4. Übungsblatt

- 1. Sei $\mathcal{G} = (G, \cdot)$ eine beliebige Gruppe. Zeigen Sie, dass für $a, b \in G$, die Gleichung $(ab)^{-1} = b^{-1}a^{-1}$ gilt.
- 2. Sei (M,\cdot) ein Monoid und $M^*=_{\text{def}}\{m\in M\mid m \text{ ist invertierbar}\}$. Beweisen Sie, dass (M^*,\cdot) eine Gruppe ist.
- 3. Sei $X^X =_{\text{def}} \{f \mid f \colon X \to X\}$ und $X \neq \emptyset$. Zeigen Sie, dass X^X zusammen mit der Komposition von Funktionen ein Monoid bildet.
- 4. Sei $T_n =_{\text{def}} \{p \mid p \text{ ist Teiler von } n\}$, ggT(a,b) ist der größte gemeinsame Teiler und kgV(a,b) das kleinste gemeinsame Vielfache von a und b. Zeigen Sie, dass für $n \in \mathbb{N} \setminus \{0\}$ die Algebra $(T_n, \{ggT, kgV\})$ ein Verband ist. Hinweis: Stellen Sie natürliche Zahlen als Produkt von Primzahlen dar und überlegen Sie sich eine alternative Bedeutung von ggT und kgV.
- 5. Seien $\mathcal{G}=(G,\oplus)$ und $\mathcal{H}=(H,\otimes)$ Gruppen. Weiterhin ist ein Gruppenhomomorphismus $\eta\colon G\to H$ gegeben. Zeigen Sie:
 - i) Wenn e_G das neutrale Element von \mathcal{G} und e_H das neutrale Element von \mathcal{H} ist, dann gilt $\eta(e_G) = e_H$.
 - ii) Sei $a \in G$, dann gilt $\eta(a^{-1}) = (\eta(a))^{-1}$.
 - iii) Ist die Gruppe \mathcal{G} kommutativ und η surjektiv, dann ist auch \mathcal{H} kommutativ.

Besprechung in der Übung am 22. November 2017.