4. Übungsblatt

Im folgenden sei **TIME** (bzw. **SPACE**) eine Abkürzung für **DTIME** und **NTIME** (bzw. **DSPACE** und **NSPACE**). Lösen Sie die folgenden Aufgaben:

- 1. Beweisen Sie die folgenden Aussagen:
 - i) $TIME(2^n) = TIME(2^{n+1})$
 - ii) $NTIME(n) \subseteq PSPACE$

Dabei ist

$$\label{eq:pspace} \text{PSPACE} =_{\text{def}} \bigcup_{p \text{ Polynom}} \text{SPACE}(p).$$

2. Seien R eine reguläre Sprache und $s: \mathbb{N} \to \mathbb{N}$ eine Funktion mit $s(n) \geqslant \log n$ für alle $n \in \mathbb{N}$. Beweisen Sie:

Ist
$$A \in \mathbf{SPACE}(s(n))$$
, so gilt auch $A \cup R \in \mathbf{SPACE}(s(n))$.

- 3. Zeigen Sie, dass die Funktion $f: \mathbb{N} \to \mathbb{N}$ mit $f(n) = n^2$ raumkonstruierbar ist.
- 4. Es seien f, g raumkonstruierbare Funktionen und $k \in \mathbb{N}$. Zeigen Sie:
 - i) f + g,
 - ii) $f \cdot g$,
 - iii) f^g und
 - iv) $h(n) = n^k$

sind raumkonstruierbar.

Besprechung in der Übung am 17. Mai 2017.