
Playing with Boolean Blocks, Part I:
Post’s Lattice with Applications to Complexity Theory1

Elmar Böhler2, Nadia Creignou3, Steffen Reith4, and Heribert Vollmer5

Introduction

Let us imagine children playing with a box containing a large number of building blocks such as
LEGOTM, fischertechnik, Polydron, or something similar. Each block belongs to a certain class
(given by, e. g., color, shape, or size) and usually the number of different such classes is relatively
small. It is amazing to see how involved the constructions are that can be built by the kids. From
an abstract point of view, one might ask if there is something similar to all objects that may be built
using only blocks from some given classes, or if a given object (i.e., given by some description) can
be constructed using the available blocks. These questions become interesting from a theoretical
point of view if the number of different types or classes of blocks is finite, but from each type of
block we have an infinite number of “copies” available for construction.

In this (and the upcoming January) complexity theory column we will play with Boolean blocks.
In the present issue we will mainly consider Boolean functions as basic blocks. We want to use
them as gates in the construction of Boolean circuits. Thus, the way of building blocks together
here is the operation of soldering. In the next issue we will use Boolean constraints, i. e., Boolean
relations, to construct so called conjunctive queries to a database.

To be a bit more formal, let B be a set of Boolean functions. By [B] we denote the class of all
Boolean functions that can be obtained from functions out of B ∪{id} by soldering them together,
i. e., [B] consists of all arbitrary compositions of functions from B∪{id}. Here, id denotes the unary
identity, id(x) = x. We will see that for certain “syntactical” reasons we always have to include
the identity. Thus, [B] consists of all functions of B ∪ {id} plus those, that can be obtained by the
following rule: If f(x1, . . . , xn) ∈ [B] and X1, . . . , Xn are either Boolean variables or elements from
[B], then f(X1, . . . , Xn) ∈ [B], too. Note that we are able to permute and identify variables of a
Boolean function by this operation. We say that a class B of Boolean functions is closed if [B] = B
which means that we cannot generate new Boolean functions by composing functions out of B.

It is interesting to note that [B] is exactly the class of Boolean functions that can be computed
by circuits with gates from B, or, equivalently, can be defined by propositional formulas with
connectives from B. We will come back to this observation in Sect. 1.2.

In the forties of the previous century, Emil Post obtained a complete list of all closed classes of
Boolean functions, nowadays called Post’s lattice, and moreover, he proved that each of them has
a finite basis and obtained a list of bases for all closed classes [Pos41] (see Figs. 1 and 2). Closed
classes are also referred to as clones, a term used in universal algebra. We will see in the second
part of this column that the substantial clone theory can help us to obtain elegant and short proofs

1 c©Elmar Böhler, Nadia Creignou, Steffen Reith and Heribert Vollmer, 2003. Supported in part by ÉGIDE
05835SH, DAAD D/0205776 and DFG VO 630/5-1.

2Theoretische Informatik, Fachbereich Mathematik und Informatik, Universität Würzburg, Am Hubland, 97072
Würzburg, GERMANY, boehler@informatik.uni-wuerzburg.de.

3Laboratoire d’informatique fondamentale, Faculté des sciences de Luminy, Université de la Méditerranée, 163
avenue de Luminy, 13288 Marseille cedex 9, FRANCE, creignou@lidil.univ-mrs.fr

4Lengfelderstr. 35b, 97078 Würzburg, GERMANY, streit@streit.cc.
5Theoretische Informatik, Fachbereich Informatik, Universität Hannover, Appelstraße 4, 30167 Hannover, GER-

MANY, vollmer@thi.uni-hannover.de.

1

for results concerning constraint satisfaction problems. In the present part I we will use Post’s
lattice as a tool in complexity examinations of Boolean circuits and propositional formulas.

A description of Post’s lattice (without a proof of the classification, but a proof of the finite
basis theorem) can be found in [Pip97, Chap. 1]. A complete and self-contained presentation of
Post’s result is given in [JGK70]. Different and much shorter proofs can be found in [Ugo88, Zve00].

As just mentioned, Post’s lattice can be a very helpful tool for complexity studies of Boolean
circuits and propositional formulas. Before turning to a detailed discussion of the lattice in Sect. 1
we want to show the reader a glimpse of what is ahead in Sect. 2 where we turn to applications in
complexity theory. The famous Cook-Levin-Theorem states that the problem, given a propositional
formula or circuit to determine if it is satisfiable, is NP-complete [Coo71, Lev73]. A question that
arises immediately is if there are subclasses of propositional formulas for which the satisfiability
problem is easier, e. g., efficiently solvable. One direction one might pursue is to restrict the types
of Boolean connectives allowed. Instead of the usual formulas or circuits over {∧,∨,¬} one might
for example restrict oneself to {∧,⊕}. Since [B] is the class of those functions that can be defined
using propositional formulas with allowed Boolean connectives taken from B, this question is most
naturally studied in connection to Post’s lattice: Allowing connectives from B is the same as
allowing connectives from [B]. Lewis in 1979 [Lew79] obtained the remarkable result that the
satisfiability of propositional formulas is NP-complete if and only if the connective x ∧ ¬y can be
represented (in Post’s lattice, this corresponds to the class S1). We will give a very short proof of
Lewis’ result in Sect. 2. Coming back to the above example set {∧,⊕}, satisfiability turns out to
be again NP-complete, since, as we will see, [{∧,⊕}] is the class R0 in Post’s lattice, a superclass
of S1.

1 Closed Classes of Boolean Functions: Post’s Lattice

Boolean circuits and Boolean functions attract and deserve a lot of attention in computer science,
and the theory behind them is exhaustively used in circuit design and various other important
fields. We will have a look at superposition, i. e., the mathematical operations that correspond
to operations carried out when soldering Boolean circuits. Whether or not a Boolean function
can be described by a Boolean circuit depends solely on the sort of gates one is allowed to use
in the construction of the circuit. There are classes of Boolean functions that are closed under
superposition: In this section we will discuss these and the result from E. L. Post [Pos41] who
identified and characterized each of them.

1.1 Boolean Functions

An n-ary Boolean function is a function from {0, 1}n to {0, 1}. There are several ways to describe
an n-ary Boolean function f . One is to explicitly specify for each n-tuple a1, . . . , an the function
value f(a1, . . . , an), i. e., to construct a lookup table for all possible inputs of the function, the so
called truth-table. This form of representation is often very inconvenient, since the truth table has
exponentially many (exactly 2n) entries.

Since we have binary function values, every Boolean function also defines an n-ary relation:
The set of all n-tuples α with f(α) = 1. A second possibility to describe a Boolean function thus
is by listing all of these, but again, we will have up to exponentially many tuples.

Much more compact methods to describe Boolean functions are Boolean circuits and proposi-
tional formulas, which we will define formally in the next subsection.

2

Throughout the text, we will refer to some basic Boolean functions (that are often used as gates
when building circuits or as connectives when building formulas), with the notations listed below:

– 0-ary Boolean functions: c0 =def 0 and c1 =def 1.
(We write 0 and 1 in formulas.)

– 1-ary Boolean functions: id(x) =def x; and not(x) = 1 iff x = 0.
(In formulas we simply write x for id(x) and x or ¬x for not(x).)

– some prominent 2-ary Boolean functions: and(x, y) = 1 iff x = y = 1, or(x, y) = 0 iff
x = y = 0, xor(x, y) = 1 iff x 6= y, eq(x, y) = 1 iff x = y, imp(x, y) = 0 iff x = 1 and y = 0,
and nand(x, y) = 0 iff x = y = 1.
(In formulas, we use ∧,∨,⊕,↔,→, |, resp., all operators are used in infix notation.)

1.2 Assembling Boolean Functions – B-Circuits and Superposition

Let B be a set of Boolean functions. An n-input B-circuit (or, an n-input circuit over basis B) is
a directed, acyclic graph where each node is labeled either with a variable xi, i = 1, 2, 3, . . . , n, or
a function from B. We will call the nodes of this graph gates. The number of edges (also called
wires) pointing into a gate is called fan-in, the number of wires leaving a gate is called fan-out
of that gate. For reasons that will become clear shortly, we also order the edges pointing into a
gate. If a wire leaving gate u is pointing into gate v, we say that u is a predecessor gate of v. The
gates labeled with a variable must have a fan-in of 0; we call these input gates. The fan-in of gates
labeled with a Boolean function has to be as large as the arity of that function. We mark one
particular gate and call it output gate. Note that an input-gate can be the output-gate, too. Hence
the function id can be computed by B-circuits for any B.

The computation of an n-input B-circuit C proceeds as we describe next. Given an n-bit input
string x = a1a2 . . . an, every gate in C computes a Boolean value as follows: A gate v labeled with
a variable xi returns the bit ai. A gate v of fan-in k labeled by a Boolean function f computes the
value f(b1, . . . , bk), where b1, . . . , bk are the values computed by the predecessor gates of v, ordered
according to the order of those wires connecting v with its predecessors. The value of C on input
x is the value computed by the output gate. In this way, C computes an n-ary Boolean function,
which we denote by fC . (We will use the notations fC(a1 . . . an) and fC(a1, . . . , an) interchangeably
with identical meaning.) The class CIRC(B) is the set of all functions that can be computed by
B-circuits.

Note that a propositional formula can be seen as a circuit where the fan-out of each node is at
most 1. So we treat B-formulas as a special case of (tree-like) B-circuits.

Given a fixed set B, what are the Boolean functions that can be computed by a B-circuit?
More precisely, we are looking for a set of operations such that CIRC(B) can be obtained as the
closure of B under these. The operations have to describe in a mathematical way what “soldering
some given circuits together” means.

First note that surely every f from B is in CIRC(B): Just build a circuit that has as many
input nodes as f has arguments, and draw an edge from every input node to one additional node,
labeled with f . Suppose we have a B-circuit C1 computing the n-ary Boolean function fC1 , and
another B-circuit C2 computing m-ary fC2 . Now we can derive new B-circuits by performing one
of the following operations:

(i) We get a new circuit C ′
1 by just adding one input node to C1. Since we do not add any new

edges, the new node has no influence on the computed Boolean function besides the higher

3

arity. We call this operation introduction of a fictive variable and get for all a1, . . . , an+1 ∈
{0, 1}: fC′

1
(a1, . . . , an+1) = fC1(a1, . . . , an). In general, we will say a variable of a Boolean

function (an input gate of a circuit) is fictive, if the value of the function (the circuit) never
depends on this variable (this input gate).

(ii) We may obtain circuit C ′
1 from C1 by arbitrarily permuting the input variables. This operation

will be called permutation of variables and if π ∈ Sn is our permutation, we get for all
a1, . . . , an ∈ {0, 1}: fC′

1
(a1, . . . , an) = fC1(aπ−1(1), . . . , aπ−1(n)).

(iii) Since the fan-out of gates is not restricted whatsoever, we can remove all outgoing edges of
one input gate xi of C1 and assign them to another input gate xj . After this operation, xi

is a fictive gate and we drop it. The thus derived circuit C ′
1 is a B-circuit and computes a

function of arity n−1, given by fC′
1
(a1, . . . , ai−1, ai+1, . . . , an) = fC1(a1, . . . , ai−1, aj , ai+1, . . . ,

an). We call this operation identification of variables.

(iv) If we replace input gate xn of C1 by the whole circuit C2, i. e., we replace xn with the output
gate of C2 and we replace in C2 every input gate xj (for 1 ≤ j ≤ m) by xn−1+j , we get a new
B-circuit C ′ of arity n + m− 1. For the Boolean function fC′ obtained in this way, we have:
fC′(a1, . . . , an−1, an, . . . , an+m−1) = fC1(a1, . . . , an−1, fC2(an, . . . , an+m−1)). This operation is
called substitution.

The important observation now is that every B-circuit can be obtained by a sequence of these
operations. Or, speaking about Boolean functions instead of circuits: The operations (i)–(iv)
though defined on circuits correspond immediately to operations on Boolean functions. Define the
closure of a set B of Boolean functions under superposition, denoted by [B], to be the set of those
functions that can be obtained from functions in B ∪ {id} by a finite sequence of applications
of (i)–(iv). It is interesting to note that superposition is equivalent to arbitrary composition of
Boolean functions and introduction of fictive variables. So f ∈ [B] if and only if f ∈ B ∪ {id}
or there is a g ∈ [B] and X1, . . . , Xn, that are either variables or functions from [B], such that
f = g(X1, . . . , Xn).

Superposition on the level of Boolean functions corresponds to soldering on the level of circuits,
thus [B] = CIRC(B). We conclude that, if we want to know which Boolean functions can be
computed by B-circuits, we do not have to talk about circuits at all: It suffices to study the
closures of classes of Boolean functions under superposition.

Example 1.1. Let f(x, y) =def x∧ y be a Boolean function. Is the function and(x, y) in [f]? (We
use [f] as a shorthand for [{f}].) To answer this question, we have to find a composition of f ’s
that is equal to and(x, y). In this case it is easy to verify that and(x, y) = f(x, f(x, y)).

1.3 Post’s Lattice

We say a set of Boolean functions B is a clone (or, B is closed) if B = [B], i. e., no new functions
can be derived from compositions of functions from B ∪ {id}. Every set B0 ⊆ B with [B0] = B
is called a base (or basis) of B. We also say that such a set B0 is complete in B. As mentioned
before, all closed classes of Boolean functions were identified by Post [Pos41], who also found a
finite basis for each of them (see Fig. 1). Post also detected the very useful inclusion structure of
the classes (see Fig. 2), hence the name Post’s graph or (as we will shortly prove that the structure
is a lattice) Post’s lattice.

4

We would like to mention that the names of the classes in Fig. 2 are not those Post used
originally. Post was not only interested in closed classes of Boolean functions, but he additionally
considered so called “iterative classes” which are missing some of the closure properties of our
notion of superposition. This leads to the idiosyncrasy that if we used Post’s names, we would
have, e. g., classes P1,P3,P5,P6, but no P2 and P4. The terminology used in Fig. 2 was developed
by Klaus Wagner in an attempt to construct a consistent scheme of names for closed classes, and
further propagated in [RW00, RV00].

We want to introduce some clones:

– BF is the class of all Boolean functions.

– For a ∈ {0, 1}, a Boolean function f is called a-reproducing if f(a, . . . , a) = a. The clones
Ra contain all a-reproducing Boolean functions.

– For (a1, . . . , an), (b1, . . . , bn) ∈ {0, 1}n, we say (a1, . . . , an) ≤ (b1, . . . , bn) if ai ≤ bi for 1 ≤ i ≤
n. An n-ary Boolean function f is called monotonic if for all α, β ∈ {0, 1}n holds: If α ≤ β
then f(α) ≤ f(β). Typical monotonic Boolean functions are and and or . The class of all
monotonic Boolean functions is denoted by M.

– A Boolean function f is called self-dual if for all a1, . . . , an ∈ {0, 1} we have f(a1, . . . , an) =
¬f(a1, . . . , an). Therefore constants are never self-dual and simple self-dual functions are id
and not . The class of all self-dual Boolean functions is called D.

– Boolean functions that can be defined with a linear formula are called linear, i. e., an n-
ary function f is linear if there exist constants c0, . . . , cn ∈ {0, 1} such that f(x1, . . . , xn) =
c0 ⊕ c1x1 ⊕ · · · ⊕ cnxn. (Here and in the following, we do not distinguish between a Boolean
function and the defining propositional formula. Also, for variables x, y we use xy as a
shorthand for x ∧ y.) The typical linear functions are xor and eq . The class of all linear
Boolean functions is called L.

– Let T ⊆ {0, 1}n and a ∈ {0, 1}. We call T a-separating if there exists an i ∈ {1, . . . , n}
such that for all (b1, . . . , bn) ∈ T holds bi = a. A Boolean function f is called a-separating if
f−1(a) is a-separating. The function f is called a-separating of level k if every T ⊆ f−1(a)
with |T | = k is a-separating. The classes of all a-separating functions are called Sa and the
classes of a-separating functions of level k are called Sk

a.

– The class E is the class of all Boolean functions that can be described by formulas build
over ∧, 0 and 1: E = { f | n ∈ N and f(x1, . . . , xn) = c0 ∧ (c1 ∨ x1) ∧ . . . ∧ (cn ∨ xn) for
some constants ci, 0 ≤ i ≤ n }. Analogously, V is the class of Boolean functions that can
be described by formulas build over ∨, 0 and 1. (“E” and “V” stand for “et” and “vel”, the
Latin names of AND and OR.)

– The class I2 contains all projections (i.e., all Boolean functions In
k with In

k (a1, . . . , an) = ak

for all a1, . . . , an ∈ {0, 1}), and I contains all projections and additionally all constants (i.e.,
all Boolean functions cn

a , a ∈ {0, 1}, with cn
a(a1, . . . , an) = a for all a1, . . . , an ∈ {0, 1}). N2

contains all projections and all negations of projections. The class N contains N2 and all
constants.

All other classes in Post’s graph can be obtained from the above by intersection, as we illustrate
next. Let A and B be clones and

5

Class Definition Base(s)
BF all Boolean functions {and ,not}
R0 { f ∈ BF | f is 0-reproducing } {and , xor}
R1 { f ∈ BF | f is 1-reproducing } {or , x⊕ y ⊕ 1}
R2 R1 ∩ R0 {or , x ∧ (y ⊕ z ⊕ 1)}
M { f ∈ BF | f is monotonic } {and , or , c0 , c1}
M1 M ∩ R1 {and , or , c1}
M0 M ∩ R0 {and , or , c0}
M2 M ∩ R2 {and , or}
Sn

0 { f ∈ BF | f is 0-separating of degree n } {imp,dual(hn)}
S0 { f ∈ BF | f is 0-separating } {imp}
Sn

1 { f ∈ BF | f is 1-separating of degree n } {x ∧ y, hn}
S1 { f ∈ BF | f is 1-separating } {x ∧ y}
Sn

02 Sn
0 ∩ R2 {x ∨ (y ∧ z),dual(hn)}

S02 S0 ∩ R2 {x ∨ (y ∧ z)}
Sn

01 Sn
0 ∩M {dual(hn), c1}

S01 S0 ∩M {x ∨ (y ∧ z), c1}
Sn

00 Sn
0 ∩ R2 ∩M {x ∨ (y ∧ z),dual(hn)}

S00 S0 ∩ R2 ∩M {x ∨ (y ∧ z)}
Sn

12 Sn
1 ∩ R2 {x ∧ (y ∨ z), hn}

S12 S1 ∩ R2 {x ∧ (y ∨ z)}
Sn

11 Sn
1 ∩M {hn, c0}

S11 S1 ∩M {x ∧ (y ∨ z), c0}
Sn

10 Sn
1 ∩ R2 ∩M {x ∧ (y ∨ z), hn}

S10 S1 ∩ R2 ∩M {x ∧ (y ∨ z)}
D { f | f is self-dual } {xy ∨ xz ∨ yz}
D1 D ∩ R2 {xy ∨ xz ∨ yz}
D2 D ∩M {xy ∨ yz ∨ xz}
L { f | f is linear} {xor , c1}
L0 L ∩ R0 {xor}
L1 L ∩ R1 {eq}
L2 L ∩ R2 {x⊕ y ⊕ z}
L3 L ∩D {x⊕ y ⊕ z ⊕ c1}
V { f | f is an n-ary or -function or a constant function} {or , c0 , c1}
V0 [{or}] ∪ [{c0}] {or , c0}
V1 [{or}] ∪ [{c1}] {or , c1}
V2 [{or}] {or}
E { f | f is an n-ary and -function or a constant function} {and , c0 , c1}
E0 [{and}] ∪ [{c0}] {and , c0}
E1 [{and}] ∪ [{c1}] {and , c1}
E2 [{and}] {and}
N [{not}] ∪ [{c0}] ∪ [{c1}] {not , c1}, {not , c0}
N2 [{not}] {not}
I [{id}] ∪ [{c1}] ∪ [{c0}] {id , c0 , c1}
I0 [{id}] ∪ [{c0}] {id , c0}
I1 [{id}] ∪ [{c1}] {id , c1}
I2 [{id}] {id}

Figure 1: List of all Boolean clones with bases (hn =
∨n+1

i=1 x1 · · ·xi−1xi+1 · · ·xn+1 and
dual(f)(a1, . . . , an) = ¬f(a1, . . . , an)).

6

R1 R0

BF

R2

M

M1 M0

M2

S2
0

S3
0

S0

S2
02

S3
02

S02

S2
01

S3
01

S01

S2
00

S3
00

S00

S2
1

S3
1

S1

S2
12

S3
12

S12

S2
11

S3
11

S11

S2
10

S3
10

S10

D

D1

D2

L

L1 L0

L2

L3

V

V1 V0

V2

E

E0E1

E2

I

I1 I0

I2

N2

N

Figure 2: Graph of all Boolean clones

7

– let A uB be the largest clone that is contained in both A and B, and

– let A tB be the smallest clone that contains both A and B.

Note that A∩B ⊆ [A ∩B]. On the other hand we have A∩B ⊆ A and hence [A ∩B] ⊆ [A] = A.
Analogously we obtain [A ∩B] ⊆ [B] = B, which gives us [A ∩B] ⊆ A ∩ B. We conclude that
[A ∩B] = A∩B, hence A∩B is again a clone. But since AuB is the largest clone that is contained
in both A and B we have that A ∩ B ⊆ A u B. Since by definition, A u B ⊆ A ∩ B, we conclude
A ∩ B = A u B. Similarly we can show that [A ∪ B] = A t B holds. It is easy to check, that u
and t are both associative and commutative. Besides that, Au (AtB) = A and At (AuB) = A
hold, so the Boolean clones form a lattice.

Example 1.2. The class E1 consists of functions from E that are also 1-reproducing, E1 = E∩R1.
Similarly, E0 = E ∩ R0. The class E2 finally consists of all functions from E that are both 1-
reproducing and 0-reproducing. As a general mnemonic, functions from classes with index 0 are
0-reproducing, functions from classes with index 1 are 1-reproducing, and functions from classes
with index 2 are both. This implies that, while E contains all constant functions, the only constant
functions in E0 are constant 0 functions, the only constant functions in E2 are constant 1 functions,
and that E2 does not contain any constant functions. This is similarly valid for other classes as Ri,
Mi, Li, Vi, Ei, Ni and Ii, where i is empty or an index 0, 1 or 2. Observe that D is excluded here
since constant functions are never self-dual.

The well known Post’s classes are those classes B in Post’s lattice with the properties that
B (BF and that for every B′ with B (B′ ⊆ BF we obtain [B′] = BF, hence they are the
maximal classes which do not contain all Boolean functions; in other words: Post’s classes are the
dual atoms of Post’s lattice. (Sometimes they are simply called maximal clones [Sze86].) There
are five such classes, namely R0, R1, M, D, and L; these are circled bold in Fig. 2. This suggests a
very convenient test whether a given function f (or set B) is complete in the sense that [f] = BF
([B] = BF): One just has to make sure that f (or B) is not contained in one of Post’s classes.

Example 1.3. Consider the Boolean function nand . Clearly nand 6∈ R0 and nand 6∈ R1. Moreover
we have nand 6∈ M, because (0, 0) ≤ (1, 1), but nand(0, 0) 6≤ nand(1, 1). The nand -function is not
self-dual since nand(0, 1) 6= ¬nand(1, 0). Finally note that nand is not linear. To show this suppose
that nand is linear. In this case we have nand(x, y) = c0 ⊕ c1x ⊕ c2y. Because nand(0, 0) = 1 we
have c0 = 1, by nand(1, 0) = 1 we obtain c1 = 0 and by nand(0, 1) = 1 we obtain c2 = 0 too. But
this is a contradiction since nand is not a constant function. Since nand is not contained in one
of the five maximal clones we conclude that [nand] = BF. Hence each Boolean function can be
implemented by a nand -circuit.

Another interesting and useful aspect is duality. We say a function f is the dual function of g if
they both have the same arity n and for all a1, . . . , an ∈ { 0, 1 } holds f(a1, . . . , an) = g(a1, . . . , an).
We define dual(f) to be the dual function of f and for a set of Boolean functions B we let dual(B) =
{dual(f) | f ∈ B }.

Duality Principle. Let α ∈ { 0, 1 }n, let g be an m-ary and f1, . . . , fm be n-ary Boolean functions,
and let h(α) =def g(f1(α), . . . , fm(α)). Then dual(h)(α) = dual(g)(dual(f1)(α), . . . ,dual(fm)(α)).

This implies that, if a Boolean function f is computed by some B-circuit C, then dual(f) is
computed by the circuit obtained from C by replacing each gate with the dual one.

8

For each clone B the set dual(B) is again a clone. When looking at Fig. 2 we can find the
dual classes very easily. Imagine a symmetry axis through BF and I2. Now, for each class on the
one side of the axis the dual one is the mirror image on the other side of the axis. For classes B
located on the axis, we have dual(B) = B. Special cases are the so called self-dual classes; these
are the subclones of D, the clone of all self-dual functions, where a function f is called self-dual if
dual(f) = f . A lot of properties hold for a Boolean function iff they hold for its dual. Thus, the
symmetry of Post’s lattice can be used to simplify proofs.

We want to give some examples that illustrate how comfortable life becomes with Post’s lattice:

Example 1.4. Let f = x ∧ y be the function from Example 1.1 and let us again wonder whether
or not the function and is in [{f}]. When we look at Fig. 1 we see that {f} is the base of a class
named S1. Fig. 2 shows us that the class E2, that is a subset of S1, has the base {and}. So obviously
and ∈ S1 = [{f}].

Example 1.5. For decision problems dealing with Boolean circuits (e.g., the circuit value problem
or satisfiability of circuits; we discuss these problems in detail in Sect. 2), often two variations
exist: The first one is that we have constants “for free” in the circuit and the second one is to not
allow them. Suppose we want to examine such a decision problem where {f}-circuits are the input
instances and f is again x ∧ y.

For a given {f}-circuit C, if we exchange some of the input-gates of C with constants 0, we
get an {f, c0}-circuit. But since {c0} is contained in the clone [and , c0] = E0 ⊆ S1 = [{f}], we can
replace each of the c0’s with an {f}-subcircuit computing c0 (in this example, c0 = f(x, x)), so the
whole circuit becomes an {f}-circuit again. Thus, problems are as difficult for {f, c0}-circuits as
they are for {f}-circuits.

Now, if we exchange some of the input gates of C with constants 1, we get an {f, c1}-circuit.
The function c1 is not contained in any subclass of S1, so by using the constant 1 we will be able
to compute more than just functions from [{f}]. Which are these? Since [{f, c1}] = [S1 ∪ {c1}]
this is the smallest clone containing both S1 and I1 (the class I1 is the smallest class that contains
c1). A look at Fig. 2 shows us that this is BF, the set of all Boolean functions! So problems for
{f, c1}-circuits are as difficult as they are for {∧,∨,¬}-circuits.

I

V E N

BF

M L

Figure 3: Graph of all Boolean
clones with constants.

We see that those classes in Post’s lattice that contain the con-
stant functions are of particular interest. These are exactly the
classes [B ∪ {c0, c1}], where B is an arbitrary set of Boolean func-
tions. Making use of the lattice properties, we thus only have to
determine all classes B t I (I is the smallest class containing both
c0 and c1.) for all B in Post’s lattice. In this way, one immedi-
ately obtains Fig. 3, presenting the inclusion structure among all
Boolean clones with constants.

Example 1.6. Suppose f is an n-ary monotonic Boolean func-
tion, i. e., f ∈ M. Is f also in L? For this, first note that L 6⊆ M,
and M ∩ L = M u L = I (see Fig. 2). Since I = [I2 ∪ {c0, c1}],
f is in L if and only if it is a projection or a constant function.
Since f is monotonic, f is constant if and only if f(0, . . . , 0) = 1
or f(1, . . . , 1) = 0.

We next claim that f is a projection if and only if there is exactly one m ∈ {1, . . . , n} such
that f(α) = 1 and f(β) = 0, where α = (0m−1, 1, 0n−m) and β = (1m−1, 0, 1m−n): If f is a

9

projection, then such an m (and only one) certainly exists. On the other hand, for every γ ∈
{ 0, 1 }m−1 × { 1 } × { 0, 1 }n−m holds γ ≥ α. Therefore, and since f is monotonic, f(γ) = 1.
Furthermore, for every δ ∈ { 0, 1 }m−1×{ 0 }×{ 0, 1 }n−m holds β ≥ δ and therefore f(δ) = 0. That
means f(a1, . . . , an) = am for all a1, . . . , an ∈ { 0, 1 } which means that f is a projection.

2 The Complexity of some Problems in Post’s Lattice

In computational complexity theory, a large number of problems related to propositional formulas
or Boolean circuits have been studied intensively. The most prominent of them is probably the first
problem ever shown to be NP-complete [Coo71, Lev73], the problem SAT (see also [GJ79, Problem
LO1]), asking if a given propositional formula F is satisfiable. A natural question now is of course,
how the complexity of the problem changes if not all propositional formulas are allowed but only
those with connectives from a previously fixed set B of Boolean functions. Thus, we are lead to
the following problem, first studied systematically by Lewis in 1979 [Lew79]:

Problem: SAT(B)
Input: A B-formula F

Question: Is F satisfiable?

As argued in the previous section, this problem leads immediately to the context of Post’s
classes. In order to obtain a solution, it is convenient to consider first a more general problem
than the above, asking, given a Boolean circuit C with gates taken from a set B, if there is an
input x such that C on x outputs the value 1. We will denote this problem by Circuit-SAT(B).
We first present a complete classification of the complexity of Circuit-SAT(B), showing for which
bases B the problem is NP-complete and for which bases it is efficiently solvable. The results says
essentially that the problem is NP-complete iff [B] contains the Boolean function x ∧ ¬y.

Theorem 2.1 [RW00]. If [B] ⊇ S1 then Circuit-SAT(B) is NP-complete; in all other cases
Circuit-SAT(B) is polynomial-time solvable.

Proof. First note that Circuit-SAT(B) ∈ NP for every B, since Circuit-SAT without restrictions
on the gate types is in NP.

Our strategy in this proof is to first try to establish a number of clones B, to which NP-
completeness for the unrestricted case carries over. Then, making use of Fig. 2, we will examine
the hopefully not too many remaining cases.

Looking back at Example 1.5, we know that [S1 ∪ {1}] is the class of all Boolean functions,
hence we know that Circuit-SAT(S1 ∪ {1}) is NP-complete. The question now is how to get rid of
the constant 1. Since S1 is a superclass of E2 it contains the and -function. Given now an S1-circuit
C, we know that there is another S1-circuit Ĉ, equivalent to C ∧x, where x is a new input variable.
Moreover, there is an input that makes C output 1 if and only if there is an input that makes
Ĉ output 1, and additionally, in every such input x is set to 1. Hence, we know that we can use
variable x as a replacement for the constant 1. We conclude that for every (S1 ∪ {1})-circuit C
there is an S1-circuit Ĉ such that there is an input that makes C output 1 if and only if there is
an input that makes Ĉ output 1. Since we have seen that Circuit-SAT(S1 ∪ {1}) is NP-complete
we now conclude that Circuit-SAT(S1) is NP-complete. Obviously these arguments carry over to
all closed supersets of S1.

10

Looking at Fig. 2 we see that it only remains to address the classes R1, M, D, and L. Every
R1-circuit outputs 1 for the input vector consisting only of 1’s. Every M-circuit C has the property
that the Boolean function it computes is coordinate-wise monotonic; hence there is an input that
makes C output 1 iff the all 1’s input makes C output 1. Every D-circuit C has the property that
either the all 1’s input makes C output 1, or, since the Boolean function C computes is self-dual,
the all 0’s input makes C output 1. Hence, there is an input that makes C output 1. Finally, let
C be an L-circuit. We may assume that C consists only of ⊕ and 1-gates, since {⊕, 1} is a basis
for L. There is an input such that C outputs 1 if and only if the number of paths from the output
gate to a constant 1 gate is odd or there is some input variable such that the number of paths from
the output gate to gates labeled with this variable is odd. This can be checked in polynomial time
(in fact, in ⊕L). �

Corollary 2.2 [Lew79]. If [B] ⊇ S1 then SAT(B) is NP-complete; in all other cases SAT(B) is
polynomial-time solvable.

Proof. Immediately from the above, we conclude that the easy cases carry over to the formula case,
i. e., if [B] 6⊇ S1 then SAT(B) is in P. If [B] ⊇ S1 we would like to proceed as above, transforming an
arbitrary propositional formula F into an S1-formula, but we encounter a problem: The (S1∪{1})-
formulas for the connectives in F that we need in the transformation may use some input variable
more than once, leading to an explosion in formula size when going from F to an equivalent S1-
formula. However, we may assume that F is in conjunctive normal-form with at most 3 literals
per clause (3-CNF), since the satisfiability problem for these formulas, denoted by 3SAT, is known
to be still NP-complete [GJ79, Problem LO2]. Now, we insert parentheses in such a way that we
get a tree of ∧’s of depth logarithmic in the size of F . Now replacing every ∧ by an equivalent
(S1 ∪{1})-formula increases the formula size by only a polynomial in the original size. Thus, 3SAT
reduces to SAT(S1), showing that SAT(S1) is NP-complete. �

Coming back to Boolean circuits, a more often looked at problem is not to ask if there is any
input that makes the circuit output 1, but the problem, given an input, to determine the circuit’s
output. This is the so called circuit value problem:

Problem: CVP(B)
Input: A B-circuit C and an input vector x

Question: Does C on input x output 1?

In the case that no restrictions on B are given, this problem is known to be P-complete un-
der logspace-reductions [Lad75] and even under NC1-reductions, cf. [GHR95, Chap. 6] or [Vol99,
Chap. 4.6]. This means that most researchers in the field expect that it allows no efficient parallel
solution in the sense of an NC-algorithm, i. e., no polylog-time algorithm using a reasonable amount
of hardware (polynomial number of processors); formally the result says that if P 6= NC then CVP
is not in NC.

The next theorem presents a complete classification of those sets of allowed gates, for which an
efficient parallel algorithm for the circuit value problem exists.

Theorem 2.3 [RW00]. If B ⊆ V or B ⊆ L or B ⊆ E then CVP(B) ∈ NC; in all other cases
CVP(B) is P-complete.

11

Proof. We will first give efficient (NC-) algorithms in the cases B ⊆ V∪L∪E. Making use of Post’s
lattice, we then examine all remaining cases and prove that the circuit value problem is P-complete
there.

First, we observe that if the base B contains the constant functions 0 or 1, we may simply treat
gates for these functions in the same way as inputs to the circuit, set to 0 or 1, resp. Thus, in
general, CVP(B ∪ {0, 1}) is of the same complexity as CVP(B). (Formally, these problems reduce
to one another under logspace- or NC1-reductions.)

If B ⊆ V∪L∪E, we thus only have to look at {∨}-circuits, {⊕}-circuits, and {∧}-circuits. The
output of a {∨}-circuit is 1 iff there is one path leading back from the output to a 1-input. This is
a graph accessibility problem, hence CVP(V) ∈ NL. If C is a {∧}-circuit, the output is 0 iff there
is a path leading back from the output to a 0-input. This leads to the upper bound coNL = NL. If
C is a ⊕-circuit, the output is 1 iff the number of paths from the output to input gates with value
1 is odd. This is in ⊕L. Since NL ∪ ⊕L ⊆ NC2, the first part of the theorem is proven.

If now B 6⊆ V ∪ L ∪ E, a look at Fig. 2 reveals S00 ⊆ [B], S10 ⊆ [B], or D2 ⊆ [B]. Considering
the bases of S00, S10, and D2 (see Fig. 1) or making use of Fig. 2, we see that {∧,∨} ⊆ [B ∪ {0, 1}].
Thus, CVP(B∪{0, 1}) (and by the above, CVP(B)) are at least as hard as the circuit value problem
for {∨,∧}-circuits. This is the so called monotone circuit value problem, known to be P-complete
[Gol77], cf. also [GHR95, Chap. 6] or [Vol99, Chap. 4.6]. We conclude that CVP(B) is P-complete
in these cases as well. �

Further Complexity Results

A number of further computational problems were looked at in the Post context. These con-
cern, among others, the question to determine the number of satisfying assignments of a given
propositional formula and related threshold questions [RW00], the evaluation of quantified Boolean
formulas [RW00], the isomorphism problem for Boolean formulas [Rei03], the question to deter-
mine the lexicographically maximal satisfying assignment of a given propositional formula and the
question whether in this assignment (or the lexicographically minimal satisfying assignment) a par-
ticular variable is set to true [RV00], the question to determine the minimal satisfying assignment
of a given propositional formula in coordinate-wise partial order [KK01].

An interesting question from a complexity point of view is also to determine, given some Boolean
function f , in which class of Post’s lattice it falls optimally. We turn to this question in the final
section of this survey.

3 The Meta-Problem: The Complexity of the Clones

The function computed by a B-circuit C is per definition in [B], but that does not mean that there
is no other set B′ of boolean functions with [B′] ([B] such that fC ∈ [B′]. For example the circuit
C given by ¬(x1 ∨ x2) uses gates ∨ and ¬, and [{∨,¬}] = BF, but fC is even in E2 since it is equal
to x1 ∧x2. Simply looking at the gates of a circuit C obviously is not sufficient to find the smallest
class containing fC . Is there a tractable way to solve this question? We show that the answer is
“no” in most cases.

12

First we introduce the membership problem formally:

Problem: MEM(B)
Input: A {∧,∨,¬}–circuit C

Question: Is fC in B?

Theorem 3.1 [Böh01]. If B ∈ {R2,R1,R0,BF } then MEM(B) ∈ P; in all other cases MEM(B)
is coNP-complete.

Proof. If B = BF the claim is obvious; if B ∈ {R1,R0,R2 } we only have to compute C(0, . . . , 0),
or C(1, . . . , 1), or both to decide whether or not C ∈ MEM(B).

On the other hand, looking at the clones in Fig. 1 we see that all defining conditions can be
checked by a coNP calculation, hence MEM(B) ∈ coNP for all B. Let TAUT be the set of all
tautological {∨,∧,¬}-circuits, i. e., the set of circuits that return 1 on every input. This problem
is coNP-complete. For a {∨,∧,¬}-circuit C(x1, . . . , xn) let

C ′ =def

(
(C(x1, . . . , xn) ∨ C(y1, . . . , yn)) ∧ z

)
∨ u.

We show that C ∈ TAUT if and only if fC′ is linear, monotonic, self-dual, and 1-separating of level
2. First, let C ∈ TAUT. That means, that C(a1, . . . , an) = 1 for all a1, . . . , an ∈ { 0, 1 }. Therefore
C ′ ≡ u, i. e. C ′ is a projection to one variable and that means that fC′ ∈ I2. A look at Fig. 2 shows
us that every function from I2 is linear, monotonic, self-dual, and 1-separating of level 2.

If on the other hand C /∈ TAUT then there is a tuple α = (a1, . . . , an) ∈ { 0, 1 }n such that
C(α) = 0. Let us define α =def (a1, . . . , an). Now make the following observations:

– Assume C ′ is linear. Then C ′ can be described by a formula c0 ⊕ c1x1 ⊕ . . . ⊕ cnxn ⊕
cn+1y1 ⊕ . . . ⊕ c2nyn ⊕ c2n+1z ⊕ c2n+2u where ci is a constant for 1 ≤ i ≤ 2n + 2. Since
C ′(α, α, 0, 0) = 1 = C ′(α, α, 0, 1) obviously c2n+2 = 0. But on the other hand we have
0 = C ′(α, α, 1, 0) 6= C ′(α, α, 1, 1) = 1 and so c2n+2 = 1 which is a contradiction.

– C ′ is not self-dual, since C ′(α, α, 0, 0) = C ′(α, α, 1, 1).

– C ′ is not monotonic, since 1 = C ′(α, α, 0, 0) > C ′(α, α, 1, 0) = 0.

– Finally, C ′ is not 1-separating of degree 2, since C ′(α, 0n+2) = 1 = C ′(0n, α, 0, 0).

Now look at Post’s lattice: Note that every clone B 6∈ {R2,R1,R0,BF } is a subset of M, D, L, S2
1,

or S2
0. For the first four cases we gave a reduction from TAUT to MEM(B) above. If B is a subclone

of S2
0, note that dual(B) is a subclone of S2

1. Since for all B, MEM(B) ≤log
m MEM(dual(B)) via the

Duality Principle (see Sect. 1.3), coNP-hardness for the remaining classes follows. �

References

[Böh01] E. Böhler. On the relative complexity of Post’s classes. Technical Report 286, Fachbereich Math-
ematik und Informatik, Universität Würzburg, 2001.

[Coo71] S. A. Cook. Characterizations of pushdown machines in terms of time-bounded computers. Journal
of the Association for Computing Machinery, 18:4–18, 1971.

[GHR95] R. Greenlaw, H. J. Hoover, and W. L. Ruzzo. Limits to Parallel Computation: P-Completeness
Theory. Oxford University Press, New York, 1995.

13

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability, A Guide to the Theory of NP-
Completeness. Freeman, New York, 1979.

[Gol77] L. M. Goldschlager. The monotone and planar circuit value problems are log-space complete for
P. SIGACT News, 9:25–29, 1977.

[JGK70] S. W. Jablonski, G. P. Gawrilow, and W. B. Kudrjawzew. Boolesche Funktionen und Postsche
Klassen, volume 6 of Logik und Grundlagen der Mathematik. Friedr. Vieweg & Sohn and C. F.
Winter’sche Verlagsbuchhandlung, Braunschweig and Basel, 1970.

[KK01] L. M. Kirousis and P. G. Kolaitis. The complexity of minimal satisfiability in Post’s lattice.
Unpublished notes, 2001.

[Lad75] R. E. Ladner. The circuit value problem is log space complete for P. SIGACT News, 7(1):12–20,
1975.

[Lev73] L. A. Levin. Universal sorting problems. Problemi Peredachi Informatsii, 9(3):115–116, 1973.
English translation: Problems of Information Transmission, 9(3):265–266.

[Lew79] H. R. Lewis. Satisfiability problems for propositional calculi. Mathematical Systems Theory,
13:45–53, 1979.

[Pip97] N. Pippenger. Theories of Computability. Cambridge University Press, Cambridge, 1997.

[Pos41] E. L. Post. The two-valued iterative systems of mathematical logic. Annals of Mathematical
Studies, 5:1–122, 1941.

[Rei03] S. Reith. On the complexity of some equivalence problems for propositional calculi. In Proceedings
28th International Symposium on Mathematical Foundations of Computer Science, pages 632–641,
2003.

[RV00] S. Reith and H. Vollmer. Optimal satisfiability for propositional calculi and constraint satisfaction
problems. In Proceedings 25th International Symposium on Mathematical Foundations of Computer
Science, volume 1893 of Lecture Notes in Computer Science, pages 640–649. Springer Verlag, 2000.

[RW00] S. Reith and K. W. Wagner. The complexity of problems defined by Boolean circuits. Techni-
cal Report 255, Institut für Informatik, Universität Würzburg, 2000. To appear in Proceedings
International Conference Mathematical Foundation of Informatics, Hanoi, Oct. 25–28, 1999.

[Sze86] Á. Szendrei. Clones in Universal Algebra. Séminaire de mathématiques supérieures, NATO Ad-
vanced Study Institute. Les Presses de l’Université de Montréal, Montréal, 1986.

[Ugo88] A. B. Ugolnikov. Closed Post classes. Izvestiya VUZ. Matematika, 32:79–88 (131–142), 1988.

[Vol99] H. Vollmer. Introduction to Circuit Complexity – A Uniform Approach. Texts in Theoretical
Computer Science. Springer Verlag, Berlin Heidelberg, 1999.

[Zve00] I. E. Zverovich. Characterizations of closed classes of Boolean functions in terms of forbidden
subfunctions and Post classes. Technical Report 17-2000, Rutgers Center for Operations Research,
Rutgers University, 2000.

14

