8. Übungsblatt

- 1. Zeigen Sie ohne Verwendung des Korrektheitssatzes, dass für jedes $H \in L_{\mathrm{AL}}$
 - $i) \ \{H\}^{\vdash} = \{(H \land H)\}^{\vdash} \ \text{und}$
 - $ii) \ \{H\}^{\vdash} = \{(H \vee H)\}^{\vdash} \ \mathrm{gilt}.$

Hinweis: Verwenden Sie für die Richtung " \subseteq " von Teilaufgabe ii) den "Modus Ponens" und die Regel von der Fallunterscheidung.

- 2. Welche der folgenden Menge sind vollständig und welche sind konsistent?
 - i) $TAUT =_{def} \{H \mid H \text{ ist eine Tautologie}\}\$
 - ii) SAT $=_{def} \{H \mid H \text{ ist erfüllbar}\}$
 - *iii*) ONEREP =_{def} { $H \mid f_H(1, 1, ..., 1) = 1$ }
- 3. Beweisen Sie die Aussagen i) iii) des folgenden Satzes aus der Vorlesung:

Satz 1: Sei $\Phi \subseteq L_{AL}$ konsistent und vollständig, dann gelten die folgenden Aussagen:

- $i) \ \neg H \in \Phi \ gdw. \ H \not\in \Phi$
- ii) $(H_1 \vee H_2) \in \Phi$ gdw. $H_1 \in \Phi$ oder $H_2 \in \Phi$
- iii) $(H_1 \wedge H_2) \in \Phi$ gdw. $H_1 \in \Phi$ und $H_2 \in \Phi$
- 4. Sei $\Phi \subseteq L_{\rm AL}$ und $H \in L_{\rm AL}$. Zeigen Sie, die Richtigkeit der folgenden Aussage: Wenn Φ konsistent und H unerfüllbar ist, dann gilt $H \notin \Phi$.
- 5. Genießen Sie die Weihnachtszeit!

Besprechung in der Übung am 12. Januar 2024