A Client for the Z21 Model Railway
Control

An exercise in Haskell

Sven Eric Panitz
Hochschule RheinMain

This document contains the implementation of a Z21 modell railway
control client. The implementation is completely done in Haskell.

This project started as a little exercise in Haskell. The goal is to control
a digital model railway. As server a z21 control unit is used. Z21 and
z21 are products of Modelleisenbahn GmbH. They can be pruchased by
Roco and Fleischmann model railways.

The z21 control unit communicates with clients by means of UDP. The
here presented program is able to control locomotives. Furthermore it is
possible to program automatic sequences as trains commuting between
to points.

Contents

1 Introduction

1.1 Motivation
1.2 Overview e
1.3 Related Works
2 The Z21 Protocoll
2.1 Messages
2.2 Sending
2.3 Receiving
3 Global State
3.1 Data Types
3.2 Construction
3.3 Getter Functions
3.4 Setter Functions

4 Graphical user interface

4.1 Controls
4.1.1 Construction
4.2 Updates
4.3 Layout
44 Event Handler.
4.5 Overall Window Creation
5 Message handling
5.1 Special handlers oL
6 Automatic Commuting
6.1 GUIL
6.1.1 Layout.
6.1.2 Events

7 Main GUI Client

8 Command language
8.1 Scripting
8.2 Execution of commands

Contents

({=)

O W »

8.3 Some useful commands (in German) 48
8.3.1 English Translation 49
8.3.2 Example Script 50

8.4 Making Command an instance of Monad o1

8.5 Command language parser 52
8.5.1 Lexer and Parsing of Token 53
8.5.2 Grammar 54
8.5.3 Executing Scripts 57
8.5.4 Example Script 59

Conclusion 61

Constants 65

Utility Functions 67

A Simple Test Server 69

Chapter 1

Introduction

1.1 Motivation

The two goals of this project are: writing a Haskell application and having fun with
model railways.

For the first goal: I have known Haskell as programming language from the very
beginning in the early nineties, i.e. the time before the arrival of monads. I have
done quite a lot of programming in Haskell during the nineties. Then for about
the last 15 years I had to focus on mainstream languages. (My last serious activity
with Haskell was a small tutorial for hopengl [Pan03]). I worked on larger Java
projects and teach Java in introductory courses. With this strong background on
object oriented languages I was interested on how it feels, to write an application in
Haskell. An application that I typically would have written in a language as Java.
Or at least in something like Scala.

This project is rather small. However it has a lot of aspects that make it interesting.
It contains a graphical user interface. It entails network communication. It needs
global state information. It needs low level bit operations for binary data. And it
addresses questions of concurrency. The only aspects it lacks is some persistency
layer.

I was interested in the question: How are these things solved in a lazy evaluated
programming language. How can typical object oriented patterns be implemented
in Haskell?

1.2 Overview

This documention contains the complete source code of the project. We give a short
overview of the modules:

o The first module presented Z21.Protocoll contains the communication layer
of the project. It provides code to send and recieve UDP packages to and
from the Z21 control unit.

Chapter 1 Introduction

e The module Z21.State contains a data structure for the global state of the Z21
client. It is information on which loco address is running in which direction
at which speed. this module currently is rather inmature.

e A GUI component is provided by the module Z21.Gui. As GUI library gtk2hs
is used.

e Some means to react to incoming messages are provided in the module
Z21 .MessageEventListener. It tries to implement some pattern for event
driven actions.

o A dedicated module for programming automatically commuting trains is given
by Z21.Commuting.

e The main function for starting the GUI of the project is given in module
Client.

o Eventually we create a scripting language. The language enables the user to
program arbitrary automatic sequences for a railway layout. A parser for the
script language is implemented and scripts can be started from the command
line. No GUI component is provided for this part of the project.

1.3 Related Works

A mature open source library for model train control exists: JMRI. JMRI stands
for: Java modell railroad interface. [Com97] Quite a number of applications use this
library. It is a huge project. It contains among a lot of other things an implementa-
tion of the Z21 protocoll. As the name says: it is implemented in the programming
language Java.

S BTN

Chapter 2
The Z21 Protocoll

This module implements communication with the Z21 server via User Datagram
Protocol (UDP). The protocoll for communication with the Z21 server is defined
in [Gmb13]. This module represents the transport layer of our application.

For communication we need the Haskell ByteString module. We need unsigned
words as provided by the module Data.Word and do some bit manipulations as
provided by the module Data.Bits. Therefore the following imports are done.

module Z21.Protocoll where

import qualified Data.ByteString as BS
import Network.Socket.ByteString

import Data.Bits
import Data.Word

2.1 Messages

First of all we define a data type for the Z21 messages. Every message is represented
by a constructor. Some messages have further information like the address of a
locomotive or the speed for a locomotive. Some messages have complex information.
In these cases the record syntax with named fields is used.

data Message
= LAN_GET_SERIAL_NUMBER

|LOGOFF
|LAN_ X GET VERSION
|LAN_X GET STATUS
|LAN X SET TRACK POWER OFF
|LAN_X SET TRACK POWER, ON
|[LAN_X BC TRACK POWER_ON
|[LAN_X BC TRACK POWER, OFF

Chapter 2 The Z21 Protocoll

|LAN_X SET STOP
|ILAN. X GET LOCO_INFO Int
|LAN_X SET LOCO_DRIVE
{locID ::Int, steps::Word8, speed::Word8, direction:: Direction}
|LAN_ X SET TLOCO_ FUNCTION
{locID ::Int, switch::FunctionSwitch, index::Word8}

|LAN X GET FIRMWARE VERSION
|LAN_GET BROADCASTFLAGS
|LAN_SET BROADCASTFLAGS{ general :: Bool,rbus:: Bool,systemState :: Bool}
|LAN_GET LOCOMODE Int
|LAN_SET LOCOMODE {locId:: Int, mode:: LOC _MODE}
|LAN_GET HWINFO
|LAN_X LOCO_INFO

{locID :: Int

,busy :: Bool

,stpes:: SpeedSteps

,direction :: Direction

,speed :: Word8

,doubleTraction :: Bool

,smartSearch :: Bool

,light :: Bool
,f1:: Bool
,f2 :: Bool
,£3 :: Bool
,f4 :: Bool

}
ILAN._RMBUS CETDATA Words
ILAN. RMBUS_DATACHANCED |Words]
|SERIAL. NUMBER
|LAN_X_ SET TURNOUT Word16 Bool Bool
|LAN_X GET_TURNOUT_INFO Word16
|LAN_ X TURNOUT INFO Wordl6 Word8
|LAN X UNKNOWN (COMMAND
[UNKNOWN [Word8]

deriving Show

Some more data types are used within this definition. First of all a simple enum
type for the direction of a locomotive:

data Direction = Forward | Backward deriving (Eq,Show,Read,Enum)

3 switchDirection Forward = Backward

switchDirection Backward = Forward

isForward = (==)Forward

We need a type to denote the protocoll of a locomotives decoder. Currently two
different decoder formats are known. The standard dcc format and motorolas mm

N

N

2.2 Sending

format.

data LOC MODE = DCC|MM deriving (Show,Eq)
isDCC = (==)DCC

For switches (e.g. light) there are three commands. Turning it off or on and simple
switching it.

data FunctionSwitch = On|Off|Switch deriving (Show,Eq)

3| functionSwitchCode :: FunctionSwitch —> WordS8

functionSwitchCode On = 0x00

5| functionSwitchCode Off = 0x40

functionSwitchCode Switch = 0x80

Finally there are three different types for decoder speed selection: 14, 28 and 128
steps.

data SpeedSteps = S14|S28|S128 deriving (Show,Eq)

Currently the implementation does not realy bother about these three different
types. We alway assume 128 steps.

2.2 Sending

This paragraph contains the implementation of function mkmessage for serializing
721 messages as a byte string in order to send them as UDP message to the z21
server. For each message a list of 8 bit words is created. The function pack from
module Data.ByteString is applied to create the byte string.

We use the hexadecimal notation for the 8 bit words directly from the specification
of the protocoll [Gmb13].

mkMessage LAN_GET SERIALL NUMBER = BS.pack [0x04,0x00,0x10,0x00]
mkMessage LAN_GET _HWINFO = BS.pack [0x04,0x00, O0x1A, 0x00]

3| mkMessage LOGOFF = BS.pack [0x08,0x00,0x10,0x00]

mkMessage LAN_ X GET VERSION

= BS.pack [0x07,0x00,0x40,0x00,0x21,0x21,0x00]
mkMessage LAN X GET_ STATUS

= BS.pack [0x07,0x00,0x40,0x00,0x21,0x24,0x05]
mkMessage LAN_X SET TRACK POWER, OFF

Chapter 2 The Z21 Protocoll

= BS.pack [0x07,0x00,0x40,0x00,0x21,0x80,0xAl]
mkMessage LAN X SET' TRACK POWER,_ ON
11| = BS.pack [0x07,0x00,0x40,0x00,0x21,0x81,0xA0]
12| mkMessage LAN_X SET STOP = BS.pack [0x06,0x00,0x40,0x00,0x80,0x80]
13 mkMessage (LAN X GET LOCO_INFO locID)

14| = BS.pack [0x09,0x00,0x40,0x00,xheader ,db0,dbl,db2,xorbyte]
15| where

16 xheader = 0xE3

17 db0 = 0xFO0

18 [dbl,db2] = mkdLocIDBytes locID

19 xorbyte = xheader ‘xor‘ db0 ‘xor‘ dbl ‘xor‘ db2

20| mkMessage LAN X SET LOCO_DRIVE

21 {locID=locID, steps=st, speed=sp, direction=dir}

2| = msg LAN X SET LOCO_DRIVE locID st sp dir

sl mkMessage LAN X SET LOCO_FUNCTION

4 {locID=locID, switch=switch, index=index}

5| = msg LAN._X SET LOCO_FUNCTION locID switch index

6| mkMessage LAN_ X GET FIRMWARE VERSION

7| = BS.pack [0x07,0x00,0x40,0x00,0xF1,0x0A, O0xFB]

s| mkMessage LAN_GET_BROADCASTFLAGS = BS.pack [0x04,0x00, 0x51, 0x00]
9|—Vorsicht. Hier ist die Dokumentation sehr irrefiithrend

30]— jaja little endian. Dann schreibt das auch so auf!

31| mkMessage LAN SET BROADCASTFLAGS

32 {general=general ,rbus=rbus,systemState=systemState}
33| = BS.pack ([0x08,0x00, 0x50, 0x00, byte,sysByte ,0x00,0x00])

34 where

35 genByte = if general then 0x01::Word8 else 0

36 rbusByte = if rbus then 0x02:: Word8 else 0

37 sysByte = if systemState then 0x01::Word8 else 0

38 byte = genByte .|. rbusByte
30| mkMessage (LAN_GET_LOCOMODE locID)
0| = BS.pack ([0x06,0x00, 0x60, 0x00]++mkdLocIDBytes locID)

11| mkMessage LAN_SET LOCOMODE {locId=id, mode=md}

2| = msg LAN SET LOCOMODE id md

i3 mkMessage (LAN_RMBUS_DATACHANGED bs)

«| = BS.pack ([0x0F,0x00,0x80,0x00]++bs)

15| mkMessage (LAN_RMBUS_GEIDATA b) = BS.pack [0x05,0x00, 0x81,0x00,b]
16| mkMessage (LAN_X SET TURNOUT addressl active first)

7| = BS.pack [0x09,0x00,0x40,0x00,xheader ,db0,dbl,db2,xorbyte]

15| where

19 address = address1+3

50 xheader = 0x53

51 db0 = fromIntegral$shiftR address 8

52 dbl = fromIntegral address

53 db2 (0x80:: Word8)

54 .. (if active then (0x08::Word8) else 0x00)

55 .. (if first then (0x01::Word8) else 0x00)

56 xorbyte = xheader ‘xor‘ db0 ‘xor‘ dbl ‘xor‘ db2

57| mkMessage (LAN X GET TURNOUT INFO address)

ss| = BS.pack [0x08,0x00,0x40,0x00,0x43,db0,dbl,0x43 ‘xor ‘db0 ‘xor ‘dbl]
50| where

60 db0 = fromIntegral$shiftR address 8

10

61

62

63

w N

2.3 Receiving

dbl = fromIntegral address
mkMessage (LAN X TURNOUT INFO address value)

= BS.pack [0x09,0x00,0x40,0x00,0x43,db0,dbl,db2,xorbyte]
where

db0 = fromIntegral$shiftR address 8

dbl = fromIntegral address

db2 = value

xorbyte = 0x43 ‘xor ‘db0 ‘ xor ‘dbl ‘ xor ‘db2

ol mkMessage (UNKNOWN _) = BS.pack [0x40,0x61,0x82]

Thus messages can be send as UDP to the server.

sendMsg socket addr msg = do
putStrLn (7> "++show msg)
sendTo socket (mkMessage msg) addr

2.3 Receiving

When receiving a byte string we will read it as a Z21 message. Thus we write the
inverse function readMessage. The following equation should hold:

1d = readMessage o mkMessage

The given implementation uses pattern matching on the list of bytes.

readMessage = rM.BS.unpack

where

™M :: [Word8] —> Message

M [0x04,0x00,0x10,0x00] = LAN GET SERIAL NUMBER

M [0x04,0x00, 0x1A, 0x00] = LAN GET HWINFO

M [0x08,0x00,0x10,0x00] = LOGOFF

™M [0x07,0x00,0x40,0x00,0x21,0x21,0x00] = LAN_ X GET_VERSION

M [0x07,0x00,0x40,0x00,0x21,0x24,0x05] = LAN_X_GET STATUS

M [0x07,0x00,0x40,0x00,0x21,0x80,0xA1] = LAN X SET TRACK POWER OFF
M [0x07,0x00,0x40,0x00,0x21,0x81,0xA0] = LAN X SET TRACK POWER ON
™M [0x07,0x00,0x40,0x00,0x61,0x01,0x60] = LAN X SET TRACK POWER ON
r™M [0x07,0x00,0x40,0x00,0x61,0x00,0x61] = LAN X SET TRACK POWER OFF
M [0x06,0x00,0x40,0x00,0x80,0x80] = LAN X SET STOP

™M [0x09,0x00,0x40,0x00,0xE3,0xF0,0xE3,dbl,db2, xorbyte]

= LAN X GET IOCO_INFO (mkLocoInfo dbl db2)
™M [0x0A,0x00,0x40,0x00,0xE4,0xF8,dbl,db2,db3, xorbyte]

T am sure there is a much smarter way to implement this. The list of bytes coding a message is
written in both functions mkMessage and readMessage. This seems to be error prone.

11

Chapter 2 The Z21 Protocoll

12

= LAN X SET LOCO_FUNCTION
{ locID = (mkLocoInfo dbl db2)
, switch = if (db3 .&. 0xCO == 0) then Off
else if (db3 .&. 0xCO0 = 0xC0) then On
else Switch
, index = db3 .&. 0x3F}
M [0x0A,0x00,0x40,0x00,0xE4,db0,dbl,db2,db3, xorbyte]
= LAN X SET LOCO_DRIVE
{ locID = (mkLocoInfo dbl db2)
, steps = db0 ‘mod‘ 16
, speed = db3 ‘mod‘128
, direction = if db3 >= 128 then Forward else Backward}
M [0x07,0x00,0x40,0x00,0xF1,0x0A, OxFB]
= LAN X GET FIRMWARE VERSION
rM [0x04,0x00, 0x51, 0x00] = LAN GET BROADCASTFLAGS
M [0x06,0x00, 0x60, 0x00,hi,!lo]
= LAN GET IOCOMODE ((fromIntegral hi)*256 + (fromIntegral lo))
™M [0x07,0x00,0x61,0x00,locIDH ,locIDL ,mode]
= LAN SET LOCOMODE
{ locld = (fromIntegral locIDH)*256
+ (fromIntegral locIDL)
, mode = if mode==0 then DCC else MM}
rM (1:0x00:0x40:0x00:0xEF:db0:dbl:db2:db3:db4:)
= LAN X LOCO_INFO
{ locID = (mkLocoInfo db0 dbl)
, busy = db2 .&. 0x08 = 0x08
, stpes
= let step = db2 .&. 0x07
in if step = 0 then S14
else if step = 1 then S28
else S128
, direction = if db3 .&. 0x80 = 0x80
then Forward else Backward
, speed = db3 .&. Ox7F
, doubleTraction = db4 .&. 0x40 — 0x40
, smartSearch = db4 .&. 0x20 — 0x20
, light = db4 .&. 0x10 = 0x10
f1 = db4 .&. 0x01 = 0x01
, 2 = db4 .&. 0x02 == 0x02
, 3 = db4 .&. 0x04 = 0x04
, f4 = db4 .&. 0x08 = 0x08

™ (0x0F:0x00:0x80:0x00: bytes) = LAN RMBUS DATACHANGED bytes
rM (0x08:0x00:0x10:0x00: serialNumber) = SERIAL NUMBER
™ (0x09:0x00:0x40:0x00:0x43:db0:dbl:db2:_:[])
= LAN_X_TURNOUT_INFO ((mkLocoInfo db0 dbl)+1) db2
™M (0x0F:0x00:0x40:0x00:0x61:0x82:0xE3:[]) = LAN X UNKNOWN_COMMAND
M bytes = UNKNOWN bytes

mkLocolInfo dbl db2
= (fromIntegral (dbl .&. 0x3F)) * 278
+ (fromIntegral db2)

N

2.3 Receiving

Some of the more complicated messages are done in seperate functions.

The message for setting a locomotive system mode.

msg LAN _SET LOCOMODE:: Int —> LOC_MODE —> BS.ByteString
msg LAN_SET LLOCOMODE locID locMode
= BS.pack [0x07,0x00, 0x61,0x00
,fromIntegral (locID ‘div‘ 256)
,fromIntegral (locID ‘mod‘ 256)
,if isDCC locMode then 0 else 1]

The message for getting a locomotive to drive in a certain direction by a certain
speed.

msg LAN_X SET LOCO_DRIVE locID steps speed direction
= BS.pack [0x0A,0x00,0x40,0x00,xheader ,db0,dbl,db2,db3, xorbyte]
where
xheader = 0xE4
db0 = 16+steps
[dbl,db2] = mkdLocIDBytes locID
db3 = (if isForward direction then 128 else 0)+speed
xorbyte = xheader ‘xor‘ db0 ‘xor‘ dbl ‘xor‘ db2 ‘xor‘ db3

The message for switching a locomotive’s function.

msg LAN X SET LOCO_FUNCTION locID switch index
= BS.pack [0x0A,0x00,0x40,0x00,xheader ,db0,dbl,db2,db3, xorbyte]

where
xheader = 0xE4
db0 = O0OxF8
[dbl,db2] = mkdLocIDBytes locID
db3 = functionSwitchCode switch + index

xorbyte = xheader ‘xor‘ db0 ‘xor‘ dbl ‘xor‘ db2 ‘xor‘ db3

The decoder address of a locomotive is decoded in two bytes in the following way.

mkdLocIDBytes:: Int —> [Word8]

mkdLocIDBytes locID =
[fromIntegral (locID ‘div‘ 256 ‘mod‘ (128+64))
,fromIntegral (locID ‘mod‘ 256)]

13

Chapter 2 The Z21 Protocoll

14

Chapter 3
Global State

This chapter contains the module State. It is the model of the application. The
client will keep a global state. This state can be controlled through a graphical user
interface. Furthermore the state can get modified through incoming messages from
the z21 server. This will be the case, when other clients control trains.

module Z21.State where
import Z21.Protocoll

(Direction (..) ,SpeedSteps (..) ,switchDirection)
1| import Data.Word

3.1 Data Types

The global state is basically a list of locomotive states. One locomotive is the
currently controlled locomotive. This will not be included in the list of locomotives.

data State = Z21 {currentLoco::Loco,locos::[Loco]}

A locomotive state is represented by its address, speed, direction, steps for speed
and its light status.!

data Loco = Loco

lid :: Int

, address::Int

, steps::SpeedSteps

5 , speed :: Word8

6 , direction :: Direction

N
—~

'We have a field for the address and a further field for some ID. Howerever, currently both are
redundantely used. Maybe some day it might be nice to have a database of locomotives with
own IDs and some description.

15

Chapter 3 Global State

, light :: Bool} deriving (Eq,Show)

3.2 Construction

Two functions are provided to create states.

newState = let (l:1s) = map newLoco [1..20]
in Z21{currentLoco=l,locos=ls}

newLoco 1id
= Loco
{ lid=lid
address = lid
steps = S128
, speed=0
, direction=Forward
, light=True}

sl newLocoInState st lid = st{locos=newLoco lid:locos st}

3.3 Getter Functions

Some convenient getter functions to retrieve values are provided.

w N

getDirectionOfLoco locoid st

|locoid = (lid$currentLoco st) = direction$currentLoco st
|otherwise = direction$head$filter (\loco—>lid loco==locoid) $locos
st

get Address = address.currentLoco

getDirection = direction.currentlLoco

getSpeed = speed.currentlLoco

getLight = light .currentLoco

getLoco id [] = Nothing
getLoco id (l:ls)
|id = lid 1 = Just 1
|otherwise = getLoco id 1s

16

3.4 Setter Functions

The following function is used to change the currently activ locomotive. It creates a
new state. If the locomotive with the corresponding ID does not exist in the state,
then a new locomotive is created.

selectLoco locoid st

|locoid == (lid$currentLoco st) = st
| Nothing==loco = st{currentLoco=newLoco locoid
,locos=(currentLoco st):locos st}
|otherwise = let (Just (locs,loc)) = loco
in st{currentLoco=loc ,locos=(currentLoco st):locs}
where
loco = getLoco [] (locos st)
getLoco locos [] = Nothing
getLoco locos (l:1s)
|lid 1 = locoid = Just (locos++ls,1)
|otherwise = getLoco (l:locos) lIs

3.4 Setter Functions

In this section some setter functions are defined. Since in Haskell we cannot modify
any data, these functions transform the state and return a new state-

Y o

setDirection dir st = st{currentLoco=(currentLoco st){direction=dir}}
setSpeed sp st = st{currentLoco=(currentLoco st){speed=sp}}
setLight 1 st = st{currentLoco=(currentLoco st){light=1}}

replaceNonActiveLoco loco@Loco{lid=id} st@Z21{locos=ls}
= st{locos=map (\l—if lid 1 = id then loco else 1) ls}

s| changeDirectionOfLoco locoid st@Z21{currentLoco=current ,locos=ls}
| locoid = lid current
= st{currentLoco=changeDirectionInLoco current}
|otherwise = st{locos=map
(\loco— if (lid loco==locoid)
then loco
else changeDirectionInLoco loco) ls}

j| setDirectionOfLoco locoid dir st@Z21{currentLoco=current ,locos=ls}
|locoid = 1lid current
= st{currentLoco=current{direction=dir }}
|otherwise = st{locos=map
(\loco— if (lid loco/=locoid)
then loco
else loco{direction=dir}) ls}

17

Chapter 3 Global State

24
)

5| changeDirectionInLoco 1 = 1{direction=switchDirection$direction 1}

18

SIS

Chapter 4

Graphical user interface

The module Gui contains the definition of the graphical user interface of the appli-
cation. As GUI-library the gtk2hs-library is used. It is a direct Haskell api for the
Gtk+ library. A basic tutorial can be found in [vT08].

Some useful hints on gtk2hs and threads can be found on the internet in an article
by Daniel Wagner [Wagl5].

module
import

3l import

import
import
import

import

721 .Gui where

Z21.Protocoll hiding(light ,direction , speed)
721.8State

Util

Data . Word

Control. Concurrent

Graphics . UI. Gtk

4.1 Controls

A data type is defined, which contains all the gui controls of the client application.
These controls may change their values due to modifications of the global state.

data GuiControls a

= GuiControls
{ mainBox ;1 VBox
, statusLabel ;. TextView
, addrLabel :: Label
, speedAdjust :: Adjustment
, addrSelect :: [Button]
, lightButton :: ToggleButton
, directionControl :: [RadioButton]
, powerControl :: [RadioButton]

19

Chapter 4 Graphical user interface

4.1.1 Construction

We define a straighforward constructor function for the gui controls.

newGuiControls = do

mainPanel <— vBoxNew False 10
statusLabel <— textViewNew
addrLabel <— labelNew$Just$show 1
speedAdjust <— adjustmentNew 0.0 0.0 128.0 1 1.0 1.0
lightButton <— toggleButtonNewWithLabel "Light On/Off”
forwardButton<— radioButtonNewWithLabel$show Forward
backButton <—

radioButtonNewWithLabelFromWidget forwardButton $show Backward
addrButtons <— sequence $map (buttonNewWithLabel.show) [1 .. 21]
onButton <— radioButtonNewWithLabel "Power On”
offButton <—

radioButtonNewWithLabelFromWidget onButton "Power Off”
textViewSetWrapMode statusLabel WrapChar
widgetSetSizeRequest statusLabel (—1) 180

return
GuiControls

{ mainBox = mainPanel
, statusLabel = statusLabel
, addrLabel = addrLabel
, speedAdjust = speedAdjust
, addrSelect = addrButtons
, lightButton = lightButton
, directionControl = [forwardButton ,backButton]
, powerControl = [onButton , offButton]
}

4.2 Updates

When in the global state a new current locomotive is set, the gui controls need to
be updated. this can be achieved by use of the following function.

1| updateGUI Loco{lid=lid ,speed=sp, direction=dir ,light=1i} gui = do

2
3
!

5

if (Forward==dir)

then toggleButtonSetActive (head$directionControl gui) True

else toggleButtonSetActive (head$tail$directionControl gui) True
adjustmentSetValue (speedAdjust gui)$fromInteger$tolnteger sp

N =

- W

N

4.3 Layout

toggleButtonSetActive (lightButton gui) li
labelSetText (addrLabel gui) (show lid)

4.3 Layout

This section the controls of the application GUI and put them together with some
layout. Propably it would have been better to use the GUI builder tool glade in the
first place rather than doing everything manually. However, here we go.

The first function is an auxilary function to create the layout for a list of radio
buttons:

mkLayoutRadioButtons (bl:bs) = do

mainbox <— vBoxNew False 0

box1 <— hBoxNew False 0

box2 <— hBoxNew False 10

containerSetBorderWidth box2 10

boxPackStart boxl box2 PackNatural 0

boxPackStart box2 bl PackNatural 0

sequence$map (\b —> boxPackStart box2 b PackNatural 0) bs
boxPackStart mainbox boxl PackNatural 0

return mainbox

The next function creates a layout for the address selection buttons of the clients
gui. They are placed in rows of three.

mkLayoutAddrSelect gui = do

let buttons = addrSelect gui
let adj = speedAdjust gui
lines <—sequence$take (length buttons ‘div‘¢ 3)S$repeat hButtonBoxNew
sequence__
$ map (\(bb,bs)—> set bb [containerChild := b| b <— bs])
$ zip lines
$ splitNChunks (length buttons ‘div‘ length lines) buttons
vbox <— vButtonBoxNew
set vbox [containerChild := 1| 1 <— lines |
return vbox

The following function creates a layout for the speed control, light switch, direction
and the address selection.

21

Chapter 4 Graphical user interface

mkLayoutLocoGui gui = do
let adjl = speedAdjust gui
forwardBackwardButton <— mkLayoutRadioButtons (directionControl gui)

let lightB = lightButton gui

box1l <— hBoxNew False 0
vsc <— vScaleNew adjl
box2 <— vBoxNew False 0
boxPackStart boxl box2 PackGrow 0

hscl <— hScaleNew adjl
boxPackStart box2 hscl PackGrow 0

mainBox <— vBoxNew False 10

addrLBox <— hBoxNew False 10

lab <— labelNew$Just ”"Current Loco Address:
boxPackStart addrLBox lab PackGrow 0
boxPackStart addrLBox (addrLabel gui) PackGrow 0
boxPackStart mainBox addrLBox PackGrow 0

boxPackStart mainBox forwardBackwardButton PackGrow 0
boxPackStart mainBox lightB PackGrow 0

1Sel <— labelNew$Just ”Speed”
boxPackStart mainBox 1Sel PackGrow 0
boxPackStart mainBox boxl PackGrow 0

1Sel <— labelNew$Just ”"Loco Address Selection”
boxPackStart mainBox 1Sel PackGrow 0
addrSelect <— mkLayoutAddrSelect gui
boxPackStart mainBox addrSelect PackGrow 0

return mainBox

Putting everything together and adding the power control and the status display to

the layout:
createOverallLayout gui = do
let mainb = mainBox gui

let onOffControl = powerControl gui
onOffButtons <— mkLayoutRadioButtons onOffControl

statusBox <— scrolledWindowNew Nothing Nothing

widgetSetSizeRequest statusBox (—1) 80
scrolledWindowAddWithViewport statusBox (statusLabel gui)

22

4.4 Event Handler

11 boxPackStart mainb onOffButtons PackGrow 0
12
13 locoPanel <— mkLayoutLocoGui gui

14 boxPackStart mainb locoPanel PackGrow 0
15 1Sel <— labelNew$Just "Received Messages”
16 boxPackStart mainb 1Sel PackGrow 0

17 boxPackStart mainb statusBox PackGrow 0

4.4 Event Handler

In this section we will add event handlers to the controls of the GUI.

The first function is a utility function, that adds event handlers to a list of pairs of
buttons and events.

addEventsRadioButtons las@((bl,):) = do
2 toggleButtonSetActive bl True
3| sequence_ $map (\(b,a)—> onToggled b (a >> return ())) las

Events for the buttons in the address selection control:

addEventAddrSelect gui state sendF = do
2 let adj = speedAdjust gui

3| sequence$map

1 (\b —

5 onClicked b$ do

6 nrl <— buttonGetLabel b

7 let nr = read nrl

8 sendF $LAN X GET LOCO INFO nr

9 modifyMVar__ state (return.selectLoco nr)
10 s <— readMVar state

11 let loco = currentLoco s

12 updateGUI loco gui

13)

14 (addrSelect gui)

Events for further controls. First the event for the direction switch:

i|laddGuiEvents gui state send = do
2 let adjl = speedAdjust gui

3 addEventsRadioButtons

) $map (\x—>(x, do

23

S N

Chapter 4 Graphical user interface

label <— buttonGetLabel x

let dir = (read label)::Direction

modifyMVar state (return.setDirection dir)

s <— readMVar state

let loco = currentLoco s

adjustmentSetValue adjl 0

send $LAN X SET LOCO DRIVE (address loco) 2 0 dir
)

(directionControl gui)

Event for the light switch:

let lightB = lightButton gui
onClicked lightB $ do
s <— readMVar state
let loco = currentLoco s
activ <— toggleButtonGetActive lightB
let x = if activ then On else Off
modifyMVar_ state (return.setLight activ)

send LAN X SET LOCO FUNCTION{locID=address loco ,switch=x,index=0}

return ()

Event for speed adjustment:

onValueChanged adjl $ do
s <— readMVar state
let loco = currentLoco s
val <— adjustmentGetValue adjl
let v = (truncate val)::Word8
modifyMVar_ state (return.setSpeed v)
send$LAN_X_ SET L.OCO_DRIVE
(address loco) 2 v (Z21.State.direction loco)
return ()

The event for the power switch:

addEventsRadioButtons$
zip (powerControl gui)
[send LAN_X SET TRACK POWER, ON
,send LAN X _SET TRACK POWER OFF]

addEventAddrSelect gui state send

24

4.5 Overall Window Creation

4.5 Overall Window Creation

Eventually we provide a function to build everything, add events and display it in

a window.

createGuiWindow gui state send = do
— Create a new window
window <— windowNew

— Sets the border width of the window.
set window [containerBorderWidth := 10 |

createOverallLayout gui

— sets the contents of the window
set window [containerChild := mainBox gui |

addGuiEvents gui state send

return window

25

Chapter 4 Graphical user interface

26

Chapter 5

Message handling

We are receiving messages from the Z21 control. Messages will notify contacts on
curcuit tracks, new values for turn outs or locos. In this module we define means
to program reaction to recieved messages.

module Z21.MessageEventListener where

import Z21.Protocoll hiding(light ,direction , speed)

import qualified Z21.Protocoll as Z21(light ,direction , speed)
import Z21.State

import Z21.Gui

import Control.Monad (forever)
import Control.Concurrent

import Graphics.UI.Gtk

—import Network.Socket hiding (send, sendTo, recv, recvFrom)
import Network.Socket.ByteString

The main type is a list of message handlers. A message handlers is basically a
function, which takes a messages and results an (I0 Bool) event. This is an 10
action that results in an boolean value. The boolean value signifies, if the message
was of interest and had been successfully processed, e.g. there might be a message
handler which waits for contact on a certain circuit track. Only a message signifying
contact on this track will result in an succesfull IO operation.

Every message handler has a unique number and a boolean flag. The flag signifies,
if the message handler will only be used one time successfully.

The message listener type has the list of message handlers and a number, which will
be the number of the next message handler. Thus we can provide unique numbers
for message handlers.

type MessageHandler = (Integer ,Bool,Message —> IO Bool)
type MessageListener = (Integer ,[MessageHandler])

27

N

AW N =

-~

0

Chapter 5 Message handling

The overall message listener will be a global state variable initialized with the empty
handler list.

newEventListener = newMVar ((1,[]) :: MessageListener)

The main function for the global message listener will recieve the messages from
some socket. It will process every message handler in he list. Afterwards every
message handler which ended successful and has the flag will be deleted from the
list.

receiveMessages eventListener socket = forever $ do
message <—recv socket 1024
let msg = readMessage message
print msg
(nr,listener)<— readMVar eventListener
rs <—sequence $ map (\(nr, ,f) —> f msg) listener
let toDelete = filter (\((nr,oneShot,),shot)—>oneShot && shot)
$zip (listener) rs
sequence__
(map (\((nr,_,),)—>removeListener eventListener nr) toDelete)

The function above will be started in an own thread.

startEventListener listener socket =
forkIO$receiveMessages listener socket

We provide two functions to add new message handlers to the global message lis-
tener. The result of the action is the number of the added handler.

Two versions are provided. One for handlers which will be removed after the first
successful reaction, one for handlers that stay in the list.

addListener = addListenerAux False
addOneTimeListener = addListenerAux True

addListenerAux oneTime eventListener f = do
modifyMVar__ eventListener
(\(nr, fs)—>return (nr+1,(nr,oneTime,f):fs))
(nr,)<— readMVar eventListener
return (nr—1)

28

[N

5.1 Special handlers

Of course it is possible to remove handlers again:

removeListener eventListener nr = do
(_,listener)<— readMVar eventListener
modifyMVar__
eventListener
(\(nmr, fs) — return (nmr, filter (\(n,_,) —> not (n==nr)) fs))

5.1 Special handlers

In this paragraph we define two general message handlers.

The first one updates the global state. Furthermore it updates the view of the global
state. Since the handler functions are not evaluated in the gui thread we capsule ev-
ery gui functionality within the call of the gtk2hs standard function postGUIAsync.

processMessage gui state send
LAN X LOCO_INFO{locID=id ,Z21.direction=dir ,Z21.speed=sp,Z21.light=1}
= do
modifyMVar_ state$return.replaceNonActiveLoco
(newLoco id)
{speed=sp, direction=dir ,light=1}
return True
processMessage gui state send LAN X BC TRACK POWER ON = do
postGUTAsync$toggleButtonSetActive (head$powerControl gui) True
return True
processMessage gui state send LAN X BC TRACK POWER OFF = do
postGUTAsync$toggleButtonSetActive (head$tail§powerControl gui) True
return True
processMessage _ = return False

Another function that will be evaluated whenever a message is received is solely
for logging purposes. It will display the message on the status label of the GUIL
Furthermore the state of the current locomotive is printed to the console.

logging gui state msg = do
postGUIAsync guiStuff
s<—readMVar state
return True
where
guiStuff = do
textViewSetEditable (statusLabel gui) False
buffer <—textBufferNew Nothing
textBufferInsertInteractiveAtCursor buffer (show msg) True

29

Chapter 5 Message handling

m’ textViewSetBuffer (statusLabel gui) buffer

30

Chapter 6

Automatic Commuting

A typical usecase for a modell railway display is a train commuting between two
stops. In German there is the nice word: Pendelzugautomatik. To put this into
realization we need some contacts that signifies when a train reaches a certain
point. We can use circuit tracks for this purpose.

This module implements some means to program a Pendelzugautomatik. It provides
a function, which will start a Pendelzugautomatik and a GUI component, to start
a commuting train.

module Z21.Commuting where

s|import Z21.State

import Z21.Protocoll

s|import Z21.MessageEventListener

import Data.Maybe
import Text.Read

import Control.Concurrent.MVar
import Control.Concurrent . Timer

sl import Control. Concurrent . Suspend. Lifted
s|import Data. Bits

7limport Graphics.UIL. Gtk

The 721 signifies contact on a circuit track with a LAN_RMBUS_DATACHANGED mes-
sage. It uses the so called R-Bus for feedback modules. The circuit tracks are

grouped, such that a contact is represented by a pair of numbers: the group and
the address.

type Contact = (Int,Int)

31

Chapter 6 Automatic Commuting

To start a Pendelzugautomatik we need basic information between which stops,
which loco and the idle time at each stop. Furthermore we need global information:
the event listeners and the state of the control unit. And of course the communica-
tion function with the z21 control unit.

The result is an IO action which returns the number of the event listener, that
controls the Pendelzugautomatik. Thus we get the following type!.

1| startCommuting

2 i Contact — first contact

3 —> Contact — second contact

| —> Int — loco id

5 —> Int — idle time

6 —> MVar MessageListener — event listeners

7 —> MVar State — global state

8 —> (Message —> 10 al) — communication with Z21

9 — 10 Integer — return the number of the event listener

The function startCommuting is basically implemented by a new event listener
function. This function will evaluate LAN_RMBUS_DATACHANGED messages. In order
to recieve these messages from the Z21 control unit, we need to send an appropiate
LAN_SET_BROADCASTFLAGS message.

We assume that the locomotive is somewhere between the two stops. The locomotive
will be started in one arbitrary direction.

A further state variable is used to remember which was the last stop the loco
activated. It is initialized with the illegal contact (-1,-1).

startCommuting leftC rightC locid delay eventListener state send = do
lastContact <— newMVar (—1,—1)
send LAN_SET BROADCASTFLAGS

| {general=True,rbus=True, systemState=False}

w N

6/ nr <— addListener eventListener (eval lastContact)
8 send (LAN_X SET LOCO_DRIVE locid 2 6 Forward)

0] modifyMVar_ state (\s —> return$setDirectionOfLoco locid Forward s)
11 return nr

The main work is done by the event listener function. It has two arguments. The
state variable, which contains the circuit track that has been contacted the last
time. The second argument is the message to be processed.

IThe actual derived type is more general, but for a clearer understanding it has been simplified
a bit.

32

N =

- W

N

First of all the function needs to analyse the incoming message. Which contact is
active. Wen need to have a closer look at the single bytes of the message. 2

The first local definitions create a list of all active contacts. As a matter of fact the
message may contain information on several activ contacts. Currently the imple-
mentation neglects simultanious contacts in different groups. This is simply duw to
the fact that I have not enough hardware to test several groups.

where
eval lastContact (LAN _RMBUS DATACHANGED (gi:gs)) = do

let adder = if gi==0 then 0 else 10

let numbered=filter (\(_,entry)—> entry/=0)$zip [1..] gs

if (null numbered) then return False else do

let changedGroup = adder+fst (head numbered)

let groupVal = snd(head numbered)

let addrs = filter (\(_,code)—> code = groupVal.&.code)
$zip
[(1::Int)..]
[0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80]

if (null addrs) then return False else do

let newContacts = map (\(x,_)—>(changedGroup,x)) addrs

First of all we check if the last contact we reacted to is still active or again active. If
this is the case the locomotive obviously has not moved very much and still triggers
the contact of the same stopping. Then we do not react at all.

oldContact <— readMVar lastContact
if (elem oldContact newContacts) then return False else do

If none of the contacts at the two stoppings is active then no reaction is necessary.

if not (elem leftC newContacts || elem rightC newContacts)
then return False else do

Eventually at this point we know that the train reached the other stopping. No
several things are to be done. Stop the train. Modify the global state. After the
specified time of delay start the train with the switched direction. The wait is done
with the timer function: oneShotTimer.

2Tt would have been more consequent to have done this in the module Protocoll and provided
more structured information with the constructor LAN_RMBUS_DATACHANGED.

33

S N

Chapter 6 Automatic Commuting

let newContact = if elem leftC newContacts
then leftC
else rightC

modifyMVar__ lastContact (_—>return newContact)

s <— readMVar state
let dir = switchDirection$getDirectionOfLoco locid s
modifyMVar state (\s —> return$setDirectionOfLoco locid dir s)

send (LAN_X SET LOCO_DRIVE locid 2 0 dir)

oneShotTimer
((send$LAN_X_SET LOCO_DRIVE locid 2 6 dir) >>return ())
(sDelay $fromIntegral delay)

return True

We are only interested in LAN_RMBUS_DATACHANGED messages. For all other message
no reaction is necessary.

eval = return False

Since the Pendelzugautomatik is controlled by a single event listener function the
Pendelzugautomatik can be stopped by removing this listener from the global lis-
tener queue.

stopCommunting listenId locid eventListener send = do
send (LAN X SET LOCO_DRIVE locid 2 0 Forward)
removeListener eventListener listenld

6.1 GUI

We provide a GUI component for the control of commuting trains. We apply the
same pattern as in the module Z21.Gui. All relevant controls are collected in one

type.

data — BoxClass a =>
CommutingGui a = CommutingGui
{ mainPanel ;1 VBox
, addrEntry ;1 Entry

34

6.1 GUI

, fstCircuitGroup :: Entry
, fstCircuitEntry :: Entry
, sndCircuitEntry :: Entry
, sndCircuitGroup :: Entry
, delayEntry ;1 Entry
, startStopControl :: ToggleButton

A constructor function is provided.

newCommutingGui = do

mainPanel <— vBoxNew False 10
addEntry <— entryNew
fstCircuitEntry <— entryNew
entrySetText fstCircuitEntry 717
sndCircuitEntry <— entryNew
entrySetText sndCircuitEntry 727
fstCircuitGroup <— entryNew
entrySetText fstCircuitGroup 717
sndCircuitGroup <— entryNew
entrySetText sndCircuitGroup 717
delayEntry <— entryNew

-G

entrySetText delayEntry 75

startStopButton <— toggleButtonNewWithLabel ”Start/Stop”

return
CommutingGui

{ mainPanel = mainPanel
, addrEntry = addEntry
, fstCircuitEntry = fstCircuitEntry
, sndCircuitEntry = sndCircuitEntry
, fstCircuitGroup = fstCircuitGroup
, sndCircuitGroup = sndCircuitGroup
, delayEntry = delayEntry
, startStopControl = startStopButton
}

6.1.1 Layout

A layout is added to the components.

mkLayoutCommutingGui gui = do
lokP <— hBoxNew False 10
lokLabel <— labelNew$Just ”"Lokadresse”
boxPackStart lokP lokLabel PackNatural 0
boxPackStart lokP (addrEntry gui) PackNatural 0
boxPackStart (mainPanel gui) lokP PackNatural 0

35

Chapter 6 Automatic Commuting

fstLabel <— labelNew$Just "erster Kontakt (Gruppe,Nr)”
boxPackStart (mainPanel gui) fstLabel PackNatural 0

fstP <— hBoxNew False 10

boxPackStart fstP (fstCircuitGroup gui) PackNatural 0
boxPackStart fstP (fstCircuitEntry gui) PackNatural 0
boxPackStart (mainPanel gui) fstP PackNatural 0

sndLabel <— labelNew$Just "zweiter Kontakt (Gruppe,Nr)”
boxPackStart (mainPanel gui) sndLabel PackNatural 0

sndP <— hBoxNew False 10

boxPackStart sndP (sndCircuitGroup gui) PackNatural 0
boxPackStart sndP (sndCircuitEntry gui) PackNatural 0
boxPackStart (mainPanel gui) sndP PackNatural 0

delayP <— hBoxNew False 10

delayLabel <— labelNew$Just "Wartezeit”

boxPackStart delayP delayLabel PackNatural 0
boxPackStart delayP (delayEntry gui) PackNatural 0
boxPackStart (mainPanel gui) delayP PackNatural 0
boxPackStart (mainPanel gui) (startStopControl gui) PackNatural 0

o

-

N}

6.1.2 Events

And eventually we add event listeners to the controls. Internally we keep a state
variable for the number of the listener that is active. It is initialized with the illegal
number -1.

addCommutingGuiEvents gui eventListener state send = do
let startStopB = startStopControl gui
listenerNr <— newMVar (—1::Integer)
addrS <— entryGetText (addrEntry gui)

User Input

Whenever the start/stop button is clicked, we first have a look if the button is

active.

startStopB ‘onClicked ¢ do
mode <— toggleButtonGetActive startStopB

If this is not the case then we stop the running commuting train.

36

16

w N

6.1 GUI

if not mode then do

nr <— readMVar listenerNr

stopCommunting nr (read addrS) eventListener send
else do

Validation of User Input

Otherwise we can read and validate the user input. For validation of the user input
we use the standard function readMaybe. Since the type Maybe is an instance of
Monad we can use the do-notation for validation of the user input. If the user input
cannot be evaluated we return with no action at all.

fstCS <— entryGetText (fstCircuitEntry gui)
sndCS <— entryGetText (sndCircuitEntry gui)
fstGS <— entryGetText (fstCircuitGroup gui)
sndGS <— entryGetText (sndCircuitGroup gui)
delayS<— entryGetText (delayEntry gui)

let inputValues =
do
a <— (readMaybe addrS) ::Maybe Int
fC <— (readMaybe fstCS) ::Maybe Int
sC <— (readMaybe sndCS) ::Maybe Int
fG <— (readMaybe fstGS) ::Maybe Int
sG <— (readMaybe sndGS) ::Maybe Int
d <— (readMaybe delayS)::Maybe Int
return (a,fG,fC,sG,sC,d)
if (isNothing inputValues) then return () else do

Otherwise the user input can be used to start a Pendelzugautomatik.

let (Just (addr,fstG,fstC ,sndG,sndC,delay)) = inputValues

nr <— startCommuting (fstG, fstC) (sndG, sndC) addr delay
eventListener state send

modifyMVar_ listenerNr (_ —> return nr)

37

Chapter 6 Automatic Commuting

38

ol W N

10

19

20

21

Chapter 7

Main GUI Client

Time to start everything in an main function. This is our main GUI entry point.

module
import
import
import
import

| import

import

—gui

Main where

721.

721
721

721

Protocoll hiding(light ,direction , speed)

.State
. Gui
721.

MessageEventListener

. Commuting
721.

Constants

library

import Graphics.UIL. Gtk

— Network library
import Network.Socket hiding (send, sendTo, recv, recvFrom)

import
import
import

—prog
import

5/——concurrency

Control. Concurrent
Control. Concurrent . Timer
Control. Concurrent . Suspend . Lifted

args and such
System . Environment

Before we start the program we define a function that will send a message to the
control every 10 seconds. This is needed by the control unit. It assures that our
client is still alive.

keepAlive sendF = do
sendF LAN GET SERIAL, NUMBER
repeatedTimer (sendF LAN_GET SERIALL NUMBER >>return ())$sDelay 10

39

Chapter 7 Main GUI Client

main :: I0 ()
main = withSocketsDo $ do
— process arguments
args <— getArgs
let (host:portA:) =
if length args < 2
then [_DEFAULT CLIENT, show _DEFAULT PORT)]
else args

— network stuff

let port = fromInteger (read portA)

sock <— socket AF INET Datagram defaultProtocol
bindAddr <— inet addr 70.0.0.0”

hostAddr <— inet addr host

bindSocket sock (SockAddrInet port bindAddr)
let addr = (SockAddrInet port hostAddr)
let sendF = sendMsg sock addr

— keep alive timer
keepAliveThread <— keepAlive sendF

— synchronized state variable
state <— newMVar newState

— make the gui

initGUI
gui <— newGuiControls

eventListener <— newEventListener

addListener eventListener (logging gui state)

addListener eventListener $processMessage gui state sendF
eventThread <— startEventListener eventListener sock

commutingGui <— newCommutingGui
mkLayoutCommutingGui commutingGui
addCommutingGuiEvents commutingGui eventListener state sendF

window2 <— windowNew
set window2 [containerBorderWidth := 10]
set window2 | containerChild := mainPanel commutingGui]

window <— createGuiWindow gui state sendF

window ‘onDestroy ‘ do
sendF LOGOFF
killThread eventThread
stopTimer keepAliveThread
sClose sock
mainQuit

40

——show the windows
widgetShowAll window
widgetShowAll window2

—start the gui thread
mainGUI
sClose sock

41

Chapter 7 Main GUI Client

42

o

Chapter 8

Command language

In this chapter we provide a tiny library, which enables the user to program auto-
matic sequences an cycles.

module Z21.CommandLanguage where

import Z21.Protocoll

import Z21.State

import Z21.MessageEventListener
import Z21.Commuting(Contact)

import Control.Concurrent.MVar
import Control.Concurrent . Timer

import Control.Concurrent.Suspend. Lifted

import Data.Bits

;|import Control. Applicative hiding ((<]|>))

8.1 Scripting

First we give a data definition for commands. The data type is a generic (polymor-
phic) type. It has a type variable. This is not used in any way. The only reason
for this is, to make it an instance of the type class Monad. This will enable the use
of the do-notation.

data Command a =

A simple command consists of a direct Z21 message.

Com Message

43

Chapter 8 Command language

The next command is a timed command. After some seconds wait the command is
to be executed.

1 | Wait Int (Command a)

Next a command is provided, which is triggered by some contact events. Only
when every circuit track in the list of contacts has triggered a signal the command
is excuted.

1 | OnEvent [Contact] (Command a)

A sequence of two commands will execute these command one after the other. It
does not main, that we will wait for the first command to have finished completely.

1 | Sequenz (Command a) (Command a)

The last type of command allows to start to commands in parallel.

| Parallel (Command a) (Command a)

Furthermore we provide the possibility to call simple macros.

| Macro String

And it is possible to integrate an arbitrary IO action into an script. This will be
used to ensure that connections can be closed and threads can be stoppped after
the execution of a command.

|IOCommand (IO a)

For simple debugging reasons an instance of the class Show is provided. We could
not derive the default implementation of this class, because I0 is not an instance of
Show!.

T wonder why function types and types such as I0 do not have an derived default instance of
Show. This would make things easier in many situations.

44

N

N

N

8.1 Scripting

instance Show (Command a) where
show (Com message) = 7 ("++show message++”)”

show (Wait secs message)

7 (Wait "++show secs++” 74+ show messaget+t”)”
bhOW (OnEvent cts command)

= 7(OnEvent "4+show cts++" "++ show commandi+")”
show (Sequenz ¢l ¢2) = 7 ("++show cl++"\n <+> "4+ show c24++7)”
show (Parallel cl c2) = 7 ("4+show cl++"\n <|> "++ show c2++7)”
show (Macro name) = 7 (Macro "+Hnamet+")”
show (IOCommand _) = "IOCommand”

The two constructors Sequenz and Parallel will not be used directly. Instead
we define two operators to combine two commands. <+> is used for a sequential
combination, <|> is used for a parallel combination.

infixr 5 <>
infixr 4 <|>

Most cases for the sequential operator a straight forward.

(<+>) (Sequenz ¢l ¢2) ¢3 = Sequenz cl (c2<4>c3)
(<+>) (Wait sec cl) c2 = Wait sec (cl <+> ¢2)

3| (<+>) (OnEvent contact cl) ¢2 = OnEvent contact (cl <> c2)

The interesting case is: where to put further commands after the parallel execution.
We arbitrarily choose after the second command of two parallel commands. We will
show examples on how this can be used to synchronize after several parralel executed
commands.

(<+>) (Parallel ¢l ¢2) ¢3 = Parallel ¢l (c2<+>c3)
(<+>) ¢l ¢2 = Sequenz cl c¢2

The parallel operator is a direct call to the constructor Parallel.

(<|>) = Parallel

45

w N

Chapter 8 Command language

8.2 Execution of commands

The main function is called run and will execute a command. It gets the Message-
Listener, the global client state?, the function to send messages to the z21 control
unit, a map for the marcos and eventually the command to be processed.

run :: MVar MessageListener
—> MVar State
—> (Message —> IO a)
—> [(String , Command al)]
—> Command al
— 10 ()

Simple cases are: sending directly a message to the control unit and executing some
IO action.

run listener state send defs (Com c¢) = send ¢ >> return ()
run listener state send defs (IOCommand c¢) = ¢ >> return ()

Running a sequence of two commands can simply done by a sequence of recursive
calls to run within a do-block.

run listener state send defs (Sequenz cl ¢2) = do
run listener state send defs cl
run listener state send defs c2

To wait some seconds before executing a command is implemented with the help of
the function oneShotTimer. This will actually start a new thread.

run listener state send defs (Wait sec c¢l) = do
oneShotTimer
(run listener state send defs cl)
(sDelay$fromIntegral sec)
return ()

The most complex command is the reaction to events on the circuit rails. This can
be the point of synchronization. The command waits for a list of contacts. If these
contacts are triggered by serveral commands in parallel, this is the moment where
we synchronize on these command.

2This is not yet used.

46

8.2 Execution of commands

The implementation resembles the implementation which we have done for com-
muting trains before. It is a generalization of the allready seen implementation.

First of all we determine the number of contacts we are waiting for. The we define
a local state variable for counting the contacts which were triggered. Then we add
a new event listener function.

t{run listener state send defs (OnEvent contacts cl) =
2 let s = length contacts in do

;| triggeredContacts <— newMVar ([])

| nr <— addOneTimeListener listener (evl triggeredContacts)
5| return ()

The event listener function will react to LAN_RMBUS_DATACHANGED messages. First
of all it determines the contacts that are signified in the message to have triggered?

I where

2 evl triggeredContacts (LAN RMBUS DATACHANGED (gi:gs)) = do
3 let adder = if gi==0 then 0 else 10

1 let numbered=filter (\(nr,entry)—> entry/=0)$zip [1..] gs
5 if (null numbered) then return False else do

6 let changedGroup = adder+fst (head numbered)

7 let groupVal = snd(head numbered)

8 let addrs = filter (\(nr,code)—>code=—=groupVal.&.code)

9 $zip [(1::Int)..][0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80]
10 if (null addrs) then return False else do

11 let newContacts = map (\(x,_)—>(changedGroup,x)) addrs

Now we can check, if there are active contacts in the message, that we are waiting
for and have not been triggered before.

1 allreadyContacted <— readMVar triggeredContacts

2 let actives = filter

3 (\¢c — ¢ ‘elem‘ contacts

1 && not (¢ ‘elem ‘allreadyContacted))
5 newContacts

6 if null actives then return False else do

If there are new active contacts in the message we will add them to the list of allready
triggered contacts. Afterwards we can check, if all contacts of the command have
triggered.

3To be done: Currently only messages for one single group are interpreted correctly.

47

N

Chapter 8 Command language

modifyMVar_ triggeredContacts (\x—> return (x++actives))
allreadyContacted <— readMVar triggeredContacts
if (length allreadyContacted=—length contacts)
then run listener state send defs ¢l >> return True
else return False
evl = return False

The command for parallel execution is simply executed by starting to new threads.
For some unknown reason we do this by the help of oneShotTimer instead of forkIO.

run listener state send defs (Parallel ¢l ¢2) = do
oneShotTimer (run listener state send defs cl) (sDelay 0)
oneShotTimer (run listener state send defs c¢2) (sDelay 0)
return ()

The call to a marco amounts in a lookup in the list of macros.

run listener state send defs (Macro name) =
maybe
(return ())
(run listener state send defs)
(lookup name defs)

8.3 Some useful commands (in German)

In this section we provide some useful functions that construct commands. The
names of the functions are given in the german language. English translations are
given further down.

We start with straighforward function for driving a locomotive, switching turnouts
and german names for constructors.

fahre richtung lokAdresse geschwindigkeit =
Com$LAN X SET LOCO_DRIVE lokAdresse 2 geschwindigkeit richtung

halte lokAdresse = Com$LAN X SET LOCO DRIVE lokAdresse 2 0 Forward
schalteWeiche nr abzweig = do

Com$LAN_X_SET TURNOUT nr True abzweig
warte 1ComLAN_X SET TURNOUT nr False abzweig

48

8.3 Some useful commands (in German)

o]l warte = Wait
11|wenn = OnEvent

Repeating commands can easily be implemented by means of a fold.

endlos = foldrl (<+>) . repeat

wiederhole n = foldrl (<+>) . take n . repeat

A function is providing for doing nothing.

macheNichts = Com$LAN GET SERIAL NUMBER

The next two functions implement a Pendelautomatik.

hinUndHer locoid hin her geschwindigkeit = do
fahre Forward locoid geschwindigkeit
wenn [hin] (halte locoid)
warte 5 (fahre Backward locoid geschwindigkeit)
wenn [her] (halte locoid)
warte 5 macheNichts

pendel locoid hin her geschwindigkeit =
endlos (hinUndHer locoid hin her geschwindigkeit)

Further German names for constructors.

vorwarts = Forward
rickwéirts= Backward

8.3.1 English Translation

Her the English versions of the functions above.

49

Chapter 8 Command language

go = fahre
commute = pendel
forthAndBack = hinUndHer
doNothing = macheNichts
switchTurnout = schalteWeiche
repeatNTimes = wiederhole
wait = warte

when = wenn

forever = endlos

stop = halte

8.3.2 Example Script

We give a simple example script. It is written for the following track layout. There
are 4 turnouts and 4 circuit tracks. Two locomotives. We want the locos cross over
to the other track. The is done sequentually. Then both to go to the other end
of the track. Now they have changed places from the original scenario. This is
repeated so that eventually the starting point is reached for both locomotives.

(1,4) 1 3 (1,3)
| 6

(1,2) 2 4 (1,1)

crossing =
schalteWeg 1 4
<4+> warte 5 (fahre rickwérts 6 5)
<4+> wenn [(1,4)] (halte 6)
<+> schalteWeg 3 2
<+> warte 5 (fahre rickwérts 7 5)
<+> wenn [(1,2)] (halte T7)
<+4> schalteWeg 4 3
<+> warte 5
(fahre vorwérts 6 5 <4+> wenn [(1,3)] (halte 6)
<|> fahre vorwérts 7 5 <+> wenn [(1,1)] (halte 7)
<|> wenn [(1,3),(1,1)]
(schalteWeg 1 4
<+> warte 5 (fahre riickwérts 7 5)
<+> wenn [(1,4)] (halte 7)
<+> schalteWeg 3 2
<+> warte 5 (fahre rickwéirts 6 5)
<4+> wenn [(1,2)] (halte 6)
<+> schalteWeg 4 3
<+> warte 5

20

oW N

8.4 Making Command an instance of Monad

(fahre vorwérts 6 5 <4+> wenn [(1,1)] (halte 6)
<|> fahre vorwarts 7 5 <+> wenn [(1,3)] (halte 7)
<|> wenn [(1,3),(1,1)] macheNichts

)

schalteWeg 1 4 = do
schalteWeiche 2 False
schalteWeiche 4 True
schalteWeiche 1 False

schalteWeg 4 1 = schalteWeg 1 4

schalteWeg 3 2 = do
schalteWeiche 3 False
schalteWeiche 4 False
schalteWeiche 2 True

7| schalteWeg 2 3 = schalteWeg 3 2

schalteWeg = = do
schalteWeiche 1 True
schalteWeiche 2 True
schalteWeiche 3 True
schalteWeiche 4 True

8.4 Making Command an instance of Monad

One of the nice thing of monads is the do-notation. The command language we
presented seems to be a perfect candidate for an instance of Monad. Then we can
use the do-notation as allready done in the example script in the section above.

However, the command language does not easily fit into a command. A type that
is an instance of Monad needs to have a type variable. Our command language does
not need a variable inner type. In the definition of Command we introduced a dummy
type variable. To make it an instance of Monad we first need it to be an instance of
Functor. Actually we do not need this instance but it will be used pathologically.

instance Functor Command where

fmap f (Com com) = Com com

fmap f (Wait sec com) = Wait sec (fmap f com)

fmap f (OnEvent contact com) = OnEvent contact (fmap f com)
fmap f (Sequenz cl ¢2) = (Sequenz (fmap f cl) (fmap f c2))
fmap f (Parallel ¢l ¢2) = (Parallel (fmap f cl) (fmap f c2))

Since very recent times we need to be an instance of Applicative. We make a
dummy implementation, which will never be used.

51

w N

Chapter 8 Command language

bot = bot

instance Applicative Command where
pure a = macheNichts
f <*> a = fmap bot a

Eventually we implement the instance of Monad. As a matter of fact we are onbly
interested in the sequence operator >>.

instance Monad Command where
return a = macheNichts
cl >> ¢2 = fmap (_—>bot) ¢l <+> c2
cl >= fc2 = fmap (_—>bot) cl <+> fc2 bot

8.5 Command language parser

In this section we present a parser for the command language. Writing parsers
has been a killer application for lazy evaluated functional languages. The idea is
to write higher order combinator functions which combine two parsers sequentially
and alternatively. The sequence means: first parse the input with one parser and
then parse the remaining tokens with a second parser. The combination results
in a new parser. The alternative means: try to parse the input wiht one of the
two parsers. A fine example of a cominator parser is given in [FL89]. This work
has even be done in pre Haskell times. With the arrival of monads and the do-
notation [Lau93] [Lau93] it became clear that the sequence operator can be written
as the bind operation in monads. Thus parser combinators where implemented as
instance of Monad. Therefore parser combinator libraries are now called monadic
parser libraries. A mature and efficient Haskell parser library is parsec [Lei0l].
Within this section a parser is implemented with the parsec library.

module Main where
import Z21.CommandLanguage hiding ((<|>))
import qualified Z21.CommandLanguage((<|>))

import Z21.Protocoll
import Z21.Constants

import Text.ParserCombinators.Parsec

import Text.Parsec.Pos
import Text.Parsec.Prim

o2

19

[\v) [\v) [\v) [\~]] [\v) [\v)
S @ W@ N

AW N

8.5 Command language parser

import Language. Haskell. Lexer

import Z21.State

s|import Z21.MessageEventListener

— Network library
import Network.Socket hiding (send, sendTo, recv, recvFrom)

——concurrency
import Control.Monad (forever)

import Control.Concurrent

import Control.Concurrent. Timer

import Control.Concurrent.Suspend. Lifted

| —prog args and such

import System.Environment

8.5.1 Lexer and Parsing of Token

Before we write the actual parser we need a lexer. Since our command language is
defined in Haskell, we can use a Haskell lexer. Fortunately a complete Haskell lexer
is available in the module Language.Haskell.Lexer. We will apply this lexer by
the call of lexerPass0, afterwards remove white space token and eventually add
the position information as needed by the parsec library.

lexAll fileName
= (map (\(tok,(pos,s))—>
(newPos fileName (fst$simpPos pos) (snd$simpPos pos),(tok,s))))
rmSpace . lexerPass0

The Haskell lexer emits token consisting of a pair. The first component is an
enumeration type signifiying the token type. The second component is the actual
token string.

type HaskellTok = (Token, String)

We define two atomic parser. One for accepting integer token and for accepting
arbitrary identifier token.

i|integerNumber :: (GenParser (SourcePos,HaskellTok) () Int)
ol integerNumber = token (show.snd) fst (testIdent.snd)

93

N

Chapter 8 Command language

where
testIdent v@(IntLit ,n) = Just$read n
testIdent _ = Nothing

identifier = token (show.snd) fst (testIdent.snd)

where
testIdent v@(Varid,n) = Just n
testIdent _ = Nothing

We provide a general function for generating arbritrary atomic parsers.

parseTok
Token —> String —> a —> (GenParser (SourcePos, HaskellTok) () a)
3| parseTok tok name res = token showToken posToken testToken
where
showToken (pos, tok) = show tok
posToken (pos,) = pos

testToken (pos, v@(t,n))
|t = tok && n == name = Just res
| otherwise Nothing

Thus we can define some specific parsers.

ident name res = parseTok Varid name res

constructor con res = parseTok Conid con res

;| special name = parseTok Special name ()

reservedop name = parseTok Reservedop name ()

pVarsym name = parseTok Varsym name ()

8.5.2 Grammar

Now we can write down a grammar for the command language. Sequences can be
expressed with the do notation. Alternatives are written down with the combinator
Text.Parsec.Prim.<|>. However the combinator <|> for effeciency reasons does
not perform backtracking. If the first parser can be successfully applied, the second
parser will not be considered any more.

We write the grmmar top down and start with the start rule: pSkript. A script
will consist of a number of macro definitions followed by one single command.

o4

N

8.5 Command language parser

A skript for the Z21 client consists of several macro definitions. These are followed
by a single command, which is to be executed. Since both, a macro definition and
a command can start with an indentifier, we need to apply backtrakcing. This can
be done with the parsec function try.

pSkript =
do
defs <— many (Text.ParserCombinators.Parsec.try pDefinition)
cmd <— pCommand
return (defs ,cmd)

A macro definition consists of some arbitrary identifier followed by the reserved
operator symbol = and finally the command for the macro.

pDefinition = do
n <— identifier
reservedop "="
cmd <— pCommand
return (n,cmd)

The entry rule for commands is the parallel operation on commands.

pCommand = pParallel

pParallel = do
ps <— sepByl pSequence (pVarsym "<|>")
return$ foldrl (Z21.CommandLanguage.<|>) ps

Thus the sequential operator binds stronger than the parallel operator.

pSequence = do
ps <— sepByl pAtomicCommand (pVarsym "<+4>7)
return$ foldrl (Z21.CommandLanguage.<+>) ps

Atomic commands are the commands that were defined in the section before. These
are basic commands for driving a train (fahre, halte), the command for switching
a turn out (schalteWeiche), commands for waiting and synchronizing at events,
the call of an macro definition and command in parantheses.

95

Chapter 8 Command language

pAtomicCommand =
pHalte
<|> pFahreLokSpeed
<|> pSchalteWeiche
<|> ident "macheNichts” macheNichts
<|> pWarte
<|> pWenn
<|> (identifier >>= (return.Macro))
<|> pParCommand

All these parsers can easily be written done by use of the do notation.

pFahreLokSpeed = do
f <— ident 7"fahre” fahre
dir <— pDirection
loco <— integerNumber
speed <— integerNumber
return$ f dir loco (fromlIntegral speed)

pHalte = do
ident "halte” ()
loco <— integerNumber
return$ halte loco

;| pWeichenstellung =

(ident "geradeaus” True)
Text . Parsec.Prim.<|>
(ident ”“abzweigung” False)
Text . Parsec.Prim.<|>

pBool

pBool = (constructor ”True” True)
Text . Parsec . Prim.<|>
(constructor "False” False)

pSchalteWeiche = do
ident ”schalteWeiche” ()
nr <— integerNumber
abzweig <— pWeichenstellung
return $§ schalteWeiche (fromIntegral nr) abzweig

pDirection = pBackward <|> pForward

pBackward = constructor ”"Backward” Backward
;| pForward = constructor ”"Forward” Forward
pWarte = do

ident "warte” ()
sekunden <— integerNumber
cmd <— pAtomicCommand

o6

8.5 Command language parser

return$ warte sekunden cmd

pPair = do

special 7(”
x <— integerNumber
special 7,7
y <— integerNumber
special 7)”
return (x,y)

o|pWenn = do
ident ”wenn” ()
special 7[”
contacts <— sepByl pPair (special 7,”)
special 7]7

cmd <— pAtomicCommand
return $wenn contacts cmd

pParCommand = do

special 7(”
com <— pCommand
special 7)”
return com

8.5.3 Executing Scripts

This module has a main function. A script file can be submitted as command line
argument. The file we be parsed and then be executed.

We define a simple function for logging and a keep alive thread.

logger msg = print msg >> return False

keepAlive sendF = do

Control.Monad. forever
$oneShotTimer (sendF LAN_GET_ SERIAL NUMBER>>return ())
$sDelay 10

The main function processes the arguments and amounts in a call of the function
moin. This way it is possible to statr the function moin in the interpreter ghci?.

1|main = do

2

args <— getArgs
if (length args < 1)

4)Moin¢ in northern parts of Germany ist used for »Hello«. T use it as almost »main¢

o7

Chapter 8 Command language

then (putStrLn “usage: runZ2l skriptfile [host port]”) else do

let (host:portA:) =
if length args < 3
then [_DEFAULT CLIENT,show _DEFAULT PORT)]
else (tail args)

let skriptFile = head args
moin skriptFile host portA

In order to run a command, we need to install the network connection, create a
global state and the event listener queue.

moin skriptFile host portA = do
— network stuff
let port = fromInteger (read portA)
sock <— socket AF INET Datagram defaultProtocol
bindAddr <— inet_addr 70.0.0.0”
hostAddr <— inet addr host

bindSocket sock (SockAddrInet port bindAddr)
let addr = (SockAddrInet port hostAddr)
let sendF = sendMsg sock addr

— synchronized state variable
state <— newMVar newState

eventListener <— newEventListener
addListener eventListener logger
eventThread <— startEventListener eventListener sock

A state variable is used to signify if execution of the command has finished. This
is used to wait for the end of the execution. Afterwards we need to close the socket
and end the program.

done <— newEmptyMVar

We will parse the script. Then add the setting of the variable done at the end of
the script. Then hte execution is started.

sendF LAN SET BROADCASTFLAGS

{general=True,rbus=True, systemState=True}
file <— readFile skriptFile
let presult = parse pSkript skriptFile (lexAll skriptFile file)

o8

8.5 Command language parser

5 either

6 (print)

7 (\x—>(print x >>

8 (run eventListener state sendF (fst x)

9 (snd x

10 <+> I0Command (sClose sock >> putMVar done ())))))
1 presult

We wait for the variable done to be set.

takeMVar done — blocks till MVar is full
print 7 All done”

%)

8.5.4 Example Script

Here follows the script which petforms the same procedure as seen in a previous
section.

schalteWeg_1_4 = schalteWeiche 2 abzweigung
<+> schalteWeiche 4 geradeaus
<+> schalteWeiche 1 abzweigung

N

w

schalteWeg_ 3 2 = schalteWeiche 3 abzweigung
6| <+> schalteWeiche 4 abzweigung
7| <+> schalteWeiche 2 geradeaus

9| schalteWeg_1 2 3 4 = schalteWeiche 1 geradeaus
10| <+> schalteWeiche 2 geradeaus
11| <4> schalteWeiche 3 geradeaus
12| <+> schalteWeiche 4 geradeaus

14 schalteWeg_1_4

15| <4> warte 5 (fahre Backward 6 5)
16| <+> wenn [(1,4)] (halte 6)

17| <+> schalteWeg_3_ 2

15| <4+> warte 5 (fahre Backward 7 5)
| <+> wenn [(1,2)] (halte 7)

(schalteWeg_1_4
6 <+> warte 5 (fahre Backward 7 5)
7 <+> wenn [(1,4)] (halte 7)

20 <+> schalteWeg 1 _2 3 4

21| <+> warte 5

22 (fahre Forward 6 5 <4+> wenn [(1,3)] (halte 6)
2 <|> fahre Forward 7 5 <+> wenn [(1,1)] (halte 7)
24 <|> wenn [(1,3),(1,1)]

29

Chapter 8

Command language

<>
<>
<>
<>
<>

)

schalteWeg_ 3 2
warte 5 (fahre Backward 6 5)
wenn [(1,2)] (halte 6)
schalteWeg 1 2 3 4
warte 5
fahre Forward 6 5 <+> wenn [(1,1)] (halte 6)
<|> fahre Forward 7 5 <4+> wenn [(1,3)] (halte 7)
<|> wenn [(1,3),(1,1)] (warte 5 macheNichts)

Listing 8.1:

60

crossing.z21

Chapter 9

Conclusion

So what are the lessons learnt? This is a rather personal conclusion.

First of all: success. Well there where no major problems putting the task into
realization with the use of Haskell. Although having not used Haskell for quite a
long time and not being familiar with most of the libraries used, everthing went quite
smoothly. However, I have known Haskell for over 20 years by now. Introducing
bachelor students in the fourth term to functional programming often results into
a complete desaster. They have been trained in Java and C. They are quite firm
in using these languages. But functional programming leads them to a completely
alternative view of the world. They are confused by the syntax, by the concepts
and the lack of classes and anything they have seen so far. In courses of functional
programming [take them away everything they are used to as the backbone of
programming: classes, loops, assignments. Only a few of my students get fascinated
by this alternative world and start doing amazing things within it.

I must admit: I fell in love with Hoogle [Mit08]. It is a nice online help to get
familiar with unknown libraries.

I still love the concept of literate programming. All modules where written in literate
style. Viewing the source code of this project rather as a report than as a collection
of source files gives a complete different feeling to programming. Feels rather like
beeing an author than a programmer. This is especially due to the very short and
concise nature of the Haskell syntax. Almost no boiler plate code is necessary as
e.g. in Java. The literate style leads to a much closer preoccupation with te source
code. Many bugs where found simply by writing down the explaining parts of the
code. I personally read much more over the source code than I would have done in
a corresponding Java project.

The problem beginners might have with Haskell is: no structure or architecture is
preset by the language. Classes in object oriented languages give a firm structure
for a programmer: structure your domain in classes, write constructor functions
for object creation and so forth. Haskell simply says: write some functions and
make some algebraic data definitions. Even type classes are not as generally used as
interfaces in Java. This makes the beginner feel a bit lost. However, I was fascinated
how easily standard solutions for concepts like event listener, or something like a

61

Chapter 9 Conclusion

model view control pattern could be implemented in Haskell. The use of the rather
simple GTK library did not pose any serious problem.

My personal view of the type system. Well, I love it. Writing down programs in
Haskell is like writing down things in a script language but with the comfort of
being statically typed. It does not have the burden to writing down type signatures
for every little function, but the type inference algorithmn does detect errors.

I love currying and lambda lifting. Everything seems so light weight. This is one
of the things where the fun in functional programming comes from. Create a local
function by leaving some arguments. Or define a local function which magically can
use things defined in an outer context. Not much to worry about and nevertheless
things work as expected. This is one of the reasons I like the concept of effectively
final in Java 8.

What about monads? Well, I love and hate them. Even after two decades I find
them still confusing. I know how to define an instance of Monad. I can work with
monads. I somehow love the do notation although I am aware of the voices which
consider the do notation harmful [doh]'. However I find that I am not very firm
in using monads. Functions like 1iftM do not come easily into my mind. I still
feel lost when serveral different instances of Monad are used. Yes, most of all, there
is the IO monad, but there are exceptions, error monad, state monad. Lists are
monads and very useful the monadic instance of Maybe. Combining all these makes
me feel a bit lost and stupid. A feeling Haskell programmers often get: I am not
smart enough for these things. This language is build for the brilliant gals and guys.
Easily followed by the euphorical moments: yes, I am one the few brilliant guys who
understand this wonderful precise and clear language. Feelings you do not get when
writing Java code. There are no such highlights in Java code. Writing down Java
code is solid handcraft wihtout any fascination.

Haskell on the other hand has fascinating moments: this e.g. I think whenever I
write a parser or define a parser combinator library on my own. I still find the most
fascinating paper I have ever read, the early parser combinator paper by Frost and
Launchberry from 1988 [FL89].

As has been stated several times and very convincingly by Simon Peyton-Jones:
the future is parallel, and the future of parallel is declarative [PJ11] We needed
concurrency within this project. As a matter of fact: the light weight threads and
MVar implementation for concurrency in Haskell were easily applied. I am not sure
if this is the state of the art way to solve these things in Haskell, but it was so
beautifully easy to use. And it works. Great.

Implementing a complex modifiable state as done in module State of this project
feels clumsy. Maybe there are better ways to this, which I do not know about. The
way | started it seemed to be full of avoidable boiler plate code. Especially when
compared to a simple assigment in Java.

'But is there any concept without an harmful article about it?

62

And the major drawback for using Haskell? Haskell is used to compile stand alone
desktop or server applications. Especially in the presented project it would have
been nice to have written code that could be used within an application for mobile
phones or for browser applications. This currently is a strong point of Java. Android
applications are written as Java source code and browser-server web-application can
be written completely in Java by the help of Google Web Toolkit.

As for the other goal of this project. Yes, I did have »fun with trains<. Greetings
to Sheldon Cooper.

63

Chapter 9 Conclusion

64

Appendix A

Constants

The Z21 control has a fixed IP number and a fixed port. It even demands the clients

to use the same port.

module Z21.Constants where

_DEFAULT CLIENT="192.168.0.1117
_DEFAULT PORT=21105

65

Appendix A Constants

66

Appendix B

Utility Functions

This module has been created to take all utility functions used within the project.
Eventually just one such functions has been written. Most other functions were
allready present in some standard library and needn’t to be invented again.

module Util where

3| splitNChunks n = takeWhile(not.null)

. map(take n)

iterate (drop n)

67

Appendix B Utility Functions

68

Appendix C

A Simple Test Server

This tiny module had been create for testing sending an receiving messages.

module
import

import
import

import
import

import
import

port =
host =

main =

Main where
721 .Protocoll

Network . Socket hiding (send, sendTo, recv, recvFrom)
Network. Socket . ByteString

Numeric (showHex)
qualified Data.ByteString as C

Control .Monad (forever , when)
Data.IORef

21105
70.0.0.0”

;| type Host = SockAddr

withSocketsDo $ do

s <— socket AF INET Datagram defaultProtocol
bindAddr <— inet addr host

bindSocket s (SockAddrInet port bindAddr)

hostsRef <— newIORef []
forever $ do
(msg, hostAddr) <— recvFrom s 1024
putStrLn $ (show hostAddr)
putStrLn$show$map (\x —> showHex x 77)$ C.unpack msg
print$readMessage msg
hosts <— readlORef hostsRef
when (notElem hostAddr hosts) $ modifyIORef hostsRef (

hostAddr:)

hosts <— readlIORef hostsRef
sendToAll s (msg) $ hosts
sClose s

s|— sendToAll :: Socket —> String —> [Host] — IO ()
;| sendToAll socket msg hosts = do

69

Appendix C' A Simple Test Server

mapM_ (sendTo socket msg) $ hosts

70

Bibliography

[Com97]

[doh]
[FL8Y]

[Gmb13]

[Lau93]

[Lei01]

[Mit08]

[Pan03]

[PJ11]

[vTO8]

[Wag15]

JMRI Community. JMRI a Java-based cross-platform application
for model railroaders. http://jmri.sourceforge.net/help/en/html/
apps/index.shtml/, 1997.

Do notation considered harmful. https://wiki.haskell.org/Do_
notation_considered_harmful.

R. Frost and J. Launchbury. Constructing natural language interpreters in
a lazy functional language. The Computer Journal, 32(2):108-121, 1989.

Modelleisenbahn GmbH. 721 LAN Protokoll. http://www.z21.eu/
content/download/1589/16083/file/Z21 LAN Protokoll%20V1.05.
pdf, March 2013.

John Launchbury. Lazy imperative programming. In Yale University,
pages 46-56, 1993.

Daan Leijen. Parsec, a fast combinator parser. Technical Report 35,
Department of Computer Science, University of Utrecht (RUU), October
2001.

Neil Mitchell. Hoogle overview. The Monad. Reader, (12):27-35, November
2008.

Sven Eric Panitz. HOpenGL — 3D Graphics with Haskell,
A small Tutorial. Online Script, TFH Berlin, 2003.
www.panitz.name/hopengl/index.html.

Simon Peyton-Jones. The future is parallel, and the future of parallel
is declarative. https://yow.eventer.com/yow-2011-1004/the-future-is-
-parallel-and-the-future-of-parallel-is-declarative-by-simon-peyton-jones-
1055, 2011.

Hans van Thiel. Gtk2Hs Tutorial. http://code.haskell.org/gtk2hs/
docs/tutorial/Tutorial Port/, 2008.

Daniel Wagner. Threading and Gtk2Hs. http://dmwit.com/gtk2hs/,
2015.

71

