
Playing with Boolean Blocks, Part II:
Constraint Satisfaction Problems1

Elmar Böhler2, Nadia Creignou3, Steffen Reith4, and Heribert Vollmer5

Introduction

In the previous column we played with Boolean functions as “building blocks” in the construction of
switching circuits. In the meantime we got to know a child, having a great collection of essentially
the same blocks. However, during her construction process she uses the blocks in a completely
different way than we do: she uses Boolean functions not to build switching circuits but to formulate
queries to a database. Nevertheless our games are closely related and there is a bridge to connect
them. Therefore we will tell you more about the new game and the connection in this issue.

Every Boolean function trivially defines a Boolean relation. The relation is the set of all tuples,
for which the function-value is 1. For instance the 2-ary Boolean or -function defines the relation
{(0, 1), (1, 0), (1, 1)}. Instead of asking whether a function maps an input-tuple to 1, we now ask
whether it belongs to the relation. That means that each n-ary relation is a constraint on the set of
all n-tuples. This leads us to the rich field of “constraint satisfaction”, which has numerous appli-
cations in computer science (database querying, circuit design, network optimization, scheduling,
logic programming), artificial intelligence (planning, belief maintenance, languages for knowledge
based systems), and computational linguistics (processing of natural languages) [Kol03].

In the world of Boolean constraint satisfaction we start with a box that contains Boolean
constraints. There is only a finite number of different constraint types in the box, but of each
type we have an infinite number of “copies”. Now we want to combine them in order to get new
constraints. First fix a set of constraints. We build a new constraint as follows: Make a list of
constraints which are taken out of the fixed set. Check for each suitable Boolean tuple whether it
fulfills all constraints of the list. If this is the case the tuple fulfills the newly built constraint. What
does that mean? This means that we simply connect the constraints using “and”. In this context
one important problem is to check whether a collection of constraints does not define the empty
relation. Suppose we have built a constraint as explained out of a finite set of Boolean relations
S (such a constraint is considered as a formula in generalized conjunctive normal form, a so called
S-formula or CNF(S)), then this problem is known as generalized satisfiability problem, denoted
by SAT(S), and was first investigated by Thomas Schaefer in 1978. Here we are interested in the
complexity of SAT(S). It turns out that its complexity can be characterized by the set of so called
closure properties of S, which is the set of functions f of arity m such that if we apply f coordinate-
wise to m vectors of any relation R from S, then the result is again in R. This correspondence
is obtained through a generalization of Galois theory. Since this set of closure properties—a set
of Boolean functions—is a clone, we have now a connection between the complexity of Boolean

1 c©Elmar Böhler, Nadia Creignou, Steffen Reith, and Heribert Vollmer, 2003. Supported in part by ÉGIDE
05835SH, DAAD D/0205776 and DFG VO 630/5-1.

2Theoretische Informatik, Fachbereich Mathematik und Informatik, Universität Würzburg, Am Hubland, 97072
Würzburg, Germany, boehler@informatik.uni-wuerzburg.de.

3Laboratoire d’informatique fondamentale, Faculté des sciences de Luminy, Université de la Méditerranée, 163
avenue de Luminy, 13288 Marseille cedex 9, France, creignou@lidil.univ-mrs.fr.

4Lengfelderstr. 35b, 97078 Würzburg, Germany, streit@streit.cc.
5Theoretische Informatik, Fachbereich Informatik, Universität Hannover, Appelstraße 4, 30167 Hannover,

Germany, vollmer@thi.uni-hannover.de.

1

constraint satisfaction problems and the clone theory presented in the first part of this column.
Therefore we will show that Post’s lattice can also be a very useful tool for studying the complexity
of Boolean constraint satisfaction problems.

1 Closed Classes of Boolean Constraints

The study of constraint satisfaction problems (CSPs) leads to a powerful general framework in
which a variety of combinatorial problems can be expressed. The aim in a constraint satisfaction
problem is to find an assignment of values to the variables subject to specified constraints. This
framework is used in a many research areas in computer science. Here and in the next section we
will have a look at the complexity of Boolean constraint satisfaction problems and show that it
depends solely on the sort of constraint relations one is allowed to use in the instance.

1.1 Boolean Constraints

Throughout the paper we use the standard correspondence between propositional formulas (predi-
cates) and relations: a relation consists of all tuples of values for which the corresponding formula
holds. We will use the same symbol for a predicate and its corresponding relation, since the meaning
will always be clear from the context, and we will say that the formula represents the relation.

An n-ary Boolean constraint relation R is a Boolean relation of arity n, i.e., R ⊆ {0, 1}n. Let V
be a set of variables, then a constraint application (or simply, a constraint) C is an application of R
to an n-tuple of (not necessarily distinct) variables from V , i.e., C = R(x1, . . . , xn). An assignment
I : V → {0, 1} satisfies the constraint R(x1, . . . , xn) if and only if (I(x1), . . . , I(xn)) ∈ R.

Example 1.1. For 0 ≤ l ≤ k, if Rork,l
is the k-ary relation Rork,l

= {0, 1}k \ {1l0k−l}, then
Rork,l

(x1, . . . , xk) = (x̄1 ∨ . . . ∨ x̄l ∨ xl+1 ∨ . . . ∨ xk).
If RNAE and ROne-Exactly are the ternary relations RNAE = {0, 1}3 \ {(0, 0, 0), (1, 1, 1)} and

ROne-Exactly = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, then the constraint RNAE(x, y, z) is satisfied if and only
if not all the three variables are assigned the same value and the constraint ROne-Exactly(x, y, z) is
satisfied if and only if exactly one of x, y and z is assigned true.

Example 1.2. The equivalence relation is the binary relation given by Eq = {(0, 0), (1, 1)}.

Throughout the text we will refer to different types of Boolean constraint relations, following
the terminology of Schaefer [Sch78].

– A Boolean relation R is 0-valid (1-valid , resp.) if (0, . . . , 0) ∈ R ((1, . . . , 1) ∈ R, resp.).

– A Boolean relation R is Horn (anti-Horn, resp.) if R can be represented by a conjunctive
normal form (CNF) formula having at most one unnegated (negated, resp.) variable in any
conjunct.

– A Boolean relation R is bijunctive if it can be represented by a CNF formula having at most
two variables in each conjunct.

– A Boolean relation R is affine if it can be represented by a conjunction of linear functions,
i.e., a CNF formula with ⊕-clauses (XOR-CNF).

– A Boolean relation R is complementive if for all (α1, . . . , αn) ∈ R also (α1, . . . , αn) ∈ R.

2

A set S of Boolean relations is called 0-valid (1-valid, Horn, anti-Horn, affine, bijunctive, com-
plementive, resp.) if every relation in S is 0-valid (1-valid, Horn, anti-Horn, affine, bijunctive,
complementive, resp.). A constraint set S is called Schaefer, if S is Horn, anti-Horn, affine, or
bijunctive.

There are easy criteria to determine if a given relation is Horn, anti-Horn, bijunctive, or affine.

– A relation R is Horn, if and only if for all vectors x, y ∈ R, the vector obtained by taking
coordinate-wise the logical conjunction, in symbols: x ∧ y, is in R [DP92], see also [CKS01,
Lemma 4.8]. Similarly, the property anti-Horn is characterized by coordinate-wise disjunction.

– A relation R is bijunctive, if and only if for all vectors x, y, z ∈ R, the vector obtained by
taking coordinate-wise majority (i.e., the ith coordinate is set to 1 if and only if in at least
two of x, y, z the ith coordinate is 1) is in R [Sch78], see also [CKS01, Lemma 4.9].

– A relation R is affine, if and only if for all vectors x, y, z ∈ R, the vector obtained by taking
coordinate-wise logical exclusive-or (x⊕y⊕z) is in R [Sch78, CH96], see also [CKS01, Lemma
4.10].

Thus, each of these criteria is given in form of a closure property of the set of all vectors in R,
and each involves an operation performed on these vectors coordinate-wise.

We prove the characterization of Horn: Suppose R is Horn. Consider a clause C in the repre-
sentation of R by a Horn formula, and two assignments I1, I2 that satisfy C. If one of I1, I2 satisfies
one of the negative literals in C, then the same literal is satisfied in I1 ∧ I2. If both I1, I2 satisfy
the positive literal in C, then of course this literal is also satisfied by I1 ∧ I2. Thus we see that if
x, y ∈ R, then x ∧ y ∈ R.

For the converse, let us first introduce a definition. A subset of literals defined over the variables
of R is a maxterm of R if setting each of the literals false determines the predicate to be false and it
is a minimal such collection. If R is not Horn, then one can prove that R has at least one maxterm
that is not Horn [CKS01, Lemma 4.7, page 29]. Suppose that this maxterm, C, contains at least
two positive literals, say xi and xj . Let I1 be the assignment that satisfies variable xi plus those
variables occurring negated in C and falsifies all other variables, and let I2 be the assignment that
satisfies xj plus those variables occurring negated in C and falsifies all other variables. Then I1, I2

satisfy C, but the coordinate-wise conjunction I1 ∧ I2 does not satisfy C. Hence we found vectors
x, y ∈ R with the property x ∧ y 6∈ R.

The proof of the characterization of anti-Horn is analogous, and the proof of the characterization
of bijunctive is very similar. The proof for affine constraints rests on a classical characterization of
affine subspaces in linear algebra and can be found, e.g., in [CKS01, p. 30].

1.2 Assembling Boolean Constraints: Generalized Propositional Formulas and Con-
junctive Queries

We will now consider formulas that are conjunctions of constraints, where the constraints are given
by Boolean relations. Let S be a non-empty finite set of Boolean relations. Then S-formulas are
conjunctive propositional formulas consisting of clauses built by using relations from S applied to
arbitrary variables. Formally, let S be a set of Boolean relations and V be a set of variables. An
S-formula F (over V) is a finite conjunction of clauses F = C1 ∧ . . .∧Cp, where each clause Ci is a
constraint application of some constraint relation R ∈ S. If F = C1∧ . . .∧Cp is such a formula over
V and I is an assignment with respect to V , then I |= F if I satisfies all clauses Ci. By CNF(S)
we denote the set of all S-formulas as just defined.

3

Schaefer in his seminal paper was interested in a classification of the complexity of satisfiability
of S-formulas. In order to obtain such a result, so called conjunctive queries turn out to be useful.
Conjunctive queries play an important role in database theory (they are equivalent to select-join-
project queries in relational algebra) and thus are also of interest in their own right.

Given a set S of Boolean relations, let us denote by COQ(S) the set of all formulas of the form
∃x1∃x2 . . .∃xkφ(x1, . . . , xk, y1, . . . , yl), where φ is a CNF(S); these formulas are called conjunctive
queries (over S) [KV00]. In other words, a relation can be represented by a conjunctive query if and
only if it is a projection of a relation that can be represented by an S-formula [JCG99, Definition
4, Lemma 1, and Notation 3].

Intuitively constraints using relations from COQ(S) are those which can be “simulated” by
constraints using relations in S. We remark that in Schaefer’s terminology, COQ(S) was denoted
by Rep(S).

1.3 Closure Properties of Constraints: a Little Bit of Galois Theory

As we have already seen, there are easy criteria to determine whether a given relation is Horn,
anti-Horn, bijunctive or affine. All these criteria work essentially in the same way: If you apply
a special Boolean function f coordinate-wise on some of the elements of the relation R, then the
result of this application must be again an element in R. Moreover we have some more subtle
common properties. Recall the test for affine. A relation R is affine if and only if it is closed under
coordinate-wise application of x1 ⊕ x2 ⊕ x3. Since we have no particular order of the elements of
R, it is clear that R is affine if and only if we can do the same test with xπ(1)⊕xπ(2)⊕xπ(3) for any
permutation π : {1, 2, 3} → {1, 2, 3}. Note that this argument does not rest on the commutativity
of ⊕ and it will also work for other tests of this kind. Now we identify variables in x1⊕x2⊕x3 to get
the 2-ary function f ′(x1, x2) = f(x1, x2, x2). If the relation is affine and we apply the function f ′

on some elements of R we will surely obtain an element of R, which shows that f ′ also “preserves”
the relation R. Finally take the function f ′′(x1, x2, x3, x4, x5) = x1 ⊕ x2 ⊕ (x3 ⊕ x4 ⊕ x5), which
is obtained by the operation of substitution from the original function x ⊕ y ⊕ z. Clearly we get
another element of R if we take five elements from R and apply f ′′ coordinate-wise on them. We
thus see that the set of functions that preserve R forms a clone. In fact, this holds for arbitrary
relations R. So there is a deeper connection between clones (defined in part I) and relations.

In the following we will see that a generalized Galois theory is the connection we are looking
for. The roots of Galois theory were invented by Evariste Galois to find a solution for the classical
problem to solve a given polynomial equation by radicals. He was able to give a recursive criterion
for solvability in this sense. Additionally his results show that polynomial equations having a
degree more than 4 in general cannot be solved with radicals. The modern presentation of this
beautiful result establishes a bijection between two worlds: The set of certain extension fields of
the field of coefficients and the set of automorphism-groups of this extension field (see e.g. [Art98]).
In the original setting, Galois asked which permutations of zeroes of a polynomial preserve all
algebraic dependence relations between these zeroes. (These dependencies are given in the form of
polynomial equations, for instance: The square of the first zero is equal to the second zero plus 2,
that is: the square of the first zero minus the second zero minus 2 equals 0.) Let G be the set of
algebraic dependence relations of the zeroes of a polynomial equation. Galois defined a group of
permutations—the Galois group—that preserve these relations as follows: A permutation π belongs
to the Galois group if and only if for all h ∈ G, if h(ζ1, . . . , ζn) = 0, then h(ζπ(1), . . . ζπ(n)) = 0, where
ζ1, . . . , ζn are the zeroes of the given polynomial equation. Intuitively, if the set of dependencies
is “big”, then the number of permutations in the Galois group is “small”, and vice versa. This

4

matches with the abstract definition of a Galois correspondence given next.
We say that two mappings α : A → B and β : B → A form a Galois correspondence (cf. [PK79,

A5.1], [Pip97, Sect. 1.2.3]) between the orders (A,�A) and (B,�B) if the following properties hold:

1. For all a, b ∈ A such that a �A b, we have α(b) �B α(a).

2. For all c, d ∈ B such that c �B d, we have β(d) �A β(c).

3. For all a ∈ A, b ∈ B we have a �A β(α(a)) and b �B α(β(b)).

With this definition it is not hard to show that λ1 : A → A s.t. λ1(a) = β(α(a)) and λ2 : B → B
s.t. λ2(b) = α(β(b)) are closure-operators [PK79]. (Here, a closure operator in an order (A,�A) is
a function f : A → A such that a �A f(a), if a �A b then f(a) �A f(b), and f(a) = f(f(a)).)

To be able to use this abstract definition in our context of Boolean functions and constraints,
we introduce the central notion of a closure property of a Boolean relation (see, e.g., [JC95, Pip97,
Dal00]). As we will see shortly this notion provides an algebraic characterization of COQ(S). Let
R be a Boolean relation of arity n and let f be a Boolean function of arity m. For f to be a
closure property of R we require that if we apply f coordinate-wise to m vectors in R, the obtained
vector is again in R; see Fig. 1. More formally, we say that R is closed under f (or f preserves

f(f(f(f(

x1 = 0 1 1 · · · 0
x2 = 1 1 0 · · · 1...

...
...

...
...

xm = 1 1 0 · · · 1)
=

)
=

)
=

)
=

z = 0 1 0 · · · 0

Figure 1: If x1, . . . , xm are in R, then z must be in R.

R, or f is a polymorphism of R, or R is an invariant of f), if for all x1, . . . , xm ∈ R, where
xi = (xi[1], xi[2], . . . , xi[n]), we have(

f
(
x1[1], · · · , xm[1]

)
, f

(
x1[2], · · · , xm[2]

)
, . . . , f

(
x1[n], · · · , xm[n]

))
∈ R.

Example 1.3. The set of all Horn relations (of all affine relations, resp.) is the set of all relations
that are preserved by the logical conjunction (by the function x⊕ y ⊕ z, resp.).

Let us denote the set of all polymorphisms of R by Pol(R), and for a set S of Boolean relations,
we define Pol(S) to be the set of Boolean functions that are polymorphisms of every relation in
S. Then, as in the case of Galois’ algebraic dependencies, if S is “big” then the number of closure
properties of S is “small”, and vice versa.

Generalizing the observations we made for affine relations R in the first paragraph of Sect. 1.3,
we see that for every set S, Pol(S) is a clone. (This holds since immediately by definition, Pol(S)
is closed under introduction of fictive variables, permutation and identification of variables and
substitution, and moreover, contains the projection functions.) Conversely, if B is a set of Boolean
functions, then Inv(B) is defined to be the set of all relations which are preserved by the functions

5

in B, i.e., the set of relations that are invariants of all functions in B. It turns out that sets
Inv(B) have particular common properties: They contain the equivalence relation, and each such
set is closed under Cartesian product, projection and identification of variables (see, e.g., [JCG99,
Lemma 1]). More generally, for a set S of Boolean relations let 〈S〉 denote the closure of S plus the
equivalence relation under the mentioned operations. We say that 〈S〉 is the co-clone generated by
S (see [Dal00, page 81], [Pip97, Sect. 1.7]). Hence, for every set of Boolean functions B, Inv(B) is
a co-clone.

Example 1.4. Horn relations, as well as affine relations, form a co-clone.

Hence Inv and Pol play the role of the functions α and β, resp., in the abstract definition of a
Galois correspondence, when we identify the lattice of sets Boolean functions with A and the lattice
of sets of Boolean relations with B. A basic introduction to this correspondence can be found in
[Pip97, Pös01] and a comprehensive study in [PK79].

Interestingly, the closure operators λ1 and λ2 from the general setting of a Galois correspon-
dence, i.e., in our case the functions Inv(Pol(·)) and Pol(Inv(·)), turn out to coincide with the
co-clone- and clone-closure:

Theorem 1.5 ([Gei68, BKKR69],[PK79, Folgerung 1.2.4]). Let S be a set of Boolean rela-
tions and B be a set of Boolean functions.

– Inv(Pol(S)) = 〈S〉

– Pol(Inv(B)) = [B]

Example 1.6. Consider the constraint ROne-Exactly defined in Example 1.1. The set of polymor-
phisms Pol({ROne-Exactly}) is a clone. It contains neither any constant operation nor the negation
operation nor the disjunction nor the conjunction nor the majority operation nor the ternary
exclusive-or operation. Therefore, looking at Post’s lattice and at the basis of the classes, we see
that Pol({ROne-Exactly}) = I2, i.e., consists only of all projections. Thus, Inv(Pol({ROne-Exactly})
consists of all Boolean relations, and then so does 〈{ROne-Exactly}〉 by Theorem 1.5.

In the first part of this complexity theory column we have characterized the set of all functions
that can be computed by a B-circuit as the closure of B under superposition: CIRC(B) = [B].
Analogously, if we want to know what Boolean relations can be expressed by conjunctive queries over
S ∪ {Eq} it suffices to look at the closure of the Boolean relations (together with the equivalence
relation), S ∪ {Eq}, under Cartesian product, projection and identification of variables. More
formally (see [JCG99, Theorem 2], [Dal00, Theorem 20, p. 98]):

Proposition 1.7. For every set S of Boolean relations,

COQ(S ∪ {Eq}) = 〈S〉.

Proof. The relation associated with a conjunctive query Φ over S∪{Eq} is the projection (existential
quantification) of the conjunction of relations occurring in Φ. Thus it is easy to see that COQ(S ∪
{Eq}) ⊆ 〈S〉. Conversely, S ⊆ COQ(S ∪ {Eq}). Now it is easy to check that COQ(S ∪ {Eq}) is a
co-clone, therefore we have also 〈S〉 ⊆ COQ(S ∪ {Eq}), thus proving the equality. �

6

1.4 The Lattice of Co-clones

As already mentioned in the first part of this column, the set of all clones form a lattice. Because
we want to connect clones and co-clones, the following definition is helpful: Let (A,�A,tA,uA)
and (B,�B,tB,uB) be ordered lattices. A bijective lattice-homomorphism λ : (A,tA,uA) →
(B,tB,uB) that reverses the order in the sense that if a �A b then λ(b) �B λ(a) is called lattice-
anti-isomorphism.

Theorem 1.8 [PK79, Satz 3.1.2]. The lattices of Boolean clones and Boolean co-clones are anti-
isomorphic. The function Inv is a lattice-anti-homomorphism from the set of Boolean clones to the
set of Boolean co-clones, and the function Pol for the opposite direction.

Just as a convenient shorthand let us denote the co-clone that is invariant under B by IB, hence
IB = Inv(B). Hence, for example, IE2 is the co-clone of Horn relations and IL2 is the co-clone
of affine relations. The co-clone of all relations is denoted by BR. The complete structure of the
lattice of co-clones is given by Fig. 2. A look at this graph shows that below the class BR there exist
seven maximal closed classes of Boolean relations (circled bold in Fig. 2). Hence if we want to know
whether all Boolean relations can be “simulated” by conjunctive queries built with constraints from
a given set S, then we have to check that S is not included in one of these seven classes. This is the
same idea as in part 1 of this column where we used the five Post classes to obtain a completeness
criterion for classes of Boolean functions and used it to prove that the nand -function is a base of
BF.

Example 1.9. Let be S = {Ror3,0 , Ror3,1 , Ror3,2 , Ror3,3}. Clearly Ror3,0 is not 0-valid and Ror3,3

is not 1-valid. Using our tests we can show that Ror3,0 is not Horn, because (1, 0, 0) ∈ Ror3,0 and
(0, 0, 1) ∈ Ror3,0 but (0, 0, 0) 6∈ Ror3,0 . Similarly we have that Ror3,3 is not anti-Horn, because
(1, 0, 0) ∈ Ror3,3 and (0, 1, 1) ∈ Ror3,3 but (1, 1, 1) 6∈ Ror3,3 . Additionally Ror3,0 is not bijunctive,
because (1, 0, 0) ∈ Ror3,0 , (0, 1, 0) ∈ Ror3,0 and (0, 0, 1) ∈ Ror3,0 but (0, 0, 0) 6∈ Ror3,0 . Next note
that (1, 0, 0) ∈ Ror3,3 , (0, 1, 0) ∈ Ror3,3 and (0, 0, 1) ∈ Ror3,3 but (1, 1, 1) 6∈ Ror3,3 , which shows
that Ror3,3 is not affine. Finally we have that (0, 0, 0) 6∈ Ror3,0 but (1, 1, 1) ∈ Ror3,0 showing that
Ror3,0 is not complementive. Hence we have that the co-clone of S is II2 = BR, which gives
that COQ(S) is the set of all Boolean relations. In fact, our argument above shows that already
COQ({Ror3,0 , Ror3,3}) = BR, the set of all relations.

2 The Complexity of Constraint Satisfaction Problems

The main topic in this section is the complexity of the satisfiability problem for S-formulas, de-
noted by SAT(S). Comparing conjunctive queries with S-formulas, the only difference is that in the
former some of the variables are existentially quantified, but certainly this does not lead to a differ-
ent complexity of the satisfiability problem. Formally, if SAT(COQ(S)) denotes the satisfiability
problem for conjunctive queries over S, then:

Proposition 2.1. SAT(S) is polynomial-time equivalent to SAT(COQ(S)).

Thus it is clear that the algebraic correspondence described above can be of use to deter-
mine the complexity of constraint satisfaction problems. For instance, let us consider the relation
ROne-Exactly. We have seen above that 〈{ROne-Exactly}〉 is the set of all Boolean relations, hence so is

7

IR0 IR1

IBF

IR2

IM

IM0 IM1

IM2

IS2
1

IS3
1

IS1

IS2
12

IS3
12

IS12

IS2
11

IS3
11

IS11

IS2
10

IS3
10

IS10

IS2
0

IS3
0

IS0

IS2
02

IS3
02

IS02

IS2
01

IS3
01

IS01

IS2
00

IS3
00

IS00ID2

ID

ID1

IL2

IL

IL0 IL1IL3

IE2

IE

IE0 IE1

IV2

IV

IV1IV0

II0 II1

IN2

II

BR

IN

Figure 2: Graph of all co-clones

8

COQ({ROne-Exactly,Eq}) by Proposition 1.7. Therefore, the satisfiability problem SAT({ROne-Exactly,Eq})
is as hard as the general propositional satisfiability problem, i.e., it is NP-complete.

As a consequence we have that the complexity of SAT(S∪{Eq}) is characterized by the co-clone
generated by S, 〈S〉, or equivalently by its clone of polymorphisms Pol(S). We observe next that
the equality relation actually is of no importance in the context of satisfiability; the reason is simply
that in a CNF(S ∪ {Eq}) we can delete a constraint Eq(x, y) and identify the variables x, y in the
rest of the formula [Jea98]. Thus we obtain:

Proposition 2.2. Let S be a non-empty set of Boolean relations, then SAT(S∪{Eq}) is polynomial-
time reducible to SAT(S). Hence, SAT(S) is polynomial-time equivalent to SAT(〈S〉).

The following two easy reductions provide the central tools to obtain a complexity classification
of the satisfiability problem. The first one is obtained, if all constraints in one formula can be
expressed by conjunctive queries over another constraint set:

Proposition 2.3. Let S1 and S2 be finite non-empty sets of Boolean relations. If COQ(S1) ⊆
COQ(S2), then SAT(S1) is polynomial-time reducible to SAT(S2).

Proof. If COQ(S1) ⊆ COQ(S2), then in particular every relation in S1 can be expressed by a
conjunctive query over S2. Thus, given an S1-formula, one can construct an S2-formula in locally
replacing (in each conjunct) every relation from S1 by its equivalent conjunctive query in COQ(S2)
and simply deleting the existential quantifiers. This local replacement clearly provides a polynomial-
time (and even logarithmic-space) reduction from SAT(S1) to SAT(S2). �

Combining this with Proposition 1.7 and Theorem 1.5 we obtain the following reduction:

Theorem 2.4 [Jea98]. Let S1 and S2 be finite non-empty sets of Boolean relations. If Pol(S2) ⊆
Pol(S1), then SAT(S1) is polynomial-time reducible to SAT(S2).

Proof. By Theorem 1.8, if Pol(S2) ⊆ Pol(S1), then Inv(Pol(S1)) ⊆ Inv(Pol(S2)). Hence, following
Theorem 1.5, 〈S1〉 ⊆ 〈S2〉. Thus, according to Proposition 1.7, COQ(S1∪{Eq}) ⊆ COQ(S2∪{Eq})
and hence COQ(S1) ⊆ COQ(S2 ∪ {Eq}). Therefore, according to Proposition 2.3, SAT(S1) is
polynomial-time reducible to SAT(S2 ∪ {Eq}), and thus to SAT(S2) by Proposition 2.2. �

We are now in a position to prove Schaefer’s main result, a dichotomy theorem for satisfiability
of constraint satisfaction problems which can be stated as follows:

Theorem 2.5 [Sch78]. Let S be a set of Boolean relations. If S is 0-valid or 1-valid or Schaefer
then SAT(S) is polynomial-time decidable, in all other cases SAT(S) is NP-complete.

We now give a proof of Theorem 2.5 making use of the algebraic correspondence described
above and of the lattice of co-clones. Our presentation follows an argument sent to the authors
in an e-mail correspondence by Phokion Kolaitis, but is implicit in the papers by Jeavons and his
group (see, e.g., [JCG97, JCG99]) and in Dalmau’s Ph.D. thesis [Dal00].

Let S be a set of constraints. We make a case distinction, making use of the graph of co-clones
in Fig. 2.
1. S ⊆ II0, i.e., Pol(S) ⊇ I0. Then we see that S must contain the all-zero vector, i.e., S is 0-valid.
Hence every instance of CSP(S) is satisfiable via the all-0 vector.

9

2. S ⊆ II1, i.e., Pol(S) ⊇ I1. In this case, S must be 1-valid, and every instance of CSP(S) is
satisfiable via the all-1 vector.

The maximal co-clones not included in II1 or II0 are BR, IN2, IE2, IL2, IV2, and ID2. We
consider these in turn.
3. S ⊆ IE2, i.e., Pol(S) ⊇ E2 and contains the function x∧y. This means that every relation R ∈ S
is closed under coordinate-wise ∧, hence R is Horn. Satisfiability for Horn formulas is known to be
polynomial-time solvable by the so called “Horn algorithm” (HORNSAT ∈ P, [Pap94, p. 78-79]).

4. S ⊆ IV2, i.e., Pol(S) ⊇ V2 and contains the function x ∨ y. Analogous to the above, we obtain
that R can be represented by an anti-Horn-formula. Again, satisfiability is in P by a variation of
the Horn algorithm.

5. S ⊆ IL2, i.e., Pol(S) ⊇ L2 and contains in particular its basis, the function x ⊕ y ⊕ z. This
means that every constraint in R must be affine. A CSP with affine constraints can be looked at
as an equation system over GF[2], hence satisfiability can be tested in polynomial time with the
Gaussian elimination algorithm.

6. S ⊆ ID2, i.e., Pol(S) ⊇ D2 and contains in particular its basis, the function xz∧yz∧xy, i.e., the
majority function of arity 3. This means that every constraint in R must be bijunctive. Satisfiability
for 2-CNF formulas is polynomial-time solvable (2SAT is even in NL, [Pap94, p. 184-185]).

The remaining cases are now those of the classes BR = II2 and IN2. We will prove that if
〈S〉 = IN2, then SAT(S) is NP-complete. According to Theorem 2.4 this will be sufficient since
II2 ⊇ IN2, thus concluding the proof.
7. 〈S〉 = IN2, i.e., Pol(S) = N2. In this case, 〈S〉 is the set of all Boolean relations R that are
closed under all projection functions and their negations. In particular, 〈S〉 contains the ternary
relation RNAE defined in Example 1.1. (It can be shown that in fact, 〈S〉 is equal to the set of
all complementive relations.) Looking at CNF formulas with clauses that are applications of the
constraint RNAE, we see that we deal with a particular satisfiability problem for 3-CNF formulas
where we ask if there is an assignment that in every clause makes one variable false and one variable
true (stated otherwise: not all three variables in a clause receive the same truth assignment). This
is the so called NOT-ALL-EQUAL-3SAT problem which is known to be NP-complete, see, e.g.,
[Pap94]. Hence, also in this case, SAT(S) is NP-complete, and the proof of Schaefer’s dichotomy
theorem is finished.

The only cases for Pol(S) that lead to an NP-complete satisfiability problem are those of I2 and
N2. A common property of these classes is the following: Say that an n-ary function f is essentially
unary if it is not constant and depends on only one of its arguments, i.e., there is some i, 1 ≤ i ≤ n
and some unary non-constant Boolean function f ′ such that f(x1, . . . , xi, . . . , xn) = f ′(xi). Of
course, the only possibilities for f ′ are the unary identity or the unary negation. Thus we obtain
the following corollary:

Corollary 2.6 [JC95, JCG99]. Let S be a set of Boolean constraints. If Pol(S) consists of only
essentially unary functions, then SAT(S) is NP-complete, otherwise SAT(S) is polynomial-time
solvable.

Further Complexity Results

In the context of Boolean constraint satisfaction, not only the satisfiability problem was looked at,
but many more problems were classified w.r.t. their computational complexity. Considering different

10

versions of satisfiability, equivalence, optimization and counting problems, dichotomy theorems for
classes as NP, US, MaxSNP, OptP, and #P were obtained [Cre95, CH96, CH97, KS98, Jub99,
BHRV02, RV03, KK03, BHRV04], see also the monograph [CKS01]. Satisfiability and learnability
of generalized quantified Boolean formulas were studied by Dalmau [Dal00]. Also, the study of
Schaefer’s formulas lead to remarkable results about approximability of optimization problems in
the constraint satisfaction context [KST97, KSW97, Zwi98].

Connections between algebraic theory and the computational complexity of constraint satisfac-
tion problems were originally developed for studying decision problems where the question is to
decide the existence of a solution. Until now, only Schaefer’s original dichotomy theorem for sat-
isfiability and the metaproblem in the upcoming section have been re-proven making use of Post’s
lattice. Only in a very recent paper, Krokhin and Jonsson [KJ03] have shown that this approach
can lead to general results for a wider range of problems with different computational properties.
They have studied the complexity of recognizing frozen variables (i.e., variables that take the same
values in all possible solutions) in an S-formula and completely classified the complexity of this
problem. We consider it interesting to give an alternative proof along the same lines of, e.g., the
dichotomy theorem for counting the number of satisfying assignments from [CH96].

3 The Metaproblem: The Complexity of the Co-clones

We have given a definition of co-clones as objects that are useful for the complexity study of
problems for Boolean constraints. But how complicated are the co-clones themselves, i.e., how
difficult is it to decide whether a relation given in a reasonably compact form, e.g. a propositional
formula over {and , or ,not}, is element of a specified co-clone?

Definition 3.1. For a co-clone S, we define

coMEM(S) = {F | F is propositional formula and the relation represented by F is in S }.

Analogously to duality for Boolean functions (in part I of this column), we define the notion of
duality for Boolean relations.

Definition 3.2. Let R be an n-ary Boolean relation. The dual relation of R is defined by dual(R) ={
(a1, . . . , an)

∣∣ (a1, . . . , an) ∈ R
}
. For a set of Boolean relations S let dual(S) =

{
dual(R)

∣∣ R ∈
S

}
. Note that the dual-operator establishes a bijection between the elements of S and the elements

of dual(S).

We get the following easy connection between duality of Boolean functions and Boolean rela-
tions:

Proposition 3.3. Let f be a Boolean function and R be a Boolean relation. Then f preserves R
if and only if dual(f) preserves dual(R).

The following result about the complexity of the co-clones appeared in [Cre98]. We now present
a proof relying on the Galois correspondence between Boolean constraints and function.

Theorem 3.4. If S is the co-clone of all Boolean relations, the co-clone of all 0-valid relations,
the co-clone of all 1-valid relations, or the co-clone of all relations that are both 0- and 1-valid (i.e.,
S ∈ {II2, II0, II1, II}), then the problem coMEM(S) is in P. For every other co-clone S, the problem
coMEM(S) is coNP-complete.

11

Proof. As before, we will not distinguish between formulas and the relations they represent and we
will speak, e.g., of tuples in a relation R as well as tuples in a formula F .

The claim is obvious for the easy cases, since to check if a relation R is 0-valid or 1-valid one
just has to check if one tuple is in R.

For a Boolean function f : {0, 1}m → {0, 1} and tuples α1, . . . , αm ∈ {0, 1}n, let f(α1, . . . , αm)
be the n-tuple obtained by coordinate-wise applying f to the αi’s.

First of all, observe, that coMEM(S) is in coNP for all co-clones S: For a given n-ary propo-
sitional formula F , guess any function f from a fixed basis of Pol(S). Suppose, that f is m-ary.
Guess m tuples α1, . . . , αm ∈ {0, 1}n. Test, whether these tuples are in F . If this is not the case,
accept. If they are all in F , then accept if and only if f(α1, . . . , αm) ∈ F . Then the relation
represented by F is in S if and only if all guesses are successful.

Let TAUT be the set of tautological propositional formulas, which is known to be coNP-
complete. We will reduce TAUT to coMEM(S) for all co-clones S that do not belong to the
easy cases. Take a n-ary propositional formula H, let g(H)(x1, . . . , xn) =def H(x1, . . . , xn) ∧
H(x1, . . . , xn) and let

h(H) = (x1 = x2) ∧ (g(H)(y1, . . . , yn) ∨ z1) ∧ (H(u1, . . . , un) ∨ z2 ∨ z3 ∨ z4).

If H ∈ TAUT, then h(H) ≡ x1 = x2 and therefore h(H) ∈ S. On the other hand, if H /∈ TAUT,
there is an α ∈ {0, 1}n such that H(α) = 0.

– Observe that h(H)(0, 0, α, 0, α, 1, 0, 0) = 1 6= h(H)(1, 1, α, 1, α, 0, 1, 1). Thus h(H) is not
complementive.

– Observe that the tuples (0, 0, α, 0, α, 1, 0, 0) and (0, 0, α, 0, α, 0, 1, 0) are in h(H), but on the
other hand, and((0, 0, α, 0, α, 1, 0, 0), (0, 0, α, 0, α, 0, 1, 0)) = (0, 0, α, 0, α, 0, 0, 0) is not in h(H).
Thus h(H) is not closed under and and therefore it is not equivalent to a Horn-formula.

– Let f(x, y, z) = xy ∨ xz ∨ yz, i.e., f is a basis for clone D2. Observe that the tuples
(0, 0, α, 0, α, 1, 0, 0), (0, 0, α, 0, α, 0, 1, 0), (0, 0, α, 0, α, 0, 0, 1) are in h(H), but on the other
hand, f((0, 0, α, 0, α, 1, 0, 0), (0, 0, α, 0, α, 0, 1, 0), (0, 0, α, 0, α, 0, 0, 1))) = (0, 0, α, 0, α, 0, 0, 0) is
not in h(H). Thus h(H) is not bijunctive.

– Let f(x, y, z) = x⊕y⊕z, i.e., f is a basis for clone L2. Observe that the tuples (0, 0, α, 0, α, 1, 1, 0),
(0, 0, α, 0, α, 0, 1, 0), (0, 0, α, 0, α, 1, 0, 0) are in h(H), but on the other hand, f((0, 0, α, 0, α, 1, 1, 0), (0, 0, α, 0, α, 0, 1, 0), (0, 0, α, 0, α, 1, 0, 0))
= (0, 0, α, 0, α, 0, 0, 0) is not in h(H). Thus h(H) is not affine.

Thus, membership for co-clones that are complementive, Horn, bijunctive, or affine is coNP-
complete. Finally, Proposition 3.3 yields coNP-completeness for co-clones that are anti-Horn. �

References

[Art98] E. Artin. Galois Theory. Dover Publications, 1998.

[BHRV02] E. Böhler, E. Hemaspaandra, S. Reith, and H. Vollmer. Equivalence and isomorphism for Boolean
constraint satisfaction. In Computer Science Logic, volume 2471 of Lecture Notes in Computer
Science, pages 412–426, Berlin Heidelberg, 2002. Springer Verlag.

[BHRV04] E. Böhler, E. Hemaspaandra, S. Reith, and H. Vollmer. The complexity of Boolean constraint iso-
morphism. In Proceedings 21st Symposium on Theoretical Aspects of Computer Science, Lecture
Notes in Computer Science, Berlin Heidelberg, 2004. Springer Verlag. To appear.

12

[BKKR69] V. G. Bodnarchuk, L. A. Kalužnin, V. N. Kotov, and B. A. Romov. Galois theory for Post
algebras. i, ii. Cybernetics, 5:243–252, 531–539, 1969.

[CH96] N. Creignou and M. Hermann. Complexity of generalized satisfiability counting problems. In-
formation and Computation, 125:1–12, 1996.

[CH97] N. Creignou and J.-J. Hébrard. On generating all solutions of generalized satisfiability problems.
Informatique Théorique et Applications/Theoretical Informatics and Applications, 31(6):499–511,
1997.

[CKS01] N. Creignou, S. Khanna, and M. Sudan. Complexity Classifications of Boolean Constraint Sat-
isfaction Problems. Monographs on Discrete Applied Mathematics. SIAM, 2001.

[Cre95] N. Creignou. A dichotomy theorem for maximum generalized satisfiability problems. Journal of
Computer and System Sciences, 51:511–522, 1995.

[Cre98] N. Creignou. Complexity versus stability. Information Processing Letters, 68:161–165, 1998.

[Dal00] V. Dalmau. Computational complexity of problems over generalized formulas. PhD thesis, De-
partment de Llenguatges i Sistemes Informàtica, Universitat Politécnica de Catalunya, 2000.

[DP92] R. Dechter and J. Pearl. Structure identification in relational data. Artificial Intelligence, 48:237–
270, 1992.

[Gei68] D. Geiger. Closed systems of functions and predicates. Pac. J. Math, 27(2):228–250, 1968.

[JC95] P. G. Jeavons and D. A. Cohen. An algebraic characterization of tractable constraints. In Com-
puting and Combinatorics. First International Conference COCOON’95, volume 959 of Lecture
Notes in Computer Science, pages 633–642, Berlin Heidelberg, 1995. Springer Verlag.

[JCG97] P. G. Jeavons, D. A. Cohen, and M. Gyssens. Closure properties of constraints. Journal of the
ACM, 44(4):527–548, 1997.

[JCG99] P. G. Jeavons, D. A. Cohen, and M. Gyssens. How to determine the expressive power of con-
straints. Constraints, 4:113–131, 1999.

[Jea98] P. G. Jeavons. On the algebraic structure of combinatorial problems. Theoretical Computer
Science, 200:185–204, 1998.

[Jub99] L. Juban. Dichotomy theorem for generalized unique satisfiability problem. In Proceedings 12th
Fundamentals of Computation Theory, volume 1684 of Lecture Notes in Computer Science, pages
327–337. Springer Verlag, 1999.

[KJ03] A. Krokhin and P. Jonsson. Recognizing frozen variables in constraint satisfaction problems.
Technical Report TR03-062, ECCC Reports, 2003.

[KK03] L. M. Kirousis and P. Kolaitis. The complexity of minimal satisfiability problems. Information
and Computation, 187(1):20–39, 2003.

[Kol03] P. Kolaitis. Constraint satisfaction, databases, and logic. In Proceedings 18th International Joint
Conference on Artificial Intelligence, pages 1587–1595, 2003.

[KS98] D. Kavvadias and M. Sideri. The inverse satisfiability problem. SIAM Journal of Computing,
28(1):152–163, 1998.

[KST97] S. Khanna, M. Sudan, and L. Trevisan. Constraint satisfaction: the approximability of mini-
mization problems. In Proceedings 12th Computational Complexity Conference, pages 282–296.
IEEE Computer Society Press, 1997.

[KSW97] S. Khanna, M. Sudan, and D. Williamson. A complete classification of the approximability
of maximization problems derived from Boolean constraint satisfaction. In Proceedings 29th
Symposium on Theory of Computing, pages 11–20. ACM Press, 1997.

13

[KV00] P. Kolaitis and M. Vardi. Conjunctive-query containment and constraint satisfaction. Journal
of Computer and System Sciences, 61:302–332, 2000.

[Pap94] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, Reading, MA, 1994.

[Pip97] N. Pippenger. Theories of Computability. Cambridge University Press, Cambridge, 1997.

[PK79] R. Pöschel and L. A. Kalužnin. Funktionen- und Relationenalgebren. Deutscher Verlag der
Wissenschaften, Berlin, 1979.

[Pös01] R. Pöschel. Galois connection for operations and relations. Technical Report MATH-LA-8-2001,
Technische Universität Dresden, 2001.

[RV03] S. Reith and H. Vollmer. Optimal satisfiability for propositional calculi and constraint satisfaction
problems. Information and Computation, 186(1):1–19, 2003.

[Sch78] T. J. Schaefer. The complexity of satisfiability problems. In Proccedings 10th Symposium on
Theory of Computing, pages 216–226. ACM Press, 1978.

[Zwi98] U. Zwick. Finding almost-satisfying assignments. In Proceedings 30th Symposium on Theory of
Computing, pages 551–560. ACM Press, 1998.

Correction: The statement of Theorem 2.3 of the first part of our column should read as follows:
“If B ⊆ V or B ⊆ L or B ⊆ E then CVP(B) ∈ NC; in all other cases CVP(B) is P-complete.”

14

