll(du.subUnits);
15 }else newSus.add(su);
16 }else newSus.add(su);
17 }
18 d.subUnits=newSus;
19 }
20 }
21 }

This new transformer can be applied to our company in the same way as the Increase trans-
former.

2We apply this transformer 100000 times. This is done for some rough performance measure later in the
paper.

4 GENERIC TRANSFORMERS 7

TestFlatten.java
1 package name.panitz.boilerplate;
2 class TestFlatten{
3 public static void main(String [] args){
4 Company company = MyComp.getCompany();
5 new Flatten("Research2").everywhere(company);
6 System.out.println(Show.show(company));}}

Note, that our transformers work on any object. We do not need to know the exact tree
structure or all classes involved in a company structure. Our algorithms still work, even if new
classes representing new types of subdepartments are added to the company structure.

4.3 Using Reflection

In the solution above, we did not get completely rid of boilerplate code. We needed to specify the
concrete class, for which the method transform is specified. This amounts in the instanceof
construct. It is well known, how to get rid of such conditions by way of Java’s reflection
mechanism, e.g. in [PJ98] generic tree traversal is achieved by way of using reflection. Following
[PJ98] we can implement a generic default instance of the method transform.

TransformReflect.java
1 package name.panitz.boilerplate;
2 class TransformReflect extends Transform{
3 public void transform(Object o){
4 try{getClass().getMethod("transform",o.getClass()).invoke(this,o);
5 }catch(IllegalAccessException _){}
6 catch(IllegalArgumentException _){}
7 catch(java.lang.reflect.InvocationTargetException _){}
8 catch(NoSuchMethodException _){}
9 }

10 }

This method checks the type of the argument and looks up via reflection, if a specialized version
of transform for this class is available. Thus the transformer to increase the salary can simply
be written as:

IncreaseReflect.java
1 package name.panitz.boilerplate;
2 import java.util.*;
3 class IncreaseReflect extends TransformReflect{
4 Double k; IncreaseReflect(Double k){this.k=k;}
5 public void transform(Salary s){ s.amount=s.amount*(1+k) ;}
6 }

This implementation is completely free of any boilerplate code. However, reflection is slow,
very slow. As a rough measure compare execution times of the non-reflective with the reflective
solution:

TestIncreaseReflect.java
1 package name.panitz.boilerplate;
2 class TestIncreaseReflect{
3 public static void main(String [] args){
4 Company company = MyComp.getCompany();
5 for (int i=0;i<100000;i++)
6 new IncreaseReflect(.000017).everywhere(company) ;
7 System.out.println(Show.show(company));}}

5 GENERIC QUERIES 8

Execution of this version compared to the original version gives the following result:

sep@pc216-5:~/boilerplate> time java -cp classes/ name.panitz.boilerplate.TestIncrease

new Company(new Dept(Research,new Employee(new Person(Ralf,Amsterdam),new Salary

(43790.9463569525)),new ArrayList(new PU(new Employee(new Person(Joost,Amsterdam)

,new Salary(5473.868294619063))),new PU(new Employee(new Person(Marlow,Cambridge)

,new Salary(10947.736589238126))),new DU(new Dept(Research2,new Employee(new Pers

on(NN,Mars),new Salary(492648.1465157075)),new ArrayList())))),new Dept(Strategy,

new Employee(new Person(Blair,London),new Salary(547386.8294619016)),new ArrayLis

t()))

real 0m0.912s

user 0m0.849s

sys 0m0.013s

sep@pc216-5:~/boilerplate> time java -cp classes/ name.panitz.boilerplate.TestIncreaseReflect

new Company(new Dept(Research,new Employee(new Person(Ralf,Amsterdam),new Salary

(43790.9463569525)),new ArrayList(new PU(new Employee(new Person(Joost,Amsterdam)

,new Salary(5473.868294619063))),new PU(new Employee(new Person(Marlow,Cambridge)

,new Salary(10947.736589238126))),new DU(new Dept(Research2,new Employee(new Pers

on(NN,Mars),new Salary(492648.1465157075)),new ArrayList())))),new Dept(Strategy,

new Employee(new Person(Blair,London),new Salary(547386.8294619016)),new ArrayLis

t()))

real 0m53.016s

user 0m52.010s

sys 0m0.238s

5 Generic Queries

The transformers in the last section destructively updated the tree. In this section we will
apply the same technique to retrieve some data from the tree. We want to state queries over
the tree data and leave the tree object unchanged. What we have in mind is a simple function
taking a tree and giving some query result. Since functions are not first class citizens in Java,
we express a funtion by way of an interface:

Function.java
1 package name.panitz.boilerplate;
2 interface Function<argType,resultType>{resultType eval(argType x);}

We provide a second interface for binary functions.We resisted the temptation of expressing
these via currying as Function<a,Function<b,c>>.

Function2.java
1 package name.panitz.boilerplate;
2 interface Function2<a,b,c>{c eval(a x,b y);}

We can now apply the same technique for queries as for transformers. We define the generic
query class Query. It is gerneric over the result of the query. With Java’s generic types this
can be elegantly expressed:

Query.java
1 package name.panitz.boilerplate;
2 import java.util.*;
3 abstract class Query implements Function<Object,b>,Function2<b,b,b>{

Traversal is again done in two steps. First we define a generic map method. This method applies
the query to the child nodes and results in the list of results:

5 GENERIC QUERIES 9

Query.java
4 public List gmap(Object x){
5 List result= new ArrayList();
6 if (x instanceof Iterable) for (Object a:((Iterable)x)) result.add(eval(a));
7 return result;
8 }

Analogously to the method everywhere in transformer case we define a method everything.
It applies the same trick. It defines an inner query which traverses over the child nodes. Since
we get a list of results for the child nodes, we need a function to add these up to an overall
result. That is the reason why Query implements Function2<b,b,b>. This function is used to
sum up the partial result to an overall result.

Query.java
1 public b everything(Object x){
2 b result = eval(x);
3 final Query dies = this;
4 Query everythingQ = null;
5 if (everythingQ==null)
6 everythingQ = new Query(){
7 public b eval(Object o){return dies.everything(o);}
8 public b eval(b x,b y) {return dies.eval(x,y);}
9 };

10 for (b y:everythingQ.gmap(x)) result=eval(result,y);
11 return result;
12 }
13 }

A concrete query can now be implemented by extension of class Query. Two methods need to
be implemented: the method eval, which represents the actual query method and the binary
method eval, which defines how to combine partial results. In the example of a salary bill this
might look like:

SalaryBill.java
1 package name.panitz.boilerplate;
2 class SalaryBill extends Query<Double>{
3 public Double eval(Object x){
4 if (x instanceof Salary) return ((Salary)x).amount;
5 return 0.0;
6 }

Note that the method needs an neutral default result.

The second method to be implemented is used to combine partial results. In our example the
simple addition function will do.

SalaryBill.java
1 public Double eval(Double x,Double y){return x+y;}
2 }

Thus we implemented the task of summing up all salaries, without reimplementation of the tree
traversal code.

TestSalaryBill.java
1 package name.panitz.boilerplate;
2 class TestSalaryBill{
3 public static void main(String [] args){
4 System.out.println(new SalaryBill().everything(MyComp.getCompany()));
5 }
6 }

5 GENERIC QUERIES 10

5.1 Back to XML

We started this paper by giving an example as XML document type definition. Eventually we
turn back to XML. The class Query enables us to generically write a query object, which builds
an XML tree for some tree structure. We need some document builder, which we instantiate
once via a factory method:

ToXML.java
1 package name.panitz.boilerplate;
2 import javax.xml.parsers.*;
3 import org.w3c.dom.*;
4 class ToXML extends Query<Node>{
5 static Document doc;
6 static {
7 try{doc = DocumentBuilderFactory.newInstance().newDocumentBuilder().newDocument();
8 }catch (Exception e) {throw new RuntimeException(e);}
9 }

The two eval methods are very simple. We create elements with the class name of the object.
Non iterable types, especially String nodes result in XML text nodes:

ToXML.java
10 public Node eval(Object o){
11 if (o instanceof Iterable)
12 return doc.createElement(o.getClass().getSimpleName());
13 return doc.createTextNode(o.toString());
14 }

The second method eval for combining partial results, inserts the second argument as child to
the first argument.

ToXML.java
15 public Node eval(Node x,Node y){x.appendChild(y);return x;}
16 }

This simple query object generically transforms any hierarchical structure into an XML docu-
ment. For a simple test we generate an XML document for the company.

TestToXML.java
1 package name.panitz.boilerplate;
2 import org.w3c.dom.Node;
3 import javax.xml.transform.*;
4 import javax.xml.transform.dom.DOMSource;
5 import javax.xml.transform.stream.StreamResult;
6 import java.io.StringWriter;
7

8 class TestToXML{
9 public static void main(String [] args){

10 System.out.println(serialize(new ToXML().everything(MyComp.getCompany())));}

We use the following simple method for transforming an XML node to a String:
TestToXML.java

1 static public String serialize(Node doc){
2 try{
3 StringWriter writer = new StringWriter();
4 javax.xml.transform.Transformer t
5 = TransformerFactory.newInstance().newTransformer();
6 t.setOutputProperty(OutputKeys.INDENT,"yes");
7 t.transform(new DOMSource(doc),new StreamResult(writer));

6 CONTROLING THE TRAVERSAL 11

8 return writer.getBuffer().toString();
9 }catch (TransformerException _){return "";}

10 }
11 }

6 Controling the traversal

A close look at the result of the last example reveals that it does not build an XML document
according to the DTD given in section 2. This is not a defect in our implementation of ToXML
but due to the fact that the Java classes for the company do not exactly match this DTD. No
classes for person or department names are given. These are represented directly as a String.

We need specialized cases for certain nodes. Furthermore we need some way to express a cut,
i.e. some means to express, that for this node the automatic tree traversal shall stop. Therefore
we write a refinement of the class Query. A third abstract method is added, the method
condition. It returns true for some arbitrary node, if the tree traversal is supposed to descent
into the child nodes:

QuerySome.java
1 package name.panitz.boilerplate;
2 import java.util.*;
3 abstract class QuerySome<a>
4 implements Function<Object,a>,Function2<a,a,a>{
5 public abstract boolean condition(Object o);

Now the method gmap only descents into the child nodes, if the condition for the current node
is true:

QuerySome.java
6 public List<a> gmap(Object x){
7 List<a> result= new ArrayList<a>();
8 if (condition(x) && x instanceof Iterable)
9 for (Object a:((Iterable)x)) result.add(eval(a));

10 return result;
11 }

The rest of this class is implemented exactly like in the class Query:

QuerySome.java
12 public a everything(Object x){
13 a result = eval(x);
14 final QuerySome<a> dies = this;
15 QuerySome<a> everythingQ = null;
16 if (everythingQ==null)
17 everythingQ = new QuerySome<a>(){
18 public a eval(Object o){return dies.everything(o);}
19 public a eval(a x,a y) {return dies.eval(x,y);}
20 public boolean condition(Object o){return dies.condition(o);}
21 };
22 for (a y:everythingQ.gmap(x)) result=eval(result,y);

6 CONTROLING THE TRAVERSAL 12

23 return result;
24 }
25 }

The class Query could thus be implemented as the specialisation of QuerySome with a constant
true condition.

Query2.java
1 package name.panitz.boilerplate;
2 import java.util.*;
3 abstract class Query2<a> extends QuerySome<a>{
4 public boolean condition(Object o){return true;}
5 }

No we can write a specialized version for creation of an XML documents, which meets the
special needs of the company structure. Special cases for two node classes are given. Further
traversal is stopped for these nodes:

ToXML2.java
1 package name.panitz.boilerplate;
2 import org.w3c.dom.*;
3 import java.util.*;
4 import static name.panitz.boilerplate.ToXML.*;
5 class ToXML2 extends QuerySome<Node>{
6 public Node eval(Object o){
7 if (o instanceof Person){
8 Element p = doc.createElement("Person");
9 Element n = doc.createElement("Name");

10 Element a = doc.createElement("Address");
11 n.appendChild(doc.createTextNode(((Person)o).name));
12 a.appendChild(doc.createTextNode(((Person)o).address));
13 p.appendChild(n);
14 p.appendChild(a);
15 return p;
16 }
17 if (o instanceof Dept){
18 Dept d =(Dept)o;
19 Element result = doc.createElement("Dept");
20 Element n = doc.createElement("Name");
21 n.appendChild(doc.createTextNode(d.name));
22 result.appendChild(n);
23 result.appendChild(everything(d.manager));
24 for (SubUnit su:d.subUnits) result.appendChild(everything(su));
25 return result;
26 }
27 if (o instanceof Iterable)
28 return doc.createElement(o.getClass().getSimpleName());
29 return doc.createTextNode(o.toString());
30 }
31 public boolean condition(Object o){
32 return ! (o instanceof Person||o instanceof Dept);}
33 public Node eval(Node x,Node y){x.appendChild(y);return x;}
34 }

This will generate an XML document according to company.dtd.
TestToXML2.java

1 package name.panitz.boilerplate;
2 import static name.panitz.boilerplate.TestToXML.*;

7 CONCLUSION 13

3 class TestToXML2 extends ToXML2{
4 public static void main(String [] args){
5 System.out.println(serialize(new ToXML2().everything(MyComp.getCompany())));}}

7 Conclusion

The pattern presented in this paper is very simple, general and powerfull. The techniques
presented in the original paper for the programming language Haskell[PJ03] could directly be
adapted to an object oriented framework. Instead of higher order functions subtyping and
late-binding are used. The functions gmap, everywhere and everhting are parameterized by
overridden methods of the transform and query objects.

Things are even simpler than in the Haskell framework, since most necessary means are avail-
able: a common object type and a type instance operator.

The pattern can be implemented without using the Java’s reflection mechanism. Thus it avoids
performance problems concerned with reflection. Reflection can simplify the usage of the pat-
tern, but is not recommendable for reasons of performance.

7.1 Future Work

We did not yet explore if with some minimal and optimized use of reflection, construction of
trees can be implemented with adquate performance. This would enable to write generic code
for the inverse functions to the transformers ToXML or Show.

In [Vis01] a system based on visitor combination is presented. It might be fruitful to apply
these techniques to the transformer presented in this paper.

A Company classes

Company.java

1 package name.panitz.boilerplate;
2 import java.util.*;
3 class Company extends ArrayList<Dept>{}

Dept.java

1 package name.panitz.boilerplate;
2 import java.util.*;
3 class Dept implements Iterable<Object>{
4 String name;
5 Employee manager;
6 List<SubUnit> subUnits;
7 Dept(String name,Employee manager,List<SubUnit> subUnits){
8 this.name=name;this.manager=manager;this.subUnits=subUnits;}
9 public Iterator<Object> iterator(){

10 List<Object> result = new ArrayList<Object>();
11 result.add(name);result.add(manager);result.add(subUnits);
12 return result.iterator();
13 }
14 }

SubUnit.java

1 package name.panitz.boilerplate;
2 import java.util.*;
3 class SubUnit implements Iterable<Object>{
4 public Iterator<Object> iterator(){return new ArrayList<Object>().iterator();}
5 }

REFERENCES 14

PU.java

1 package name.panitz.boilerplate;
2 import java.util.*;
3 class PU extends SubUnit{
4 Employee employee;
5 PU(Employee employee){this.employee=employee;}
6 public Iterator<Object> iterator(){
7 List<Object> result = new ArrayList<Object>();result.add(employee);
8 return result.iterator();
9 }

10 }

DU.java

1 package name.panitz.boilerplate;
2 import java.util.*;
3 class DU extends SubUnit{
4 Dept dept;
5 DU(Dept dept){this.dept=dept;}
6 public Iterator<Object> iterator(){
7 List<Object> result = new ArrayList<Object>();result.add(dept);
8 return result.iterator();
9 }

10 }

Employee.java

1 package name.panitz.boilerplate;
2 import java.util.*;
3 class Employee implements Iterable<Object>{
4 Person person;Salary salary;
5 Employee(Person person,Salary salary){this.person=person;this.salary=salary;}
6 public Iterator<Object> iterator(){
7 List<Object> result = new ArrayList<Object>();
8 result.add(person);result.add(salary);
9 return result.iterator();

10 }
11 }

Person.java

1 package name.panitz.boilerplate;
2 import java.util.*;
3 class Person implements Iterable<Object>{
4 String name;String address;
5 Person(String name,String address){this.name=name;this.address=address;}
6 public Iterator<Object> iterator(){
7 List<Object> result = new ArrayList<Object>();
8 result.add(name);result.add(address);
9 return result.iterator();

10 }
11 }

Salary.java

1 package name.panitz.boilerplate;
2 import java.util.*;
3 class Salary implements Iterable<Object>{
4 Double amount;
5 Salary(Double amount){this.amount=amount;}
6 public Iterator<Object> iterator(){
7 List<Object> result = new ArrayList<Object>();result.add(amount);
8 return result.iterator();
9 }

10 }

References

[CF92] Robin Cockett and Tom Fukushima. About Charity. Yellow Series Report No.
92/480/18, Department of Computer Science, The University of Calgary, June 1992.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns: Elements od Reusable Object-Oriented Software. Addison-Wesley Professional
Computing Series. Addison-Wesley Publishing Company, New York, NY, 1995.

REFERENCES 15

[LP03] Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate: a practical design
pattern for generic programming. ACM SIGPLAN Notices, 38(3):26–37, March 2003.
Proceedings of the ACM SIGPLAN Workshop on Types in Language Design and
Implementation (TLDI 2003).

[LP04] Ralf Lämmel and Simon Peyton Jones. Scrap more boilerplate: reflection, zips, and
generalised casts. In Proceedings of the ACM SIGPLAN International Conference on
Functional Programming (ICFP 2004), pages 244–255. ACM Press, 2004.

[PJ98] Jens Palsberg and C. Barry Jay. The essence of the visitor pattern. In COMPSAC ’98:
Proceedings of the 22nd International Computer Software and Applications Conference,
pages 9–15. IEEE Computer Society, 1998.

[PJ03] Simon L. Peyton Jones, editor. Haskell 98 Language and Libraries: The Revised
Report. Cambridge University Press, 2003.

[T. 04] T. Bray, and al. XML 1.1. W3C Recommendation, February 2004.
http://www.w3.org/TR/xml11.

[Vis01] Joost Visser. Visitor combination and traversal control. In OOPSLA ’01: Proceedings
of the 16th ACM SIGPLAN conference on Object oriented programming, systems,
languages, and applications, pages 270–282. ACM Press, 2001.

[Wor99] World Wide Web Consortium. XSL Transformations (XSLT) Version 1.0, W3C Rec-
ommendation 16, November 1999. http://www.w3.org/TR/1999/REC-xslt-19991116.

