11. Übungsblatt

- 1. Sei $S = \{P\}$, wobei P ein zweistelliges Relationensymbol ist. Welche der folgenden Interpretationen $I = ((A, \alpha), \beta)$ machen die Formeln
 - $\forall x \exists y (P(x,y) \lor P(y,x))$
 - $\exists x \forall y P(y, x)$

wahr?

- (a) $A = \mathbb{N}, \alpha(P) = |$ (die Teilbarkeitsrelation)
- (b) $A = 2^{\mathbb{N}}$ (die Potenzmenge von \mathbb{N}), $\alpha(P) = \subseteq$ (die Inklusionsrelation)
- 2. Beweisen Sie: Wenn I ein Modell von $\exists y \forall x P(x,y)$ ist, dann ist I auch auch Modell von $\forall x \exists y P(x,y)$. Die Umkehrung gilt nicht. (Hinweis: Suchen Sie ein Gegenbeispiel)
- 3. Es sei $S = \{B, <\}$, wobei B ein einstelliges und < ein zweistelliges Relationensymbol ist. Für eine Menge $\mathcal{U} \subseteq \mathbb{N}$ definieren wir die S-Interpretation $I_{\mathcal{U}} = ((\mathbb{N}, \alpha), \beta)$ mit $\alpha_{\mathcal{U}}(B) =_{\text{def}} \mathcal{U}, \ \alpha_{\mathcal{U}}(<) =_{\text{def}} <_{\mathbb{N}}$ (die <-Relation auf den natürlichen Zahlen) und β beliebig. Für welche $\mathcal{U} \subseteq \mathbb{N}$ macht die Interpretation $I_{\mathcal{U}}$ die Formel

$$\forall x (B(x) \to \exists y (x < y \land B(y)))$$

wahr?

Besprechnung in der Übung am 26. Januar 2024