11. Übung

- 1. Sei G eine Gruppe und U eine Untergruppe von G. Wir definieren eine Relation $\sim \subseteq G \times G$ durch $a \sim b$ gdw. $ba^{-1} \in U$. Zeigen Sie, dass \sim eine Äquivalenzrelation ist.
- 2. Sei (G, \cdot) eine Gruppe und $U \subseteq G$. Zeigen Sie, dass (U, \cdot) genau dann eine Untergruppe von G ist, wenn für alle $u, v \in U$ auch $uv^{-1} \in U$ gilt.
- 3. Sei (G,\cdot) eine Gruppe. Zeigen Sie, dass alle Isomorphismen vom Typ $\eta\colon G\to G$ eine Gruppe bilden.
- 4. Zeigen Sie die folgende Aussage: Eine Zahl n (in Dezimaldarstellung) ist genau dann durch 3 teilbar, wenn ihre Quersumme durch 3 teilbar ist. Entwickeln Sie eine ähnliche Regel für die Teilbarkeit durch 11.
- 5. Zeigen Sie, dass sowohl die Addition von Restklassen " \oplus " als auch die Multiplikation von Restklassen " \odot " ist wohldefiniert, d.h. für $m \in \mathbb{N}, m \geq 2$ und $a, a', b, b' \in \mathbb{Z}$ gilt: Wenn $a \equiv a' \mod m$ und $b \equiv b' \mod m$, dann ist auch:
 - $[a]_{\equiv_m} \oplus [b]_{\equiv_m} = [a']_{\equiv_m} \oplus [b']_{\equiv_m}$ und
 - $[a]_{\equiv_m} \odot [b]_{\equiv_m} = [a']_{\equiv_m} \odot [b']_{\equiv_m}$.

Besprechung in der Übung am 27.1.2017