A Simple Parser Combinator Library in C++ (DRAFT)

Sven Eric Panitz
WWW.panitz.name

23rd December 2004

Abstract

Monadic Parser Combinators stem from functional programming. This paper exploits
the ideas of parser combinators and applies them to the C++ programming language.
The resulting library is extremely small, flexible and easy to use. The paper contains the
complete source code of the resulting parser library. As an example a parser of N. Wirth’s
language PL/0 is given in terms of the parser library.

1 Introduction

Parser combinators are a technique developed for lazily evaluated functional programming lan-
guages. Some early impressive example can be found in [FL89]. A recent and very efficient
implemention is the parsec-library for Haskell [LMO1]. The idea of a parser combinator library
is to construct more complex parsers by combining simpler parsers. The combination is done
along the building rules of productions in a grammar. There are basically three kinds of parsers:

e atomic parsers, which accept exactly one token in the input stream.
e the sequence of two parsers.

e the alternative of two parsers.

In a production the alternative is expressed by a vertical bar |. For the sequence no special
symbol is used.

Parser combinator libraries generally construct recursive descendant parsers with backtracking.
They generally construct a list of results. Each result in this list constitutes a different pars for
the grammar. An empty list denotes failure [Wad85].

Since a parser is a function, parser combinators are higher-order functions. In order to mimick
the optical impression of a grammar, parser combinator libraries use overloaded operators for
combinator functions.

C++ is a object-oriented language. However it is enormously flexible and allows almost every
programming style. Most features known from functional languages, as operator overloading,
generic types or higher order functions, are available in C+4. Therefore defining a parser
combinator library in C4++ should be only some handcraft work. In the following section a
simple such library is defined.

10

11

12

13

14

15

16

17

18

19

2 PARSER COMBINATORS IN C++ 2

2 Parser Combinators in C++

In order to get a most flexible parser library we use generic types.! In C++ generic types are
expressed via templates. The C++ compiler will instantiate type variables of a template in the
source code. The instantiated source code then gets compiled. this is the so called heterogenous
translation of generic code.

As a consequence we cannot compile general code for the parser library, but have to provide it
in an header file, which needs to be included by applications.

ParsLib.h

#ifndef __ PARSLIB_H
#define __ PARSLIB_H

#include <vector>

using namespace std;
namespace name {namespace panitz{ namespace parser{

Within the library we define a hierarchical namespace in Java package style.

2.1 The Type of A parser
2.1.1 Constant applicative forms

Before we start to define the types of a parser, we define an auxiliary class. This will be
necessary, when defining the parser of a recursive (or mutual recursive) production(s). The
auxiliary class is used to express a memorizing constant function, a so called constant applicative
form. In terms of the standard template library this is a so called generator. The class is generic
over the result type of the function. It contains a field for the function pointer and a field for
the result of the function. Two constructors are provided:

ParsLib.h

template <typename a>
class CAF {
private: a(*f)();
public:
a result;
a operator()({
if (result==NULL) result=f();
return result;
}
CAF(a x):result(x){}
CAF(a(*f)()){this->f=f;result=NULL;}

Since the capability of type inference in C++ is limited and not applied for constructors, we
define a function, which wraps the constructor call for CAF:

1In functional programming the term polymorphic type is used for generic types. However in object oriented
programming polymorphism is used for something else.

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

2 PARSER COMBINATORS IN C++ 3

ParsLib.h

template <typename a>
CAF<a> caf(a(*f)()){return CAF<a>(f);}

2.1.2 Results of a parser

A parser consumes some token of the input stream and produces some pars result. The result
can be of any type, but generally it will be some abstract syntax tree. The token type can be
of any type. Even the stream type of the input stream could be left most general, as long it has
the typicaliterator interface of retrieving the next token and a check for the end of the stream.
However thoughout htis paper we will stick to the standard class vector from the standard
template library.

A pars may fail. Then it usually consumes no token from the input stream. Unlike in functional
implementations we will not express failure by an empty list, but have a flag for failure in the
class ParsResult.

We keep the class for a pars results generic over two types: the token type and the type of the
actual result. The class has three fields. One contains the further still to consume token, one
the actual result and one the flag for failure:

ParsLib.h

template <typename a,typename b>
class ParsResult{
public:
a result;
vector furtherToken;
bool failed;

ParsResult(vector& furtherToken)
:furtherToken(furtherToken),failed(true){};
ParsResult(a result,vector& furtherToken)
:result(result),furtherToken(furtherToken),failed(false){}

We provide a function which wraps the constructor for the result of a failed pars.

ParsLib.h

template <typename a,typename b>

ParsResult<a,b>* fail(vector& furtherToken){
return new ParsResult<a,b>(furtherToken);

}

This enables us to rely on C++ type inference mechanism when constructing a failure object.

2.1.3 The general parser interface

The parser interface can be kept quite simple. It just contains one method. The method parse
takes a vector of a generic token type and returns some ParsResult:

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

56

57

58

2 PARSER COMBINATORS IN C++ 4

ParsLib.h

template <typename a,typename b>
class Parser{
public: virtual ParsResult<a,b>* parse(vector& xs)=0;

I§

Different from libraries in functional programming just one result is returned. Not a list of
results. If there is not a unique derivation in a grammar, then our implementation will just give
one and not all of them. This is for effecency reasons. Unlike in lazily evaluated functional lan-
guages without further effort, always all derivations would be calculated. This is not desirable.
However most grammars used in compiler construction have unique derivations.

In the following subsections the three basic kinds of parsers are defined.

2.2 Atomic Parsers

The most simple parser is a parser, which accepts exactly one token. This parser needs to be
handcoded. This is done by way of the class GetToken. The class has two fields. An example
of the token which is to be accepted and a equality function for this token type. The class is
a subclass of Parser and as well a subclass of CAF. The result of the CAF-object is the object
itself. This enables us to use GetToken-objects directly as parsers but as functions returning
parsers as well.

ParsLib.h

template <typename a>
class GetToken: public Parser<a,a>,public CAF<Parser<a,a>*>{
private:
a token;
bool(*eq)(a,a);
public:
GetToken(a token,bool(*eq)(a,a))
:CAF<Parser<a,a>*>(this),token(token),eq(eq){}

The implementation of the method parse is straightforward. Compare (if available) the next
token with the token in questaion. Construct a successful or failure parser result object de-
pending on the comparision.

ParsLib.h
ParsResult<a,a>* parse(vector<a>& Xxs){
if (Ixs.empty() && eq(token,xs[O])}{

a tok = xs[O];
vector<a> restToken = vector<a>(xs.begin()+1,xs.end());
return new ParsResult<a,a>(tok,restToken);

}

return fail<a,a>(xs);

}

To ease use we again provide a function which wraps the constructor call:

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

2 PARSER COMBINATORS IN C++)

ParsLib.h

template <typename a>
CAF<Parser<a,a>*> getToken(a token,bool(*eq)(a,a){
return new GetToken<a>(token,eq);}

2.3 Sequence Operator

We can define classes for parser combination. The class Seq is use to combine to parser as a
sequence. The sequence of to parsers denotes the following: first apply the first parser. In case
of Success apply the second parser to the remaining token. in case of success combine the two
partial results into a common result.

The most natural result for the sequence of two parser is a pair containing the two partial
results. For this purpose we can use the class pair from the standrad template library. Thus
we get the following class header:

ParsLib.h
template <typename a,typename b,typename c>
class Seq

:public Parser<pair<a,b>*,c >

,public CAF<Parser<pair<a,b>*c>*>{

As with class GetToken, we do not only extend the class parser, but also the class CAF, with
the parser as its result type.

We will not directly combine two parser objects, but two CAF objects, which have a parser as
result. We provide two internal fields for these objects. The fileds are initialized within the
constructor:

ParsLib.h

private:
CAF<Parser<a,c>*> pil;
CAF<Parser<b,c>*> p2;

public:

Seq(CAF<Parser<a,c>*> pl
,CAF<Parser<b,c>*> p2):
CAF<Parser<pair<a,b>*,c>*>(this)

P1(p1),p2(p2){}

Eventually the actual method parse needs to be defined. Again the implementation is straight-
forward. The only thing to take care of is storage management. Temporary results of the two
combined parses need to be deleted.

ParsLib.h
virtual ParsResult<pair<a,b>*,c>* parse(vector<c>& xs){
ParsResult<a,c>* resl = pl()->parse(xs);
if ('resl->failed) {

vector<c> further = resl->furtherToken;

a rl = resl->result;

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

101

103

104

106

107

2 PARSER COMBINATORS IN C++ 6

ParsResult<b,c>* res2 = p2()->parse(further);

if (res2->failed){

b r2 = res2->result;

vector<c> further = res2->furtherToken;

delete resl;delete res2;

return

new ParsResult<pair<a,b>*,c>(new pair<a,b>(r1,r2),further);
}

delete res2;

}

delete resi;
return fail<pair<a,b>*,c>(xs);

}

As we are allready used to, a function which wraps the constructor is defined. This is done by
way of overloading the comma operator.

ParsLib.h
template <typename a,typename b,typename c>
CAF<Parser<pair<a,b>*,c>*> operator,
(CAF<Parser<a,c>*>pl,CAF<Parser<b,c>*> p2){
return ((Parser<pair<a,b>*,c>*)new Seg<a,b,c>(pl,p2));

}

2.4 Alternative Operator

In the same way as for the sequence combinator, we can define a class for the alternative
combinator. However, we need to think of the result. In a combination of parsers, the two
parser may have different result types. The result type of the combination is then either the
result type of the first or of the other parser. In Haskell this can be easily expressed by the
algebraic type Either. In C++ unfortunatly there is no corresponding standard class available.
However it can be easily defined by way of C’s union construct.

ParsLib.h

template <typename Aitypename B>

class Either{

public:
bool isLeft;
union LeftOrRight{A left;B right;} value;
Either(bool isLeft):isLeft(isLeft){};

h

We provide two simple functions to serve as constructors for this class. A function two construct
an object for the left type:

118

119

121

122

123

124

126

127

128

130

131

132

133

135

136

137

138

140

2 PARSER COMBINATORS IN C++ 7

ParsLib.h
template <typename Atypename B>
Either<A,B>* left(A v){
Either<A,B>* result=new Either<A,B>(true);
result->value.left=v;

}

And the corresponding function for the right type:
ParsLib.h

template <typename Atypename B>
Either<A,B>* right(B v){
Either<A,B>* result=new Either<A,B>(false);
result->value.right=v;

}

Now we are well prepared to define the alternative combinator. Its header can analogously
defined to the sequence combinator:

ParsLib.h
template <typename a,typename b,typename c>
class Alt:public Parser<Either<a,b>*c>

,public CAF<Parser<Either<a,b>*c>*>{

private:

CAF<Parser<a,c>*> pl,;

CAF<Parser<b,c>*> p2;

public:

Alt(CAF<Parser<a,c>*> pl, CAF<Parser<b,c>*> p2):
CAF<Parser<Either<a,b>*,c>*>(this),p1(pl),p2(p2){}

The implementation is again straighforward. First apply the first parser. In case of success
construct a left success result. Otherwise apply the second parser to the original input stream.
This is where backtracking is done. Once more we carefully need to delete intermediate results:

ParsLib.h
virtual ParsResult<Either<a,b>*,c>* parse(vector<c>& xs){
ParsResult<a,c>* resl = pl()->parse(xs);
if (‘resl->failed) {
vector<c> further = resl->furtherToken;
a rl = resl->result;
delete resi;
return new ParsResult<Either<a,b>*c>(left<a,b>(rl),further);

}

delete resi;

ParsResult<b,c>* res2 = p2()->parse(xs);
if (res2->failed) {

b r2 = res2->result;

vector<c> further = res2->furtherToken;
delete res2;

161

162

164

2 PARSER COMBINATORS IN C++ 8

return new ParsResult<Either<a,b>*,c>(right<a,b>(r2),further);
}
delete res2;
return fail<Either<a,b>*,c>(xs);
}
h

The wrapper for a constructor is again defined as an overloaded operator. The most natural
choice for this operator is the vertical bar, which is used in the production rules of a grammer
as well.

ParsLib.h

template <typename a,typename b,typename c>

CAF<Parser<Either<a,b>*,c>*>
operator|(CAF<Parser<a,c>*>p1l,CAF<Parser<b,c>*> p2){
return ((Parser<Either<a,b>*,c>*)new Alt<a,b,c>(p1,p2));

}

2.5 Calculating the Result

Up to now we can express the rules of a grammar nicely. However, we can only construct
parsers, which have pairs or Either objects as results. Generally we will want to construct some
special result for certain production rules. In parser generators as yacc[Joh75] the grammar gets
annotated by code, which will construct some result during the parses. In parser combinator
libraries this code is attached to the production of a grammar by a further combinator. This
combinator allow to express that for an successful pars a function will be applied to the result.
This turns out to be a map.

We provide a further class in our library. It contains fields for a parser and a function:

ParsLib.h
template <typename a,typename b,typename c>
class Map:public Parser<b,c>,public CAF<Parser<b,c>*>{
private:
Parser<a,c>* p;
b(*f)(a);

public:
Map(b(*f)(a),Parser<a,c>* p)
:CAF<Parser<b,c>*>(this),f(f),p(p){}

The implementation of the actual method parse applies the inner parser to the input, and in
case of success takes its actual result and applies the function to this, in order to constrcut the
overall result. Again, intermediate results need to be deleted.

ParsLib.h

virtual ParsResult<b,c>* parse(vector<c>& xs){
ParsResult<a,c>* resl = p->parse(xs);

if (‘resl->failed){

166

167

168

169

171

172

173

174

175

176

178

179

180

181

183

184

185

186

187

188

190

191

2 PARSER COMBINATORS IN C++ 9

a rl = resl->result;
vector<c> further = resl->furtherToken;
delete resi;
return new ParsResult<b,c>((*f)(r1),further);
}
delete resl;
return fail<b,c>(xs);

}

An operator overloading is defined for construction of Map objects. We decided for the operator
<<. It is used to attach some code to a rule of the grammar.

ParsLib.h

template <typename a,typename b,typename c>

CAF<Parser<b,c>*> operator<<(CAF<Parser<a,c>*> p, b(*\)(@)}
return ((Parser<b,c>*)new Map<a,b,c>(f,p()));

}

With the new parser combinator Map we can express one further operator. For the alternativ
combination of two parsers with the same result type, it is unnecessary to differentaite the
two results through an Either object. We can provide a common function to extract the data
stored in an Either object.

ParsLib.h

template <typename a>
a getLeftRight(Either<a,a>* either){return either->value.left;}

Now we provide an alternative combinator for two parsers with the same result type. We
decided for the double vertical bar as this operator:

ParsLib.h

template <typename a,typename c>

CAF<Parser<a,c>*>
operator||(CAF<Parser<a,c>*> pl,CAF<Parser<a,c>*> p2){
return (pl|p2)<< getlLeftRight<a>;

Finally we provide a class for the empty word production. It does not consume any token and
always succeeds:

ParsLib.h
template <typename a,typename b>
class Result:public Parser<a,b>,public CAF<Parser<a,b>*>{
public:
a x;
Result(a x):CAF<Parser<a,b>*>(this),x(X){}
ParsResult<a,b>* parse(vector& xs){
return new ParsResult<a,b>(x,xs);}

1

©

3

194

195

3 EXAMPLE 10

h
N /namespace
#endif

That’s it. We defined a complete parser library for construction of recursive descendant parsers.
As a consequence grammar transscribed with our library to a parser may not contain left
recursive productions.

3 Example

We give an example of how to use the parser library. As a language we will use Wirth’s
PL/0[Wir76]. The complete grammar is given in figure 1. It is not left recursive, such that we
can directly transcribe it. However it is not left unique. There are different alternatives of a
rule with common prefixes. This may lead to serious efficenciy problems.

In this example implementation we will not construct any reasonable result. A simple boolean
value serves as result. Therefore we provide a generic unary function, which maps its argument
to the value true. Furthermore an epsilon parser, which results true is given.

Our implementation does not differentiate between parser and lexer. The lexer is completely
expressed within the parser. Productions for tokens are implemented in the parser. In order to
deal with arbitrary whitespace, even a special prduction for consuming whitespace is provided.
All this auxiliary code, together with some type synonous can be found in figure 2.

The tokenizer part of our parser is quite simple. Sequences of certain characters are consumed.
The nested pair object is then simply mapped to the value true.? The call of the generic
function mkTrue needs to be annotated with the concrete type instance, since the C++ type
inference algorith is too weak to derive this type. the complete tokenizer part of the parser is
given in figure 3.

Eventually we can define the parser for PL/0. We need to take care of recursive rules. For these
a function returning the corresponding parser needs to be defined. The actual parser is then a
genetor for this function. Having taken care of this, the grammar can directly be expressed in
C++ code. The full implementation is given in figure 4.

We provide some main function for our parser.

ParsePLO.cpp

int main(int argc,char** argv){
FILE *fp;
fp = fopen(argv[l], "r");
vector<char> xs;

int ¢ = getc(fp);

while (c !'= EOF) {
xs.push_back((char)c);
¢ = getc(fp);

2We neglected that the intermediate pair objects need to be deleted from the storage. This would have
needed special versions of mkTrue and will blow up the code. There was not enough room for this within the

paper.

152

154

155

156

157

1
2

3 EXAMPLE

program
block
constDecl

constAssignmentList

varDecl
identList
procDecls
procDecl
statement
assignSt
call St
ifSt
whileSt
blockSt
statement List
condition
compOp

erpression

exrpression2
addOp

term

term?2
multOp

factor

}

L T A e e A

Ll

block .
constDecl varDecl procDecls statement
CONST constAssignmentList ; | €
ident = number
| ident = number , constAssignmentList
VAR identList ; |e€
ident , identList | ident
procDecl procDecls | e
PROCEDURE ident ; block ;
blockSt | callSt | ifSt | whileSt | assignSt | e
ident := expression
CALL ident
IF condition THEN statement
WHILE condition DO statement
BEGIN statementList END
statement ; statementList | statement
ODD expression | expression compOp expression
= | <> | <>]| <=]>=
term expression2
| addOp term expression2
addOp term expression2 | e
+ | -
factor term2
multOp factor term2 | e
x|/

ident | number | (expression)

Figure 1: Grammar of PL/0.

cout<<plO::program()->parse(xs)->failed<<endl;
cout<<pl0::program()->parse(xs)->result<<endl;
cout<<plO::program()->parse(xs)->furtherToken[0]<<endl;

11

The following simple program can be used as input for the parser:

CONST M = 7, N = 85;
VAR IX,Y,Z,Q,R;

Testl.pl0

© 0w N U A W N e

e e e
S I S)

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

© 0 N o oA W

11
12
13
14

15

17
18
19
20
21
22
23
24

3 EXAMPLE

ParsePLO.cpp

12

#include "../ParsLib.h"
#include <iostream>

using namespace name::panitz::parser ;
namespace plO{

template <typename a>
bool mkTrue(a x){return true;}

typedef Parser<bool,char>* CP;
typedef CAF<CP> P;

typedef pair<bool,bool>* pb2;

typedef pair<pair<bool,bool>*bool>* pb3;

typedef pair<pair<pair<bool,bool>* bool>*bool>* pb4;

typedef pair<pair<pair<pair<bool,bool>*bool>*bool>*,bool>* pb5;

bool charEg(char cl,char c2){
return cl==c2;}

P epsilon = new Result<bool,char>(true);

P gC(char c){ return getToken(c,charEq) << mkTrue<char>;}

P whiteChar = gC(")[|lgC(\n’)|[gC(\t);

CP getWhiteSpace();

P whiteSpace = caf(getWhiteSpace);

CP getWhiteSpace(){return ((whiteChar,whiteSpace)<<mkTrue<pb2> ||epsilon)() ;}

P gwC(char c){return (whiteSpace,gC(c)) << mkTrue<pb2>;}

Figure 2: Auxilliary definitions for PL/0 parser

PROCEDURE MULTIPLY; VAR A,B;
BEGIN A=X B:=Y;,Z:=0;

WHILE B > 0 DO BEGIN IF ODD B THEN Z := Z+A; A := 2*A; B := B/2; END
END;

PROCEDURE DIVIDE;

VAR W;

BEGIN R =X, Q=0 W:=Y,;
WHILE W = R DO W = 2*W;,
WHILE W > Y DO

BEGIN Q := 2*Q; W := W/2; IF W = R THEN BEGIN R := R-W; Q := Q+1 END END
END;

PROCEDURE GCD; VAR F,G;

BEGIN F=X G:=Y,;
WHILE F <> G DO BEGIN IF F<G THEN G := G-F; IF G<F THEN F := F-G; END;
Z =F

END;

BEGIN 1:=2000;
WHILE 1<>0 DO
BEGIN X := M; Y := N; CALL MULTIPLY;X := 25; Y

3; CALL DIVIDE;

45

26

28

3 EXAMPLE 13

ParsePLO.cpp

P ifT = (gwC('I"),gC(F)) << mkTrue<pb2>;
P thenT = (gwC(T’),gC(H"),9C(E’),gC('N") << mkTrue<pb4>;

P callT = (gwC(C’),gC('A"),gC(L"),9C(L")) << mkTrue<pb4>;

P whileT = (gwC('W’),gC(H’),gC(I'),gC(L"),gC(E"))<< mkTrue<pb5>;

P constT = (gwC('C’),gC('0’),gC('N"),gC('S"),gC('T’))<< mkTrue<pb5>;

P beginT = (gwC(B’),gC(E"),gC('G"),gC(I'),gC(N’))<< mkTrue<pb5>;

P oddT = (gwC('0’),gC('D’),gC('D")) << mkTrue<pb3>;
P endT = (gwC(E’),gC(N’),gC(D") << mkTrue<pb3>;
P varT = (gwC('V’),gC(A"),gC(R)) << mkTrue<pb3>;
P doT = (gwC('D’),gC(0O") << mkTrue<pb2>;
P procedureT = (gwC(P’),gC('R’),gC(0O’),gC(C’),gC(E")

,gC('D"),9C(U’),9C(R’),gC(E)
<< mkTrue<pair<pair<pair<pair<pair<pair<pair<pair<bool,bool>*
,bool>*,bool>*,bool>*,bool>*,bool>* bool>*bool>*>;

P addT = gwC(+);

P subT = gwC(-);

P mulT = gwC(*);

P divT = gwC(/);

P eqT = gwC(=);

P otT = gwC(>");

P IT = gwC(<);

P neqT = (gwC(<),gC(>")) <<mkTrue<pb2>;
P geT = (gwC(>"),g9C('=") <<mkTrue<pb2>;
P leT = (gwC(<),gC(=")) <<mkTrue<pb2>;
P dotT = gwC(.");

P commaT = gwC(,’);

P semicolonT = gwC(});

P IparT = gwC(();

P rparT = gwC());

P assignT= (gwC(:"),gC(=")) <<mkTrue<pbh2>;
P alphaT = gC(A)IIgC(B)IIgC(C)IIgC(D)IgC(ENNIgC(F)IIgC('G’)

[1l9CCH)IGC(TIIGCCINGCCK)(IGCCLIIgCMIIgCCN’)
[lgCCONNGCCPIIGCCQINIGCCRIIGE(SHIGC(TIGC(U)
[lgCCVINGCCWIIIGCXNIGECY)IIGC(Z);

P digitT = gC(0)lgC(1)llgC(2)]lgC('3)llgC(4)IlgC(5)IIgC('6")
llgC(7)llgC(8)lIgC(9);

CP getNumber();

P numberT=caf(getNumber);

CP getNumber(){return ((digitT,numberT)<<mkTrue<pb2>||digitT)();}
P wnumberT=(whiteSpace,numberT) << mkTrue<pb2>;

CP getldent();

P identT=caf(getldent);

CP getldent(){return ((alphaT,identT)<<mkTrue<pb2>||alphaT)();}
P widentT=(whiteSpace,identT) << mkTrue<pb2>;

Figure 3: Tokenizer part of PL/0 parser

X = 84; Y = 36, CALL GCD; I=I-1;
END;
END.//lend of everything

4 CONCLUSION 14

4 Conclusion

We have implemented a very simple parser combinator library in C++. The implementation
could be made straighforward. This is not surprising, since C++ is flexible enough to allow
many very different styles of programming. It has been once more shown that operator over-
loading and generic types are key features for implementation of flexible libraries. This has
been pointed out several times e.g. very impressively in a talk by Guy L. Steele[Ste99].

The solution chosen for recursive productions is a bit unsatisfactory. A function needs to be
defined which results the parser. The function then needs to be wrapped in an CAF object.

It is not very surprising that due to missing support of full type inference, and through ex-
plicit memory management the implementation is more complex than a corresponding Haskell
implementation.

A more than prototypic implementation of a parser library will certainly provide more ways to
express parsers, as e.g. repetitions or seperated lists.

Systematic performance tests have not been made for the library.

4.1 Related Work

A fully implementation of a parser combinator library in C++ does not seem to be avail-
able. The FC++ library[MS01] does not contain parser combinators. On the website of its
descendants (Boost. FC++) it is noted as future work®.

A much more ambitious work has begun by Claessen [Cla]. His implementation of a combinator
parser library is done in plain C.

References

[Cla] Coen Claessen. Parser combinators in c.
http://www.cs.chalmers.se/ koen/ParserComboC/parser-combo-c.html.

[FL89] R. Frost and J. Launchbury. Constructing natural language interpreters in a lazy
functional language. The Computer Journal, 32(2):108-121, 1989.

[Joh75] Stephen C. Johnson. Yacc: Yet another compiler compiler. Technical Report 39, Bell
Laboratories, 1975.

[LMO01] Daan Leijen and Erik Meijer. Parsec: Direct style monadic parser combinators for
the real world. Technical Report UU-CS-2001-27, Department of Computer Science,
Universiteit Utrecht, 2001.

[MS01] Brian McNamara and Yannis Smaragdakis. Functional programming in c++ using
the fc++ library. SIGPLAN Notices, 36(4):25-30, 2001.

[Ste99] Guy L. Steele. Growing a language. Higher-Order and Symbolic Computation,
12(3):221-236, October 1999.

3 As stated on the website http://www.cc.gatech.edu/ yannis/fc++/boostpaper/fcpp.sectlimitations.html
in december 2004

REFERENCES 15

[Wad85] Phil Wadler. How to replace failure by a list of successes. In Functional Programming
Languages and Computer Architecture, number 201 in Lecture Notes in Computer
Science, pages 113-128. Springer, 1985.

[Wir76] Niklaus Wirth. Algorithms + Datastructures = Programs. Prentice-Hall, 1976.

105

135

REFERENCES 16

ParsePLO.cpp

CP getExpression(); P expression=caf(getExpression);

CP getTerm2(); P term2 = caf(getTerm2);

CP getExpression2(); P expression2 = caf(getExpression2);
CP getStatement(); P statement = caf(getStatement);

CP getStatementList(); P statementList = caf(getStatementList);
CP getBlock(); P block=caf(getBlock);

CP getProcDecls(); P procDecls=caf(getProcDecls);

CP getldentList(); P identList=caf(getldentList);

CP getConstAssignList(); P constAssignList=caf(getConstAssignList);
P addOp = addT || subT;

P mulOp = mulT || divT;

P compOp = eqT || neqT || geT || leT || otT || T ;

P factor = widentT || wnumberT || (IparT,expression,rparT)<<mkTrue<pb3>;

CP getTerm2(){return ((mulOp,factor,term2)<<mkTrue<pb3> || epsilon)();}

P term = (factor,term2) << mkTrue<pb2>;

CP getExpression2(){return ((addOp,term,expression2)<<mkTrue<pb3> || epsilon)();}

CP getExpression(){

return((term,expression2) <<mkTrue<pb2>
||(addOp,term,expression2) <<mkTrue<pb3>)();}
P condition = (oddT,expression) <<mkTrue<pb2>

||(expression,compOp,expression) <<mkTrue<pb3>;

CP getStatementList(){
return ((statement,semicolonT,statementList)<< mkTrue<pb3>

||statement)0;}
P whileSt = (whileT,condition,doT,statement) << mkTrue<pb4>;
P ifSt = (ifT,condition,thenT,statement) << mkTrue<pb4>;
P callst = (callT,widentT) << mkTrue<pb2>;
P assignSt= (widentT,assignT,expression) << mkTrue<pb3>;
P blockSt = (beginT,statementList,endT) << mkTrue<pb3>;

CP getStatement(){return (blockSt||callSt||ifSt||whileSt||assignSt||epsilon)();}

P procDecl = (procedureT,widentT,semicolonT,block,semicolonT) <<mkTrue<pb5>;

CP getProcDecls(){return ((procDecl,procDecls)<<mkTrue<pb2>||epsilon)();}

CP getldentList(){return ((widentT,commaT,identList)<<mkTrue<pb3>||widentT)();}

P varDecl = (varT,identList,semicolonT)<<mkTrue<pb3>||epsilon;

CP getConstAssignList(){

return ((widentT,eqT,wnumberT,commaT,constAssignList)<<mkTrue<pb5>
[|(widentT,eqT,wnumberT) <<mkTrue<pb3>)();}

P constDecl = (constT,constAssignList,semicolonT)<<mkTrue<pb3> ||epsilon;

CP getBlock(){return ((constDecl,varDecl,procDecls,statement)<<mkTrue<pb4>)();}

P program = (block,dotT)<<mkTrue<ph2>;

Figure 4: PL/0 parser

