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Abstract

This paper proves correctness of Nöcker’s method of strictness analysis, implemented in the

Clean compiler, which is an effective way for strictness analysis in lazy functional languages

based on their operational semantics. We improve upon the work Clark, Hankin and Hunt

did on the correctness of the abstract reduction rules in two aspects. Our correctness proof

is based on a functional core language and a contextual semantics, thus proving a wider

range of strictness-based optimizations as correct, and our method fully considers the cycle

detection rules, which contribute to the strength of Nöcker’s strictness analysis.

Our algorithm SAL is a reformulation of Nöcker’s strictness analysis algorithm in a

functional core language LR. This is a higher order call-by-need lambda calculus with case,

constructors, letrec, and seq, which is extended during strictness analysis by set constants

like Top or Inf , denoting sets of expressions, which indicate different evaluation demands. It

is also possible to define new set constants by recursive equations with a greatest fixpoint

semantics. The operational semantics of LR is a small-step semantics. Equality of expressions

is defined by a contextual semantics that observes termination of expressions. Basically, SAL

is a nontermination checker. The proof of its correctness and hence of Nöcker’s strictness

analysis is based mainly on an exact analysis of the lengths of evaluations, i.e., normal-order

reduction sequences to WHNF. The main measure being the number of “essential” reductions

in evaluations.

Our tools and results provide new insights into call-by-need lambda calculi, the role of

sharing in functional programming languages, and into strictness analysis in general. The

correctness result provides a foundation for Nöcker’s strictness analysis in Clean, and also

for its use in Haskell.
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0 Introduction

0.1 General Introduction and Motivation

Strictness analysis is an essential phase when compiling programs in lazy functional

languages such as Haskell (Peyton Jones 2003) and Clean Plasmeijer & van Eekelen

(2003). Many optimizations become possible only with the information gained

in strictness analysis. Among the applications are: optimizations by rearranging

the evaluation sequence, proving preconditions for correct application of program

transformations (see Santos (1995); Peyton Jones & Santos (1994)), and detecting

possibilities for conservative parallel evaluation.

There are different methods to perform the strictness analysis, e.g. ad hoc strictness

computation integrated with optimizations in compilation schemes, strictness

analysis based on denotational semantics and abstract interpretation, use of type

systems, and strictness analysis based on operational semantics.

A very effective way for strictness analysis in functional languages is algorithms

based on abstract reduction, i.e. on the operational semantics. Nöcker’s strictness

analysis for Clean (see Nöcker (1990); Nöcker (1993)) is a prominent example.

This paper contributes to increase the applicability and trustworthiness of Nöcker’s

method and to provide foundations for its application, e.g. in Haskell.

In their paper (Clark et al. 2000) Clark, Hankin and Hunt show the correctness

of the part of the algorithm that pushes the abstract values through the program

using the operational semantics. However, this is only part of the correctness, since

the cycle-detection rules are not considered, which account for much of the strength

of Nöcker’s algorithm. Moreover, the proof in (Clark et al. 2000) is limited in scope

due to a restriction of the language and the semantics, which does not justify all

useful program transformations, e.g. their method cannot justify the modification of

previously defined supercombinators using strictness information.
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Our paper contains a description of SAL, a reformulation of Nöcker’s strictness

analysis algorithm based on a functional core language LR, i.e., on an extended

call-by-need lambda-calculus with constructors, letrec, case and seq, where the

algorithm SAL uses abstract lambda terms including set constants such as �,⊥, and,

where other set constants can be defined by recursive equations. Graph reduction is

modeled by letrec, which can also describe recursive definitions and can explicitly

treat the sharing inherent in lazy functional languages. Our syntax is slightly different

from Nöcker’s, since we assume that all functions are defined in a (global) letrec

environment including all relevant function definitions of the program; in addition

our syntax can also express equality of (instances of) set constants by sharing (see

Remark 3.35). An important improvement is that we use a contextual semantics,

which equates expressions s, t, iff s and t exhibit the same termination behavior, if

put in any program context. Though defined by operational means, the contextual

semantics is superior to semantics based on conversion or on infinite normal forms

or trees like Lévy–Longo trees (Lévy 1976) or Böhm trees (Barendregt 1984), and

justifies a rich set of program transformations. The new result of this paper is a

correctness proof of SAL w.r.t. our contextual semantics. It also contains a proof

of correctness of the strictness optimization w.r.t. our contextual semantics. These

results carry over to Haskell and Clean, since our semantics is correct for their

respective semantics.

A foundational, though tedious, part of the proof of correctness of SAL is to

show that the reduction rules used as transformations and a set of additional

transformation rules (called extra transformations) do not change the contextual

equivalence class of expressions, and to prove that there is a useful measure for closed

terms that counts the number of “essential” reduction steps in an evaluation, and

also to show that this measure is not influenced by the additional transformations.

An intuitive reason for the existence of such a rather well-behaved length measure

appears to be the exact treatment of sharing in our call-by-need lambda-calculus LR.

We also show that the length measure is robust w.r.t. changing the order of reduction,

e.g. using strictness of expressions, and also invariant w.r.t. simplification rules and

rules that only rearrange the let-structure of expressions. The final induction in the

correctness proof is based on the “essential” length of evaluations. The domains

commonly used in the literature on denotational semantics do not provide such a

measure, hence are not appropriate for the correctness proof.

Examples of Strictness Analysis

An expression f is called strict in argument i for arity n, iff the evaluation

starting with f t1 . . . ti−1 ⊥ ti+1 . . . , tn will never yield a weak head normal form

by evaluation, where ⊥ represents terms without WHNF, a more rigorous definition

using contextual equivalence is given in Definition 2.2.

The first example is the combinator K with definition K= λx, y.x, which is strict in

its first argument (for arity 2). This will be detected by Nöcker’s method as follows.

With � representing every closed term, K ⊥ � (abstractly) reduces to ⊥ indicating

that K is indeed strict in its first argument.
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A nontrivial example (see also Example 3.40) is length with the following

definition:

length = letrec len = λlst.λa. caselst lst

(Nil→ a)

(y : ys→ len ys (a+ 1))

in len.

Reducing (length � ⊥) using the rules of the abstract calculus (using reductions,

transformations, and case analysis) results either in ⊥ or in an expression that is

essentially the same as (length � ⊥). Since the same expression is generated, and

at least one (essential) normal order reduction was necessary, the strictness analysis

algorithm concludes that the evaluation of the expression loops. That this constitutes

a loop is not obvious, since �may stand for different terms. Summarizing, the answer

will be that length is strict in its second argument.

Our proof of correctness of SAL justifies this reasoning by loop detection, even

in connection with abstract set constants like � or Inf , whereas the proof in (Clark

et al. 2000) cannot be used in this example.

0.2 Previous Work

In (Nöcker 1990; 1992; 1993) Nöcker described a strictness analysis based on

abstracting the operational semantics of a nonstrict functional programming

language. This strictness analysis is very appealing, both intuitively and

pragmatically, but it has proven theoretically challenging.

The key concept is to add new names for abstract constants, such as ⊥ for all terms

without WHNF, or � for all expressions, and to add to the reduction rules from the

term calculus appropriate (abstract) reduction rules capturing their semantics. This

includes a case analysis, which can be modeled by unions or by nondeterministic

choices, together with subsumption rules based on ⊥ � t � �. This analysis was

implemented at least twice: once by Nöcker in C for Concurrent Clean (Nöcker

et al. 1991) and once by Schütz in Haskell (Schütz 1994). As of Concurrent Clean

version 2.1 Nöcker’s C-implementation is still in use in the compiler. The analysis is

not very expensive to implement, runs quickly without large memory requirements,

and obtains good results. It is able to find strictness information without being

restricted to use finite domains, and it is also possible to exploit implementation

details from several function definitions in one run.

Its drawback seems to be the slow progress in its theoretical foundation. Nöcker

(Nöcker 1992) himself proved the correctness of the analysis for orthogonal term

rewriting systems only. In (Schmidt-Schauß et al. 1995) we showed the correctness

of the analysis for a supercombinator-based functional core language. In that

exposition a treatment of sharing and letrec was missing. Then Clark, Hankin

and Hunt (Clark et al. 2000) proved the correctness of a significant subset of the

analysis, but did not consider the loop-detection rules. Since the loop-detection rules

may well be the most important aspect of strictness analysis by abstract reduction,

this paper provides a formal account of the analysis using a language with explicit

sharing and proving correctness for all of the rules of Nöcker’s algorithm.
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0.3 Overview of the Paper

This paper consists of three main parts and an appendix (Schmidt-Schauß et al.

2007), where almost all proofs in the first two parts on the calculus can be found

in the appendix. The appendix is available on the home page of the Journal of

Functional Programming.

The parts are as follows.

1. A description of the calculus LR and the normal order reduction (part 1).

2. A detailed analysis of the properties of contextual equivalence and of the

length of evaluations (part 2).

3. A description of the strictness analysis algorithm, its data structures, a proof

of its correctness, and some illustrating examples (part 3).

The first part (part 1) is concerned with describing the calculus for a call-by-need

functional core language LR using sharing and with investigating equivalences and

variants of lengths of evaluations. Set constants like � or Inf are permitted in the

abstract language LRU.

The core language LR provides letrec, the usual primitives like a weakly typed

case—in fact a case for every type—constructors, lambda abstraction, application,

and seq. The core language and its analysis is partly borrowed from (Schmidt-

Schauß 2003). The weak typing makes the language LR more similar in behavior

to a typed functional programming language (see Example 1.12), and also permits

optimizations of the strictness analysis that otherwise could not be justified.

The reduction rules for the language LR are defined for any matching

subexpression. The normal order reduction is then defined as a specific strategy

uniquely determining the next subexpression for reduction. We define contextual

equivalence as usual where the only observation is successful termination of an

expression’s evaluation (also called convergence).

In the second part (part 2) we show that contextual equivalence is stable w.r.t.

all reduction and transformation rules. In this, we employ a context lemma and the

computing of overlappings of rules leading to so-called complete sets of commuting

and forking diagrams, which are explained in the appendix, and which are an

essential tool for proving contextual equivalence. The well-founded measure used in

the final induction proof (Theorem 3.32) is the “essential” length of normal order

reduction sequences. For technical reasons, we need to provide several measures each

counting a specific set of reduction rules occurring in the normal order reduction

sequence. We then study how these measures are affected by reduction steps and

transformations.

A further base is a theorem on the correctness of copying parts of concrete terms.

We conjecture that unrestricted copying is a correct program transformation, but

were not able to prove it correct.1

1 This was proved in the meantime, see reports on www.ki.informatik.uni-frankfurt.de/papers/
schauss
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In the third part (part 3) we define the algorithm SAL as a reformulation of

Nöcker’s algorithm. It may use previously computed strictness knowledge about

functions and strictness of built-in functions. The main data structure of SAL

is a directed graph with abstract expressions as nodes, where the directed edges

correspond to abstract reductions, case analysis, or to cycle checks. An abstract

expression is an expression where also set constants are permitted as abstractions.

Set constants may be �, the set of all closed expressions, or Inf , the set of all

expressions evaluating to infinite lists or lists without tails. It is also possible to

define new set constants by recursive equations. An abstract expression represents a

set of terms from the concrete core language, which are called its concretizations. The

definition of concretizations is complicated by the presence of set constants, since

it consists of a combination of semantics (the concretizations of the set constants),

and syntax. Fortunately, it is possible to prove a strong connection between the

abstract reductions on abstract terms and the reduction lengths of the corresponding

concretizations (Theorem 3.28). This leads to a concise representation of unions, and

the elegance of the final proof indicates that a directed graph is appropriate to check

Nöcker’s termination conditions.

The conditions on successful termination of SAL give new insights into the nature

of the algorithm. In fact SAL is a nontermination checker for an infinite set of

expressions specified by an abstract expression. The proof justifies the intuition that

certain reductions (normal order and reductions at strict positions) “make progress”,

whereas this is not the case for several other reductions and transformations.

Our approach makes a proof of the correctness of the strictness optimization

possible and also yields some insight into the effects of strictness optimization

in a call-by-need calculus (see Theorem 3.37 and Corollary 3.38), since we show

that an evaluation exploiting strictness of functions does not improve the number

of (essential) reductions; however, a compiler can produce optimized code for an

abstract machine if strictness information is available.

Correctness of SAL is proved in Theorem 3.32 showing that SAL correctly

detects nontermination provided SAL terminates. Corollaries 3.33 and 3.34 claim

that strictness information is correctly detected on a custom-tailored input. We also

explain some runs of SAL on examples, illustrating the different rules, and also a

slight extension to Nöcker’s formulation.

1 The Calculus LR

In this part we introduce the calculus LR, i.e. its syntax, the operational semantics,

and the program equivalence based on contextual equivalence. In subsection 1.1, we

argue, why we chose to use a letrec-calculi and discuss the relation between LR

and nonstrict functional programming languages. In subsection 1.2, we introduce

the syntax of LR, followed by subsection 1.3 where we define the normal order

reduction for LR. Based on the notion of termination we introduce contextual

equivalence in subsection 1.3. The part ends with a discussion (subsection 1.4) on

semantical aspects w.r.t. the design of our calculus, e.g. why we add an operator seq

for sequential evaluation.
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1.1 The Language and Equality: Design Decisions

Nöcker’s description of his strictness analysis (Nöcker 1990) was based on a

graphbased supercombinator language, which matched the Clean (core-)language

(Plasmeijer & van Eekelen 2003). It is well known that such languages can also be

represented in a lambda calculus extended with letrec. In order to use Nöcker’s

strictness analysis for Haskell, it is advantageous to show correctness within a

language that is close to a core language of Haskell (see Peyton Jones & Marlow

(2002)). This means that a correctness proof in our calculus can be transferred to

Clean as well as Haskell.

There are semantic aspects to consider. Looking at papers dealing with letrec-

calculi or cyclic lambda calculi, the semantics is often a conversion semantics (e.g.

Ariola et al. (1995)), which is in general too weak to prove all the optimizations

and transformations used in a compiler of a functional programming language. For

example, the transformation from lambda calculus to a supercombinator language

cannot be justified by conversion equality alone. It is also known that optimization

using only conversion is insufficient for real-world optimizations (Sands et al. 2002)

in certain lambda calculi. There are also other semantics such as defining equality

by Böhm trees (Barendregt 1984), Lévy–Longo-trees, or by identical normal-forms

w.r.t. an infinitary lambda-calculus (Kennaway et al. 1993). These semantics are

weaker than semantics using contextual equivalences, i.e., they have fewer equations,

the pair of terms λx.xx and λx.x(λy.xy) is an example (see Dezani-Ciancaglini

et al. (1999)). Also following (Plotkin 1975) and (Pitts 2002), we opt for the

use of contextual equivalence (also called behavioral equivalence), which equates

two expressions s, t, if they have the same termination behavior in all contexts;

more rigorously: s, t are equal, if s and t are not distinguishable by substituting

them in any context C and checking whether the normal order reduction in

this calculus reduces C[s] (or C[t], respectively) to a weak-head normal form

(WHNF).

The proof of a correctness result of a large part of the rules of Nöcker’s

strictness analysis in (Clark et al. 2000) is for a supercombinator language

and w.r.t. a variant of a contextual semantics. A slight deficiency is that their

contextual equality lacks “sufficiently many contexts”, since it is defined for the

available set of supercombinators and may change if a fresh supercombinator is

introduced, since then more contexts are available. In a calculus with abstraction,

in general, sufficiently many contexts can be formed, and contextual equivalence

does not change by introducing fresh functions. Another deficiency of the

contextual equivalence in (Clark et al. 2000) is that it is not applicable within

definitions of supercombinators. Applying contextual equivalence within definitions

of supercombinators means to apply it within abstractions, which in turn usually

requires proving a context lemma, which is missing in (Clark et al. 2000), but

provided in our paper. This means that they need further reasoning to show the

correctness of optimization using strictness information.

As a summary, the combination of our letrec-case-constructor lambda calculus

with contextual equivalence appears to be capable of achieving all the desired goals.
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Unfortunately, the price is a higher complexity in writing down the rules of the

calculus and to reason about the calculus.

1.2 Syntax and Reductions of the Functional Core Language LR

We define the calculus LR consisting of a language L(LR) and its reduction rules,

presented in this section, and the normal order reduction strategy and contextual

equivalence, presented in section 1.3. If no confusion arises, we also speak of the

language LR.

Our language, LR, the language of expressions (i.e., concrete terms), has the

following syntax. There are finitely many constants, called constructors. The set of

constructors is partitioned into (non-empty) types. For every type T , we denote the

constructors as cT ,i, i= 1, . . . , |T |. Every constructor has an arity ar(cT ,i) � 0.

The syntax for expressions E, case alternatives Alt and patterns Pat is as follows:

E ::= V | (c E1 . . . Ear(c)) | (seq E1 E2) | (caseT E Alt1 . . . Alt|T |) | (E1 E2)

(λ V .E) | (letrec V1 = E1, . . . , Vn = En in E)

Alt ::= (Pat → E)

Pat ::= (c V1 . . . Var(c)),

where E,Ei are expressions, V , Vi are variables and where c denotes a constructor.

Within each individual pattern, variables are not repeated. In a case-expression of

the form (caseT . . . ), for every constructor cT ,i, i= 1, . . . , |T | of type T , there is exactly

one alternative with a pattern of the form (cT ,i y1 . . . yn), where n= ar(cT ,i). We assign

the names application, abstraction, constructor application, seq-expression, case-

expression, or letrec-expression to the expressions (E1 E2), (λV .E), (c E1 . . . Ear(c)),

(seq E1 E2), (caseT E Alt1 . . . Alt|T |), (letrec V1 =E1, . . . , Vn =En in E),

respectively.

The constructs case, seq and the constructors cT ,i can only occur in special

syntactic constructions. Thus expressions where case, seq or a constructor is applied

to the wrong number of arguments are not allowed.

The structure letrec obeys the following conditions. The variables Vi in

the bindings are all distinct. We also assume that the bindings in letrec

are commutative, i.e. letrecs with bindings interchanged are considered to

be syntactically equivalent. letrec is recursive, i.e., the scope of xj in

(letrec x1 =E1, . . . , xj =Ej, . . . in E) is E and all expressions Ei. This fixes the

notions of closed, open expressions and α-renamings. Free and bound variables

in expressions are defined using the usual conventions. Variable binding primitives

are λ, letrec, patterns, and the scope of variables bound in a letrec are all the

expressions occurring in it. The set of free variables in an expression t is denoted as

FV (t). For simplicity, we use the distinct variable convention, i.e., all bound variables

in expressions are assumed to be distinct, and free variables are distinct from bound

variables. The reduction rules are assumed to implicitly rename bound variables in

the result by α-renaming if necessary to obey this convention. Note that this is only

necessary for the copy rule (cp) (see Figure 1). We follow the convention by omitting
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parentheses in nested applications: (s1, . . . , sn) denotes (. . . (s1 s2) . . . sn) provided s1 is

an expression. The set of closed LR expressions is denoted as LR0.

To abbreviate the notation, we will sometimes use (caseT E alts) instead

of (caseT E alt1 . . . alt|T |). Sometimes we abbreviate the notation of letrec-

expression (letrec x1 =E1, . . . , xn =En in E), as (letrec Env in E),

where Env ≡ {x1 =E1, . . . , xn =En}. This will also be used freely for

parts of the bindings. The notation {xg(i) = sh(i)}ni=m is used for the chain

xg(m) = sh(m), xg(m+1) = sh(m+1), . . . , xg(n) = sh(n) of bindings where g, h : � → �, e.g.,

{xi = si−1}ni=m means the bindings xm = sm−1, xm+1 = sm, . . . xn = sn−1. We assume that

letrec-expressions have at least one binding. The set {x1, . . . , xn} of variables that

are bound by the letrec-environment Env = {x1 = s1, . . . , xn = sn} is denoted as

LV(Env). In examples we will use : as an infix binary list-constructor, and Nil

as the constant constructor for lists. We will write (ci
−→z ) as shorthand for the

constructor application (ci z1 . . . zar(ci)).

In the following we define different context classes and contexts. To visually

distinguish context classes from individual contexts, we use different text styles.

Definition 1.1

The class C of all contexts is defined as the set of expressions C from LR, where the

symbol [·], the hole, is a predefined context, treated as an atomic expression, such

that [·] occurs exactly once in C .

Given a term t and a context C , we will write C[t] for the expression constructed

from C by plugging t into the hole, i.e, by replacing [·] in C by t, where this

replacement is meant syntactically, i.e., a variable capture is permitted.

Definition 1.2

A value is either an abstraction, or a constructor application. We denote values by

the letters v, w.

The reduction rules in Definition 1.3, i.e. in Figures 1 and 2 are defined more

liberally than necessary for the normal order reduction, in order to permit an easy

use as transformations.

Definition 1.3 (reduction rules of the calculus LR)

The (base) reduction rules for the calculus and language LR are defined in Figures 1

and 2, where the labels S, V are to be ignored. The reduction rules can be applied in

any context. The union of (llet-in) and (llet-e) is called (llet), the union of (case-c),

(case-in), (case-e) is called (case), the union of (seq-c), (seq-in), (seq-e) is called (seq),

the union of (cp-in) and (cp-e) is called (cp), and the union of (llet), (lcase), (lapp),

(lseq) is called (lll).

Reductions (and transformations) are denoted using an arrow with super and/or

subscripts: e.g.
llet−→. To explicitly state the context in which a particular reduction is

executed we annotate the reduction arrow with the context in which the reduction

takes place. If no confusion arises, we omit the context at the arrow.

The redex of a reduction is the term as given on the left-side of a reduction rule.

We will also speak of the inner redex, which is the modified case-expression for
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Fig. 1. Reduction rules, part a.

(case)-reductions, the modified seq-expression for (seq)-reductions, and the variable

position which is replaced by a (cp). Otherwise it is the same as the redex.

Transitive closure of reductions is denoted by a +, reflexive transitive closure by

a ∗. E.g.
∗−→ is the reflexive, transitive closure of →. If necessary, we attach more

information to the arrow.

Note that the reduction rules generate only syntactically correct expressions, since

reductions, transformations and contexts are appropriately defined.

Remark 1.4

The case-rule looks a bit more complex than necessary, but in subsection 1.4 we

will argue that the contextual equivalence proof depends on this form. The rules for

case are essentially two rules, one for (caseT (c . . . ) . . . ) and one for (caseT x . . . ). In

Figure 2 all six variants are explicitly given. The variants for a constant constructor

and a constructor of nonzero arity, and also the variants depending on whether the

case-expression is in the environment of the letrec or not. The current definition

of (case) also appears in FUNDIO (Schmidt-Schauß 2003).

1.3 Normal Order Reduction and Contextual Equivalence

We define and explain the final components of the calculus LR.
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Fig. 2. Reduction rules, part b.

Normal-Order Reduction

The normal-order reduction strategy of the calculus LR is a call-by-need strategy,

which is a call-by-name strategy adapted to sharing. The following labeling algorithm

will detect the position to which a reduction rule will be applied according to normal

order. It uses the labels: S, T , V ,W , where T means reduction of the top term, S

means reduction of a subterm, and V ,W mark already visited subexpressions, where

W at a variable indicates that the variable must not be replaced by a (cp)-reduction.

Note that the labeling algorithm does not look into S-labeled letrec-expressions.

For a term s, the labeling algorithm starts with sT , where no other subexpression in

s is labeled and proceeds until no more labeling is possible or until a fail occurs.

The rules of the labeling algorithm are

(letrec Env in t)T → (letrec Env in tS )V

(s t)S∨T → (sS t)V

(seq s t)S∨T → (seq sS t)V

(caseT s alts)S∨T → (caseT sS alts)V

(letrec x = s,Env in C[xS ]) → (letrec x = sS ,Env in C[xV ])

(letrec x = s, y = C[xS ],Env in t) → (letrec x = sS , y = C[xV ],Env in t)

if C[x] �= x

(letrec x = s, y = xS ,Env in t) → (letrec x = sS , y = xW ,Env in t).
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The notation S ∨ T stands for S or T . If a rule tries to label a subexpression

already labeled V or W , then a loop has been detected and the algorithm stops with

fail. Otherwise, if the labeling algorithm terminates, since it is no longer possible

to apply a rule, then we say the termination is successful, and a potential normal

order redex is found, which can only be the direct superterm of the S-marked

subexpression. It is possible that there is no normal order reduction: in this case

either the evaluation is already finished, or it is a dynamically detected error (like a

type-error), or it is prevented by the loop check above.

We define reduction contexts and weak reduction contexts:

Definition 1.5

A reduction context R is any context, such that its hole will be labeled with S or

T by the labeling algorithm. A weak-reduction context, R−, is a reduction context,

where the hole is not within a letrec-expression.

In grammar notation for context classes, this could be written as

R− ::= [·] | (R− E) | (caseT R− alts) | (seq R− E)

R ::= R− | (letrec Env in R−) |
(letrec x1 = R−1 , {xi = R−i [xi−1]}ji=2,Env in R−[xj])

where j � 1 and R−,R−i , i = 1, . . . , j are weak reduction contexts.

A maximal reduction context of an expression s is a reduction context R with

R[s′] = s, such that the labeling algorithm applied to s will label the subexpression

s′ with S or T and will then stop with success.

For example, the maximal reduction context of (letrec x2 = λx.x, x1 = x2 x1 in x1)

is (letrec x2 = [·], x1 = x2 x1 in x1), in contrast to the nonmaximal reduction context

(letrec x2 = λx.x, x1 = x2 x1 in [·]).
Definition 1.6 (normal-order reduction of LR)

Let t be an expression. Then a single normal order reduction step
n−→ is defined by

first applying the labeling algorithm to t, and if the labeling algorithm terminates

successfully, then one of the rules in Figures 1 and 2 has to be applied, if possible,

where the labels S, V must match the labels in the expression t.

The normal order redex is defined as the subexpression to which the reduction rule

is applied. This includes the letrec-expression that is mentioned in the reduction

rules, for example in (cp-e).

The inner normal-order redex is the following V -labeled subterm in t: it is the

modified case-expression for (case)-reductions, the modified seq-expression for

(seq)-reductions, or the V -labeled variable position which is replaced by a (cp).

Otherwise it is the same as the normal-order redex.

The normal-order reduction implies that seq behaves like a function strict (see

Definition 2.2) in its first argument, and that the case-construct is strict in its first

argument. That is, these rules can only be applied if the corresponding argument is

a value or if the argument is a variable bound to a value.

We are interested in normal-order reduction sequences, i.e.
n,∗
−→-reductions, and

mainly those that end with a generalized value, also called the weak-head normal

form.
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Definition 1.7

A weak-head normal form (WHNF) is one of the following cases:

• A value v.

• A term of the form (letrec Env in v), where v is a value.

• A term of the form (letrec x1 = v, {xi = xi−1}mi=2,Env in xm), where v= (c
−→
t ).

If the value v in the WHNF t is an abstraction, we call t a functional WHNF

(FWHNF), otherwise, if v is a constructor application, we call t a constructor WHNF

(CWHNF).

Lemma 1.8

For every term t, if t has a normal-order redex, then the normal-order redex, the

inner normal-order redex and the normal-order reduction are unique.

Definition 1.9

A normal-order reduction sequence is called an (normal-order) evaluation if the

last term is a WHNF. Otherwise, i.e. if the normal-order reduction sequence is

nonterminating, or if the last term is not a WHNF, but has no normal-order

reduction, then we say that it is a failing normal-order reduction sequence.

For a term t, we write t⇓ iff there is an evaluation starting from t. We call this

the evaluation of t and denote it as nor(t). If t⇓, we also say that t is converging

(or terminating). Otherwise, if there is no evaluation of t, we write t⇑. For a term

t, we write t⇑⇑, if t⇑ and if there is also no normal-order reduction sequence for t

to a term of the form R[x] where x is a free variable in R[x], and R is a reduction

context. A term t with t⇑⇑ is also called bot-term, and a specific representative is Ω,

which can be defined as

Ω := (λz.(z z)) (λx.(x x)).

Note that there are useful open terms t that might not have an evaluation, e.g.

x is such a term. Note also that there are (closed) terms t that are neither

WHNFs nor have a normal order redex. For example, (caseT (λx.x) alts) or

((cons 1 2) 3), where cons is a constructor of arity 2. These terms are bot-terms

and could be considered as violating-type conditions. Consider the closed “cyclic

term” (letrec x = x in x). A reduction context for this term is (letrec x = [·] in x).
Obviously, there is no normal-order reduction defined for this term, hence also no

evaluation of t.

As an example, we show the first normal-order reduction steps of an evaluation of

Ω = (λz.(z z)) (λx.(x x)): (λz.(z z)) (λx.(x x))
n,lbeta
−−−→ (letrec z = λx.(x x) in (z z))

n,cp
−−→

(letrec z = λx.(x x) in ((λx′.(x′ x′)) z))
n,lbeta
−−−→ (letrec z = λx.(x x) in (letrec x1 =

z in (x1 x1)))
n,llet
−−→ (letrec z = λx.(x x), x1 = z in (x1 x1)) −→ · · · .

Contextual Equivalence

The semantic foundation of our calculus LR is the equality of expressions defined

by contextual equivalence. We define contextual equivalence w.r.t. evaluations.
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Definition 1.10 (contextual preorder and equivalence)

Let s, t be terms. Then:

s �c t iff ∀C[·] : C[s]⇓ ⇒ C[t]⇓
s ∼c t iff s �c t ∧ t �c s.

Note that we permit contexts C[] such that C[s] may be an open term. In appendix

G we show that s �c t is equivalent to

∀C[·] : C[s], C[t] are closed⇒
(
C[s]⇓ ⇒ C[t]⇓

)
.

By standard arguments, we see that �c is a precongruence and that ∼c is a

congruence, where a precongruence � is a preorder on expressions, such that s �
t⇒ C[s] � C[t] for all contexts C , and a congruence is a precongruence that is also

an equivalence relation.

1.4 Discussion

We will now discuss some of our design choices, i.e. why we chose to add an operator

seq and weakly typed case-expressions to LR. We will also discuss, why we chose

to use reduction rules that follow letrec-bindings, although this choice seems to be

more complicated than obviously necessary.

Extensions: seq, Constructors and case

The language LR has a seq-primitive as an extension to letrec-calculi. In Clean,

a function seq is definable, whereas in Haskell the seq is predefined. The seq-

primitive is not redundant in the core language if it has our weakly typed case, as

the following remark shows.

Remark 1.11

The operator seq cannot be simulated in the language LRnoseq, which denotes LR

without the seq-construct and without the corresponding reductions. In the language

LRnoseq it is not possible to simulate seq, i.e. there is no expression t = λx, y.t′ that

is equivalent to seq. Applying the expression t to the argument pairs (⊥, True),

(True, True), and (False, False) shows that t must evaluate the first argument.

Since normal order is unique, t must scrutinize x using a (if x then . . . ). Now

the argument pair (Nil, Nil) makes a difference, since t Nil Nil yields ⊥, whereas

seq Nil Nil results in Nil.

The following example shows that the addition of seq is not conservative for ∼c
w.r.t. LRnoseq and LR, i.e., more expressions may be distinguished after the extension.

s = λf.if (f λx.Ω) then True else Ω

t = λf.if (f Ω) then True else Ω.

In LRnoseq, the expressions s, t cannot be distinguished, since in case f is a constant

function, they behave equivalent. Otherwise, f evaluates its argument and the first

usage must be an application to another subterm, which for both functions yields

Ω as a result.
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If a seq is available, then we could use f := λx.(seq x True), which distinguishes

the two functions s, t.

We also added a (weak) typing to the case, which brings our language even closer

to the typed languages Clean and Haskell.

Example 1.12

This example shows that the language LR is closer to a polymorphically typed

language like Haskell and Clean than a functional core language without types.

So assume, for this example, that there is a core language LRut with letrecs,

constructors, and abstractions, where the weakly typed case is replaced by the

following (untyped) case-construct: there are alternatives for every constructor, and

also either a default alternative, or an alternative for abstractions. Note that seq can

be defined in LRut .

Now define the following functions:

s0 = λf.if (f True) then (if (f Nil) then Ω else True) else Ω

t0 = λf.if (f Nil) then (if (f True) then Ω else False) else Ω.

We claim that s0, t0 cannot be distinguished in LR, since (f True) and (f Nil)

cannot result in different (terminating) Boolean values. If a function f outputs

different values for the inputs True and Nil, then there must be an evaluation of a

case-expression scrutinizing the inputs. But then one of the results must be ⊥, since

caseT is typed. This reasoning can be extended to show that s0 ∼c t0. However, the

expressions s0, t0 can be distinguished in LRut , since it is easy to define a function f

as follows. The top level is a case having alternatives for all constructors, for True

it yields True, and for Nil it yields False. Applying s0, t0 to the function f gives

different results.

This means that the reason for the difference between the languages LR and

LRut is only the restricted typing. The reason is that typing restricts the number of

contexts in LR in contrast to LRut .

The typed case-primitive and the seq-primitive together have the same expressive

power as an unrestricted case, however, contextual equality is closer to that in a

typed lazy functional language.

The reduction rules of our calculus are similar to the rules in related call-

by-need calculi. In (Ariola et al. 1995), rules for a let-calculus, for a calculus

with constructors, and also for a calculus with a letrec are given, but rules for

the combination of letrec and constructors are missing. In (Ariola & Arvind

1995) there are reduction rules for a calculus using letrec and supercombinators.

The paper (Moran et al. 1999) describes a similar calculus, extended with a

nondeterministic choice construct, but a slightly restricted language, where, e.g.

only applications of the form (t x) are permitted. They employ a contextual equality,

which is adapted to the nondeterminism in their language. Contrary to Moran, Sands

and Carlsson (Moran et al. 1999) in applications (s t) of LR, we permit arguments

t other than variables. The results in our paper show this restriction on the term

structure to be irrelevant for equivalence and the main length measure. We cannot

use the call-by-name variants of letrec-calculi, as e.g. (Ariola & Blom 2002), since
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using these calculi, the reduction-length property would not hold, and since in the

abstract language LRU, the set constants have to be treated like nondeterministic

choiceexpressions, i.e. should not be copied.

Reduction Rules

Our choice to use contextual equivalence comes with the obligation to show that

all reduction rules retain contextual equivalence. Once the context lemma is proved,

this becomes easier since only weaker contexts are to be considered. Our experience

shows that correctness proofs for all transformations corresponding to reduction

rules can be done using reduction diagrams. However, the correctness proofs of the

transformations corresponding to the case reduction rules are a major hurdle; in

fact, we did not find such a proof, if the case reductions are defined in the naive

way, i.e. using the (abs)- and copy rule in combination with a case rule: (letrec x =

c
−→
t ,Env in case x . . . )→ (letrec x = c −→y , {yi = ti}ar(c)

i=1 ,Env in case x . . . )→
(letrec x = c −→y , {yi = ti}ar(c)

i=1 ,Env in case (c −→y ) . . . ).

If the case rule is defined as in our calculus (see Figure 2), i.e., constructor-

expressions also can be seen from a case expression via chains of variable–variable

bindings, then the diagram-chasing proofs are successful. We think that it would

be possible to avoid the variable bindings x = y in the rules, which would make

the presentation of the rules a bit simpler. However, a price would have to be

paid for this modification: the normal-order reduction had to include a rule for

copying variables, which complicates the development of the correctness proofs of

the reduction rules used as transformations, and also complicates the arguments

on the lengths of evaluations. Based on these proofs of contextual equivalence for

transformations, we think that it is possible to prove that simpler reduction rules

would work also, e.g. for constructing an abstract machine for reduction, but this

would not simplify, but increase the complexity of the treatment of the calculus in

our paper.

2 Contextual Equivalence of LR

This part provides methods and tools used in the correctness proof. In subsection 2.1

we use the notion of contextual equivalence to define strictness of functions. In

subsection 2.2 we develop the proof methods using a context lemma and overlap

diagrams in order to show that s ∼c t for all reduction rules s → t. A set of extra

transformation rules used in SAL is defined and investigated in subsection 2.3.

It is also necessary to analyze different kinds of length measures of a normal-

order reduction, and to check every reduction and transformation whether the

length remains equal or is decreased (or perhaps increased) after applying the

transformation. We accomplish this analysis in subsection 2.4.

2.1 Surface Contexts and Strict Functions

To introduce the notion of strict subexpressions and in particular the extra

transformation rules below, two kinds of surface contexts are introduced.
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Definition 2.1 (surface context classes)

A surface context is a context where the hole is not contained in an abstraction. The

class of surface contexts is denoted as S.

An application surface context is a surface context where the hole is neither contained

in an abstraction nor in an alternative of a case expression. A weak-application

surface context is an application surface context where the hole is in addition

not contained in a letrec-expression. The class of application surface contexts is

denoted as W, and the class of weak-application surface contexts as W−

For a context C , its main depth is defined as the depth of its hole. With C(i), we

denote a context of main depth i. So W−
(1) is the context class of weak-application

surface contexts of main depth 1:

W−
(1) ::= ([·] E) | (E [·]) | (c E1 . . . Ei−1 [·] Ei+1 . . . Ear(c))

| (caseT [·] alts) | (seq [·] E) | (seq E [·]).

Note that every reduction context is also a surface context and an application

surface context, and that a weak-reduction context is also a weak-application surface

context.

We define strictness of functions and expressions consistent with the notions from

denotational semantics.

Definition 2.2

An expression s is strict, iff (s Ω) ∼c Ω.

An expression s is strict in the ith argument for arity n, iff 1 � i � n and for all

closed expressions t1, . . . , ti−1, ti+1, . . . tn: (s t1 . . . ti−1 Ω ti+1 . . . tn) ∼c Ω.

Let s0 be a subexpression of s not contained in another subexpression that is an

abstraction; i.e. s = S[s0], where S is a surface context (see Definition 2.1). Then the

expression s is strict in the subexpression s0, iff for the term s′ that is constructed

from s by replacing s0 by Ω, we have s′ ∼c Ω. We also say s0 is a strict subexpression

of t. Here, we mean by subexpression also the position within the superterm.

Knowing strictness of functions and strict subexpressions of terms helps to

rearrange evaluation and is thus of importance for optimizations and parallelization

of nonstrict functional programs.

2.2 Context Lemma and Properties of LR-Reductions

Context Lemma

The context lemma restricts the criterion for contextual equivalence to reduction

contexts. This restriction is of great value in proving the conservation of contextual

equivalence by certain reductions, since there is no need to introduce parallel

reductions like Barendregt’s 1-reduction (Barendregt 1984). Its proof can be found

in appendix A.

Lemma 2.3 (context lemma)

Let s, t be terms. If for all reduction contexts R: (R[s]⇓ ⇒ R[t]⇓), then ∀C : (C[s]⇓ ⇒
C[t]⇓); i.e. s �c t.
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In appendix G, it is argued that closing reduction contexts are sufficient in the

context lemma.

Correctness of Transformations

We say that a transformation � on terms is correct, if s � t implies s ∼c t for all

terms s, t. In the following, we will use the base reductions also as transformations

(ignoring the labels S, V ). In appendix B, we prove the following theorem on

correctness of transformations.

Theorem 2.4

All the reductions (viewed as transformations) in the base calculus LR maintain

contextual equivalence, i.e., whenever t
a−→ t′, with a ∈ {cp, lll, case, seq, lbeta}, then

t ∼c t′.

Note that the correctness proof for a ∈ {cp, lll, seq, lbeta} is straightforward

using the context lemma and the diagrams, however, the correctness proof for

(case) requires further tools, in particular, the extra transformations defined below

in section 2.3

On (lll)-Transformations

The following lemma shows that letrec-environments in reduction contexts can

immediately be moved to the top level environment.

Lemma 2.5

Let t = (letrec Env in t′) be an expression, and R be a reduction context. Then

1. If R = (letrec EnvR in R′), where R′ is a weak-reduction context, then

R[(letrec Env in t′)]
n,lll,+
−−−→ (letrec EnvR,Env in R′[t′]).

2. If R = (letrec EnvR, x = R′ in r), where R′ is a weak-reduction context,

then R[(letrec Env in t′)]
n,lll,+
−−−→ (letrec EnvR,Env, x = R′[t′] in r), and

(letrec EnvR,Env, x = R′[·] in r) is a reduction context.

3. If R′ is not a letrec-expression, i.e. R′ is a weak-reduction context, then

R′[(letrec Env in t′)]
n,lll,∗
−−−→ (letrec Env in R′[t′]), and (letrec Env in R′[·])

is a reduction context.

Proof

This follows by induction on the main depth of the context R′. �

Definition 2.6

For a given term t, the measure µlll(t) is a pair (µ1(t), µ2(t)), ordered lexicographically.

The measure µ1(t) is the number of letrec-subexpressions in t, and µ2(t) is the

sum of lrdepth(C) for all letrec-subexpressions s with t ≡ C[s], where lrdepth

is defined as follows:

lrdepth([·]) = 0

lrdepth(C(1)[C
′[]]) =

{
1 + lrdepth(C ′[]) if C(1) is not a letrec

lrdepth(C ′[]) if C(1) is a letrec.
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The following termination property of (lll) is required in later proofs.

Proposition 2.7

The transformation (lll) is terminating, i.e. there are no infinite transformation

sequences consisting only of (lll) transformations.

Proof

This holds, since t1
lll−→ t2 implies µlll(t1) > µlll(t2), and the ordering induced by the

measure is well-founded. �

2.3 Extra Transformation Rules

We define further transformation rules that are useful as simplifications and are also

a necessary tool for a correctness proof of the base reduction (case).

Definition 2.8

The extra transformation rules are defined in Figure 3. The union of (gc1) and (gc2)

is called (gc), the union of (cpx-in) and (cpx-e) is called (cpx), the union of (cpcx-in)

and (cpcx-e) is called (cpcx).

The transformation (case-cx) is like (case) with the difference, that if the involved

constructor application is of the form (c x1 . . . xn), where xi are variables, then

the rule (case-cx) does not modify (c x1 . . . xn). The extra transformation rule

(cpcxnoa) can be seen as an abbreviation of a (cpcx) with subsequent (cpx) and

(gc)-transformations.

Note that the (useless) transformation letrec x = x in t → letrec x = x in t

is not allowed as an instance of the (cpx)-rule. Note also that the transformation

(lwas) includes the reductions (lapp), (lcase), (lseq).

Correctness of Extra Transformations

In appendix B we prove the following theorems in a series of lemmas.

Theorem 2.9

The transformations (ucp), (cpx), (cpax), (gc), (lwas), (cpcx), (abs), (abse), (xch),

(cpcxnoa) and (case-cx) maintain contextual equivalence, i.e. whenever t
a−→ t′, with

a ∈ {ucp, cpx, cpax, gc, lwas, cpcx, abs, abse, xch, cpcxnoa, case-cx}, then t ∼c t′.

Theorem 2.10 (standardization)

Let t be a term such that t
∗−→ t′, where t′ is a WHNF, and the reduction steps are

base reductions or extra transformations. Then t⇓.

Proof

This follows from Theorems 2.4 and 2.9. �

A Convergent Rewrite System of Simplifications

Definition 2.11 (simplifications)

As simplification rules we will use (lwas), (llet), (gc), (cpax).
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Fig. 3. Extra transformation rules.

Note that the rule (lwas) includes (lseq), (lcase), (lapp), but not (llet). The

simplification rules (lwas), (llet), (gc), (cpax) maintain contextual equivalence, which

is proved in Theorems 2.4 and 2.9. For definitions of confluence and local confluence,

see e.g. (Baader & Nipkow 1998). The reason for using (cpax) in the simplification

rules is that it terminates, i.e. there are no infinite sequences consisting only of
cpax
−−→,

in contrast to (cpx) (see subsection B.4).

In appendix F, we prove the following result,
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Theorem 2.12

The set of transformations (lwas), (llet), (gc), (cpax) is confluent (up to α-renaming)

and terminating. This defines a unique simplified normal form of every LR term,

which can be computed by exhaustively applying simplification rules. The normal

form has the following properties.

• There are no unnecessary bindings.

• The letrec-environments are joined at the top of the term, at the top in the

body of abstractions, and at the top in the alternatives of cases.

• A normal order reduction of a normal form may only be a (case), (lbeta),

(seq), or a (cp)-reduction.

2.4 Length of Normal Order Reduction Sequences

We develop properties of different lengths measures of normal-order reduction

sequences, which enable the proof of correctness of SAL (see section 3.4). The

measure rl��(t) can be viewed as a distance of t from its WHNF. This measure is

strictly decreased after normal-order (case), (lbeta), and (seq) reductions. It is robust

w.r.t. all extra transformations and cannot be increased by applying base reductions

as transformations.

Definition 2.13

Let t be a closed term with t⇓,
then

1. if ∅ �= M ⊆ {case,lbeta,seq,cp,lll}, then rlM(t) is defined to be the number of

normal-order reductions
a−→ in nor(t) with a ∈M;

2. rl��(t) := rl{case,lbeta,seq}(t);

3. rl�(t) := rl{case,lbeta,seq,cp}(t);

4. rl�(t) := rl{lll}(t);

5. rl(t) := rl{case,lbeta,seq,cp,lll}(t).

The main measure in this paper will be rl��(·).
In the following, the specializations of (seq), (case), (cp) where the C-context

mentioned in the corresponding rule definition in Figures 1 and 2 is restricted

to a surface context are denoted as (seqS), (caseS), (cpS).

Theorem 2.14

Let t1, s1 be closed LR expressions with t1⇓ and t1 −→ s1 by a base reduction or an

extra transformation. Then s1⇓ and the following holds.

1. If t1
a−→ s1 with a ∈ {case, seq, lbeta, cp}, then rl(t1) � rl(s1), rl�(t1) � rl�(s1)

and rl��(t1) � rl��(s1).

2. If t1
S,a
−−→ s1 with a ∈ {caseS, seqS, lbeta, cpS}, then rl�(t1) � rl�(s1) � rl�(t1)−1

and rl��(t1) � rl��(s1) � rl��(t1) − 1. For a = cpS, the equation rl��(t1) =

rl��(s1) holds.

3. If t1
a−→ s1 with a ∈ {lll, gc}, then rl(t1) � rl(s1), rl�(t1) = rl�(s1) and rl��(t1) =

rl��(s1). For a = gc1 in addition rl(t1) = rl(s1) holds.
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4. If t1
a−→ s1 with a ∈ {cpx, cpax, xch, cpcx, abs}, then rl(t1) = rl(s1), rl�(t1) =

rl�(s1) and rl��(t1) = rl��(s1).

5. If t1
ucp
−→ s1, then rl(t1) � rl(s1), rl�(t1) � rl�(s1) and rl��(t1) = rl��(s1).

6. If t1
lwas−−→ s1, then rl��(t1) = rl��(s1).

Proof

The proofs are in appendix E. �

The next proposition shows that a single reduction step exploiting strictness will not

increase the number of (case)-, (cp)-, (seq)-, and (lbeta)-reductions required to reach

a WHNF. Its proof is done in the appendix, in subsection E.9.

Proposition 2.15

Let t1, s1 be closed concrete LR expressions with t1⇓ and t1
S,b
−−→ s1, where b ∈

{(caseS), (seqS), (lbeta), (cpS)}, such that the inner redex t0 of the reduction is a strict

subterm of t1, and t1 = S[t0] for a surface context S .

Then rl�(t1) = 1+rl�(s1). If b ∈ {(caseS), (seqS), (lbeta)}, then rl��(t1) = 1+rl��(s1)

and if b = (cpS), then rl��(t1) = rl��(s1).

Local Evaluation and Deep Subterms

We introduce deep strict subterms, which are strict subterms that are evaluated by

a normal-order reduction only if also another seq-expression, case-expression or

application is reduced first, which is “above” the deep subterm. As a tool a relativized

normal-order reduction, called local evaluation, is defined. Using this tool, we will

show that deep subterms have a (local) evaluation length strictly smaller than that

of the top term. This will enable proving correctness of SAL’s subsume2-rule (see

Definition 3.27 and Example 3.42).

Definition 2.16

Let t = (letrec Env in t′) be a (concrete) LR expression, and let x ∈ LV(Env).

Then the local evaluation of x is defined as the reduction sequence of t, which

corresponds to the evaluation of (letrec Env in x), only considering reductions

that make modifications in Env, i.e. a possibly occurring last (n,cp) that replaces x

by an abstraction in the evaluation is omitted in the local evaluation.

If (letrec Env in x)⇓, then the length corresponding to rl�(·) of a local evaluation

is denoted as rl�loc(letrec Env in x).

Proposition 2.17

Let t1 = (letrec Env in t′1) be a closed (concrete) LR expression with t1⇓. Let

x ∈ LV(Env) where the binding in Env is x = tx, and tx is a strict subexpression in

t1. Then rl�(t1) � rl�loc(letrec Env in x) and rl��(t1) � rl��(letrec Env in x).

Proof

The proof is in appendix E.10. �
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Definition 2.18

Let t = (letrec Env, x = tx, x1 = t1 in x1). The subterm tx is called a deep subterm

in t if t1 is either an application, a seq-expression, or a case-expression.

The next proposition shows that for deep and strict subexpressions, the number

rl��(·) of local evaluations is strictly less than the corresponding number for the top

term. The proof is in appendix E.10.

Proposition 2.19

Let t1 = (letrec Env, x = tx, x1 = t′1 in x1) be a closed concrete LR-expression

with t1⇓, such that tx is a strict and deep subterm in t1.

Then rl��(t1) > rl��(letrec Env, x = tx in x).

Concrete Subterms and Environments

The goal of this subsection is to show that open subterms within certain surface

contexts can be closed by localizing the global environment, thereby copying it.

The main argument, proved in appendix H, is that concrete subterms can be

copied to positions within surface contexts, and that concrete parts of letrec-

environments can be duplicated together with a renaming without consequences

for the ∼c-equivalence of the top-expression. We conjecture that copying concrete

subterms can be done without restrictions, but did not find a proof. Note that

copying subterms may change the length of the normal-order reduction and the

corresponding measures.

In appendix H, we prove the following proposition.2

Proposition 2.20

Let t = (letrec Env, x = W [t′] in r) be a closed expression, where W is a

weak-application surface context. Then there exists a closed expression t′′, such that

t ∼c (letrec Env, x = W [t′′] in r).

The term t′′ can be constructed as follows. Let Env = {yi = si}ni=1, and t′′ :=

(letrec Env′, x′ = W ′[(t′′′)] in t′′′) where Env′ and t′′′ is Env and t′, respectively,

renamed by ρ := {x �→ x′, yi �→ y′i | i = 1, . . . , n} and y′i are fresh variables.

The analogous claim holds if W [t′] is the “in”-term.

Corollary 2.21

Let t be a closed expression which has a CWHNF. Then there is a constructor c

and for every j = 1, . . . , ar(c) there are closed terms tj such that t ∼c (c t1 . . . tar(c)).

Proof

Let t have a CWHNF t′. If t′ is of the form (letrec Env in (c t1 . . . , tar(c))),

then applying the extra transformation (ucp), which is correct (see Theorem 2.9)

shows that t ∼c (letrec Env, x = (c t1 . . . , tar(c)) in x), where x has only the two

indicated occurrences. Proposition 2.20 shows that there are closed expressions t′i
for i = 1, . . . , ar(c) such that t ∼c (letrec Env, x = (c t′1 . . . , t′ar(c)) in x). Using the

correct transformations (ucp) and (gc), we see that t ∼c (c t′1 . . . t′ar(c)). �

2 This was proved in the meantime in a more general way, see reports on www.ki.informatik.
uni-frankfurt.de/papers/schauss
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The following corollary on Ω in a strict position is intuitively clear; however, the

proof is surprisingly difficult, and requires a proof that copying terms into surface

contexts maintains contextual equivalence.

Corollary 2.22

Let t be a closed LR-expression. Then either t ∼c Ω, or t has an FWHNF, or

t ∼c (c t1 . . . tar(c)) for a constructor expression (c t1 . . . tar(c)).

Corollary 2.23

Let f be a closed function expression that is strict in its ith argument for arity n.

Then for all (open) terms t1, . . . , tn : (f t1 . . . ti−1 Ω ti+1 . . . , tn) ∼c Ω.

Proof

We use the context lemma to show the claim. Let R be a reduction context. Then we

want to show that R[(f t1 . . . ti−1 Ω ti+1 . . . , tn)]⇓ ⇔ R[Ω]⇓. Since the latter is shown

to be ∼c Ω in Corollary C.2, we have to show that R[(f t1 . . . ti−1Ω ti+1 . . . , tn)]⇑. By

appendix G it is sufficient to take closing reduction contexts R into account (see

Proposition G.1). Then either R is a weak-reduction context and hence t1, . . . , tn are

closed or R can be represented by (letrec EnvR, x = W [·] in r). The case that the

hole is in the “in”-term can be derived from the latter case using the correctness of

(ucp). Proposition 2.20 shows that there are closed terms t′i for i = 1, . . . , n, such that

R[(f t1 . . . ti−1 Ω ti+1 . . . , tn)] ∼c R[(f t′1 . . . t
′
i−1 Ω t′i+1 . . . , t

′
n)]. Now strictness of f in

the ith argument for arity n shows R[(f t′1 . . . t
′
i−1Ω t′i+1 . . . , t

′
n)] ∼c R[Ω] ∼c Ω. �

3 Strictness Analysis and its Safety

This part describes the strictness analysis algorithm SAL, which operates on abstract

terms, shows its correctness based on the results in the previous part, and also

illustrates SAL by several examples. The outline of this part is as follows. In

subsection 3.1, we introduce abstract terms, i.e. expressions from LR extended with

set constants and concretizations of abstract terms, which are expressions from

LR. In subsection 3.2, we show that concretizations are retained by reduction and

transformation on abstract terms. In subsection 3.3, we define the algorithm SAL

and in subsection 3.4 its correctness is proved. Finally, in subsection 3.5, we illustrate

the execution of the algorithm by examples.

3.1 Abstract Terms

Abstract terms are expressions from LR extended with set constants, defined below,

used in the formulation of strictness properties and strictness analysis algorithms,

like ⊥, �, Inf etc.

These constants were already used in (Nöcker 1992; 1993; van Eekelen et al.

1993; Schütz 2000). The notation for sets of terms was coined “demands” in (Schütz

2000). Note that we only use set constants, up to Fun, where the semantics are sets

of expressions that are closed w.r.t. �c.
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Set Constants

Set constants are new symbols that have as semantics sets of (infinite) trees (over

constructors and ⊥), which is defined as a greatest fixpoint of recursion equations.

The sets of trees then have as semantics sets of closed expressions, giving also a

semantics to set constants in LR0.

Let U = {⊥,Fun} ·∪ {U1, . . . , UK} be a finite set of names of set constants. The

set constants Ui, i = 1, . . . , K are called proper set constants. For every proper set

constant Ui, there is a defining rule

(Eqi) : Ui = {⊥} ∪ ri,1 ∪ · · · ∪ ri,ni ,

where ri,j may be Fun or an expression (c u′1 . . . u
′
ar(c)), where u′j are proper set

constants or ⊥. With rhsEq(Ui) we denote the right-hand side of Eqi.

The restriction excludes Fun to be u′j in expressions (c u′1 . . . u
′
ar(c)) on the right-

hand side; however, it is possible to define a set constant Fun⊥ := {⊥}∪Fun, which

corresponds to a lifted Fun, and use it on other right-hand sides.

The set constants definitions will have a coinductive interpretation as trees, which

can be generated using the following grammar:

VT ::= Fun | ⊥ | ci VT1 · · · VTar(ci)

LetT∞ be the set of all trees (including infinite trees) coinductively defined according

to this grammar and T∗ be the set of all (finite) trees inductively defined according

to this grammar. The set T ⊆ T∞ is defined as the set of computable trees, i.e.

T := {T | t′ ∈ LR0, RT(t′) = T }, where a representative tree RT(t) for every term

t ∈ LR0 is the coinductively defined as:

RT(t) =

⎧⎨
⎩
⊥, if t ∼c Ω

Fun, if t ∼c t′ and t′ is a closed FWHNF

c T1 . . . Tar(c) if t ∼c c t′1 . . . t′ar(c) and Ti = RT(t′i).

Note that this definition is well defined, since for every expression t ∈ LR0 exactly

one of the following equivalences hold:

• t ∼c Ω, or

• t ∼c t′ where t′ is a closed FWHNF, or

• t ∼c c t′1 . . . t′ar(c) for a constructor c, where the expressions t′i are unique up to

∼c.
The set T is admissible in the sense of (Schmidt-Schauß et al. 2005), i.e. T∗ ⊆ T

and T is subtree-closed, which means that for every T ∈ T, all its subtrees are also

contained in T.

A mapping ψ from proper set constants to P(T), where P denotes the powerset

is called an sc-interpretation. For sc-interpretations ψ1, ψ2, we write ψ1 � ψ2, iff for

all i : ψ1(Ui) ⊆ ψ2(Ui). We define an extension ψe for sc-interpretations ψ as follows:

ψe(⊥) := {⊥}
ψe(Fun) := {Fun}
ψe(c u1 . . . uar(c)) := {(c a1 . . . aar(c)) | ai ∈ ψ(ui)}
ψe(r1 ∪ r2) := ψe(r1) ∪ ψe(r2).
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The equations Eqi for the set constants define an operator Ψ on sc-interpretations

as follows: Ψ(ψ) := ψe ◦ rhsEq . The operator Ψ is monotone and has a greatest fixed

point ψ∗.

Remark 3.1

The greatest fixpoint ψ∗ of Ψ can be computed as follows (see Schmidt-Schauß et al.

(2005) for a proof of continuity). Let ψ0 be the sc-interpretation with ψ0(Ui) =T for

i = 1, . . . , K . With ψj := Ψj(ψ0), the j-fold application of Ψ, for every i = 1, . . . , K ,

the equation ψ∗(Ui) =
⋂
j

ψj(Ui) holds. This representation of the greatest fixpoint

allows coinduction proofs in the style of induction proofs (Pitts 1994; Gordon 1994).

Definition 3.2

For every set constant u ∈ U, we define a (tree) semantics γT(u) ⊆ T:

γT(u) := ψ∗(u)(for the greatest fixpoint ψ∗ of Ψ).

Lemma 3.3

Let t1, t2 be closed LR expressions, which have CWHNFs. Then t1 �c t2 iff there

is a constructor c, and for j = 1, . . . , ar(c) there are closed terms t1,j , t2,j such that

t1,j �c t2,j , t1 ∼c (c t1,1 . . . t1,ar(c)) and t2 ∼c (c t2,1 . . . t2,ar(c)).

Proof

The if-direction is obvious. To prove the other direction, let t1 �c t2. Then

Corollary 2.21 shows that there are closed expressions t1,j , t2,j for j = 1, . . . , ar(c),

such that (c t1,1 . . . t1,ar(c)) ∼c t1 �c t2 ∼c (c t2,1 . . . t2,ar(c)). Using contexts

Ci := (caseT [·] (c x1 . . . xar(c)) → xi . . . ) for i = 1, . . . , n, it is easy to see that

for j = 1 . . . , ar(c): t1,j �c t2,j . �

Lemma 3.4

Let s �c t ∈ LR0, RT(t) ∈ γT(u), then RT(s) ∈ γT(u).

Proof

We use Remark 3.1 and show by induction that for every i the claim holds for the

sets ψi(Uk) for all k. The base case is ψ0(Uk) = T, for all k. Since for every term

t ∈ LR0 its representative tree RT(t) is included in T the claim holds.

Let i be a positive integer. We use as induction hypothesis that the claim holds for

ψi−1(Uk) for all k. Let t1, t2 be closed expressions with t1 �c t2 and RT(t2) ∈ ψi(Uk). If

t1 ∼c Ω, then RT(t1) = ⊥ and the lemma holds since every defining equation contains

a component ⊥. If t1 has an FWHNF, then t2 must also have an FWHNF, and

hence RT(t2) = Fun and thus Fun must be a component of the defining equation for

Uk . Since iterations of Ψ cannot remove Fun, we have RT(t1) ∈ ψi(Uk).

If t1 has a CWHNF for constructor c, then by Lemma 3.3 there are closed

terms t1,j , t2,j with t1 ∼c (c t1,1 . . . t1,arc), t2 ∼c (c t2,1 . . . t2,arc) and t1,j �c t2,j .

Then RT(t2) = (c T ′2,1 . . . T ′2,ar(c)), where RT(t2,i) = T ′2,i. Since RT(t2) ∈ ψi(Uk) in the

defining equation for Uk , there is a component (c uk,1 . . . uk,ar(c)) on the right-hand

side. The definition of ψ implies that T ′2,j ∈ ψi−1(uk,j) for all j. Using the induction

hypothesis and the fact that only proper set constants and ⊥ are possible as uk,j:

RT(t1,j) ∈ ψi−1(uk,j) for all j. This implies RT(t1) ∈ ψi(Uk).
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We have shown that the claim holds for all k and all i : ψi(Uk). Since γ(Uk) =⋂
i ψi(Uk), we obtain the claim for γ(Uk), too. �

We now define the term-semantics γ for set constants by mapping the trees to

terms.

Definition 3.5

The mapping �·� : T → LR0 is defined as �T � := {t ∈ LR0 | RT(t) = T }. The

extension of �·� to sets S ⊆ T is defined as θ(S) :=
⋃
s∈S�s�.

For every set constant u ∈ U: γ(u) ⊆ LR0 is defined as γ(u) := θ(γT(u))

Lemma 3.6

For all terms t ∈ LR0: t ∈ �RT(t)�.

Proof

This follows from the definition of �·� �

Lemma 3.7

For every proper set constant u: γ(u) is down-closed, i.e. t1 �c t2 ∈ γ(u)⇒ t1 ∈ γ(u).

Proof

Let t1 �c t2 and t2 ∈ γ(u) = θ(γT(u)) =
⋃

T∈γT(u)

�T �, i.e. there is a tree T2 with

T2 ∈ γT(u) and t2 ∈ �T2�. From the definition of �·�, we have RT(t2) = T2. Using

Lemma 3.4, we have RT(t1) ∈ γT(u) and from Lemma 3.6 we obtain t1 ∈ �RT(t1)�

and hence t1 ∈ θ(γT(u)) = γ(u). �

In the following, we assume that the set constants � and Inf are proper set

constants and defined with the defining equations

� := {⊥} ∪ Fun ∪ (c1 � · · · �) ∪ · · · ∪ (cN � · · · �)

where c1, . . . , cN are all constructors.

Inf := {⊥} ∪ (� : Inf )

where “ :′′ is the binary constructor for lists.

Lemma 3.8

The equation γ(�) = LR0 holds.

Proof

Using Remark 3.1 and that T is subtree-closed, it easy to show that γT(�) = T.

The definition of �·� then shows θ(T) = LR0. Hence, we have γ(�) = LR0. �

Lemma 3.9

• Every expression t ∈ γ(�) is either in γ(⊥) or γ(Fun), or contextually equivalent

to a term of the form (c t1 . . . tn) where c is a constructor and ti are closed

expressions.

• Every expression t ∈ Inf is either in γ(⊥) or is contextually equivalent to a

term of the form t1 : t2, where t1, t2 are closed and t2 ∈ γ(Inf ).

Remark 3.10

The definition of abstract constants does not cover the nondown-closed demands in

(Schütz 2000) like Fin, the abstract constant representing all finite lists.
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Terms Including Set Constants: Abstract Terms

We define structured terms including set constants, which are used to represent

sets of concrete expressions. Since we will only use very special terms including set

constants, we will define these terms as our abstract terms language.

Definition 3.11

We extend the language LR by the set constants (as expressions) in U according

to the following restrictions. A closed term t including set constants as expressions

is called an abstract term if it is of the form (letrec Envac,Envup in r), where the

environment for abstract (set) constants is of the form Envac = {x1 = u1, . . . , xn =

un}, where ui are set constants with ui �= ⊥ for all i = 1, . . . , n, and where Envup and

r may only contain ⊥ as set constant. The language LRU is the set of all abstract

terms built with set constants from U. The variables in LV(Envac) will be called

ac-variables, the variables in LV(Envup) are called up-variables.

The language LR will remain the foundation for formal proofs, thus it is not

necessary to repeat all the definitions and results also for the abstract language.

Nevertheless, we have to clarify what we mean if we apply LR-notions also to

abstract expressions.

Definition 3.12

1. Contexts: For abstract terms, we also speak of contexts, reduction contexts,

surface contexts, etc., where the definitions are the same as for the concrete

language.

2. Abstract deep and strict subterms: These are defined as for concrete terms. The

definition of the property “deep” is the same. To apply the definition of strict

subterms we view the set constants in a term as atomic expressions.

Now we define the reductions on abstract expressions.

Definition 3.13

1. Abstract reductions.

• Base reductions. These are also used for abstract terms (see Definition 1.3),

where set constants are treated like (atomic) expressions.

• The following new reduction rule, which is easily seen as correct on the

basis of our results on LR will also be used on abstract expression:

(seq-Fun) (seq x t)→ t if x is bound to Fun.

• (Abstract) extra transformations. For abstract terms, the transformations

from Definition 2.8 that are used for concrete expressions are also defined,

where set constants are treated like expressions.

However, since only abstract terms are acceptable as result, there is the

following obvious restriction: The non-⊥ set constants must not be copied,

i.e., the transformation (ucp) is not allowed for the binding x = u, where u is

a non-⊥ set constant.
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Fig. 4. Abstract reduction rules for ⊥.

2. Abstract normal-order reduction and abstract evaluation. This is also defined

accordingly. The rule (seq-Fun) is also permitted in abstract normal order

reductions. Note that an abstract normal order reduction sequence may get

stuck if a set constant is in a reduction context.

3. Abstract bot-reductions. Subterms of the following form can be replaced by ⊥
in any context:

(⊥ t), (seq ⊥ t), ((c
−→
t ) r), (x t) where x is bound to a constructor application

(c
−→
t ); (caseT t . . . ) if t = ⊥, or if the case-expression is “untyped”, i.e.,

t is an abstraction or it has a top-constructor that does not belong to type

T ; (caseT x . . . ) if x is bound to an abstraction or to a term t that has

a top-constructor that does not belong to type T , or x is bound to Fun;

(f t1 . . . ti−1 ⊥ ti+1 . . . tn), if f is strict in its ith argument for arity n.

There are further abstract -bot-reduction rules defined in figure 4.

For more discussion on bot-rules see Remark 3.39.

For an abstract term t, let simp(t) be the result of exhaustively applying

simplification rules and abstract bot-reduction rules.

Proposition 3.14

The application of simplification and bot-reduction rules terminates.

Proof

The simplification rules terminate, and do not increase the size of a term, and the

bot-reduction rules strictly reduce the size of a term. �

Later, for the construction of expressions for subcases, there will be the following

kinds of modifications on abstract expressions. For the exact conditions, see

Definition 3.27.

Definition 3.15

Let t be an abstract term.

1. uu-modification. A binding x = u in the ac-part is modified into x = u′ where

u′ is another set constant.

2. ucx-modification. Let u = {⊥} ∪ r1 ∪ . . . ∪ rk be the defining equation for a set

constant u. Then an ucx-modification consists in replacing a binding x = u

in the ac-part by one of the following: x = ⊥, or x = Fun, if rj = Fun for

some j = 1, . . . , n, or x = (c x1 . . . xar(c)), where xi, i = 1, . . . , ar(c) are new

ac-variables, and bindings xi = ui, i = 1, . . . , ar(c) are added, where ui are set
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constants. The condition is that the expression (c x1 . . . xar(c)) will correspond

to some rj in the right hand side of the definition of u. Note that the binding

x = (c x1 . . . xar(c)) is in the upper part after the modification. If there is a

new binding xi = ⊥, then a subsequent simplification will remove this binding

and replace all occurrences of xi by Ω.

3. Generalisation. (letrec Envac,Envup in C[s]) → (letrec x = �; Envac,

Envup in C[x]), where the new ac-environment is {x = �} ·∪Envac.

It is clear that reducing an abstract closed term according to Definition 3.13 or

modifying it according to Definition 3.15 results in an abstract closed expression.

Concretizations of Abstract Terms

We define concretizations s of abstract terms t as (concrete) LR terms, where the

relationship can be informally described as follows. The terms s, t are assumed to

be letrec-expressions. After eliminating the ac-part of the environment and after

replacing all occurrences of ⊥ in t by Ω, the terms s, t must be syntactically identical.

Moreover, for the bound terms in s, t corresponding to the free variables (which are

the ac-variables), roughly, a �c-relationship must hold.

For example, (letrec y = 2, x = 1 : x in y : x) is a concretization

of (letrec top =�, inf =, Inf in top : inf), where the variable renaming is

{x → inf , y → top}. The situation is in general a bit more complicated due to

sharing in the concretization.

Note that for an abstract term t, not every closed expression s with s �c s
′, where

s′ is constructed from t by appropriately replacing the set-constants, will qualify as

a concretization of t. The reason for the definition is that the reduction length must

be reflected in the concretizations. This is captured in the upper part. The ac-part

captures the condition that something must hold for all terms. Fortunately, this does

not destroy our argumentation on the reduction length.

Definition 3.16 (concretization)

Let t = (letrec Envt,ac,Envt,up in t′) be a closed abstract term, where Envt,ac =

{y1 = u1, . . . , yk = uk} and where ui are set constants.

Then the set of concretizations γ(t) is defined as follows: Let s = (letrec Envs in s′)

be a closed concrete term. Then s ∈ γ(t) iff the following holds

• There is a split of the environment Envs into three parts: a sharing part

Envs,sh, a part corresponding to the ac-part: Envs,ac, and an upper part

Envs,up, I.e., Envs = Envs,sh ·∪ Envs,ac ·∪ Envs,up with |LV(Envs,ac)| = k,

FV (Envs,sh ·∪Envs,ac) = ∅ and FV (Envs,up, s
′) ⊆ LV(Envs,ac).

• The expressions s1 := (letrec Envs,up in s′) and t1 := (letrec Envt,up in t′)

are equal up to a renaming of free variables, after all occurrences of ⊥ in

t1 are replaced by Ω. I.e., for LV(Envs,ac) = {x1, . . . , xk}, LV(t1) = {y1, . . . , yk}
appropriately ordered and for ρ defined by ρ(xi) = yi for i = 1, . . . , k, the

equation ρ(s1) = t1[Ω/⊥] holds.

• For every i: (letrec Envs,sh,Envs,ac in xi) ∈ γ(ui).
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Example 3.17

We want to show that s ∈ γ(t), where s = (letrec x1 = r, x2 = (repeat x1) in x2)

and t = (letrec inf = Inf in inf) and r is a closed expression. For convenience,

we omit the definition of repeat as repeat = λx.x : (repeat x) in the respective

upper environments.

The environments are: Envt,ac = {inf = Inf }, Envs,ac = {x2 = (repeat x1)},
Envs,sh = {x1 = r}. We only have to check that (letrec x1 = r, x2 =

(repeat x1) in x2) ∈ γ(Inf ). The correctness of reduction, extra transformations

and Proposition 2.20 yield

(letrec x1 = r, x2 = (repeat x1) in x2)

∼c (letrec x1 = r, x2 = ((letrec x = x1 in x : repeat x)) in x2)

∼c (letrec x1 = r, x = x1, x2 = (x : repeat x) in x2)

∼c (letrec x1 = r, x2 = x1 : repeat x1 in x2)

∼c (letrec x1 = r, x3 = repeat x1 in x1 : x3)

∼c r : (letrec x1 = r, x3 = repeat x1 in x3).

Now the membership check means to test r ∈ γ(�), which holds, and to check

(letrec x1 = r, x3 = repeat x1 in x3) ∈ γ(Inf ), which can now be proved using

coinduction.

Proposition 3.18

Let t be an abstract term, s ∈ γ(t), t → t′ by a bot-reduction as defined in

Definition 3.13, and s⇓. Then there exists an s′ with s′ ∈ γ(t′), s′⇓ and rl��(s) =

rl��(s′).

Proof

This follows from Proposition C.4 in the appendix, where for the application of the

proposition, the set constant ⊥ has to be replaced by the bot-term Ω. �

We define strict reductions for abstract terms.

Definition 3.19 (abstract sp-reduction)

Let t = (letrec Envac,Envup in t′) be an abstract term. Then a subterm r in

Envup or t′ is called strict, iff for all concretizations s ∈ γ(t), s[Ω/r] ∼c Ω. This is

well-defined, since the position of r in s can be uniquely determined.

A reduction t → t′, which is a (case), (seq), (lbeta), (cp), or (seq-Fun) reduction

where the inner redex is a strict subexpression in a surface context, is called an

abstract strict position reduction (abstract sp-reduction).

It is obvious that the following sufficient condition holds

Lemma 3.20

Let t = (letrec Envac,Envup in t′) be an abstract term, let r be a subexpression in

Envup or t′, and let t′′, r′′ be constructed from (letrec Envup in t′) and r, respectively,

by replacing all ⊥-occurrences by Ω. If r′′ is a strict subterm in t′′, then r is strict

in t.

In subsection 3.3 we will exhibit more sufficient conditions for strictness in abstract

terms.
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Subset Relationship for Abstract Terms

The subset relation w.r.t. concretization between two abstract terms is defined as

follows.

Definition 3.21

Let t1, t2 be two closed abstract terms.

Then t1 ⊆γ t2 iff γ(t1) ⊆ γ(t2).

A sufficient condition for ⊆γ is given in the following lemma.

Lemma 3.22

Let t1 = (letrec Env1 in t′1) and t2 = (letrec Env2 in t′2) be two closed abstract

terms. Then t1 ⊆γ t2 if the following holds.

• The environment Env1 is split into Env1 = Env1,ac ·∪Env1,up, where Env1,ac is

the ac-part which is of the form {x1,1 = u1,1, . . . , x1,k = u1,k}.
• The environment Env2 is split into Env2 = Env2,ac ·∪Env2,up, where Env2,ac is

the ac-part, which is of the form {x2,1 = u2,1, . . . , x2,k = u2,k}.
• For r1 = (letrec Env1,up in t′1) and r2 = (letrec Env2,up in t′2), the equation

ρ(r1) = r2 must hold, where ρ(x1,i) = x2,i for i = 1, . . . , k.

• For every i: γ(u1,i) ⊆ γ(u2,i).

Proof

The conditions can directly be matched with the conditions in Definition 3.16. �

We do not give an algorithm for detecting γ(u1) ⊆ γ(u2) based on the defining rules,

since this is beyond the scope of this paper, however, the relation is decidable. In

(Schmidt-Schauß et al. 2005) it is shown that the decision problem is DEXPTIME-

complete. In examples we will only use the relations ⊥ ⊆ γ(u) and γ(u) ⊆ γ(�).

3.2 Inheritance of Concretizations

In this section, we show that for every concretization of an abstract term there

exists a corresponding concretization after abstract reduction, abstract sp-reduction

or applying some extra transformation.

Lemma 3.23

Let t be an abstract expression s ∈ γ(t), s⇓ and t→ t′, where the abstract reduction

(see Definition 3.13) is within the upper part. Then there is some s′ ∈ γ(t′), such that

s′⇓, s ∼c s′ and rl��(s) � rl��(s′).

Proof

Let s ∈ γ(t) with s⇓. We analyze the following cases.

1. Let the reduction be an abstract base reduction, or a non-exceptional abstract

extra transformation, i.e. not a (gc)-reduction removing bindings of set-

constants. If the reduction is in the upper part of t, then the same reduction

is possible on s giving s′. Since the respective effects of the reductions are the

same, and since the expressions in s′ at the position of the set constants are
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the same as before the reduction, we see that s′ ∈ γ(t′). Theorems 2.4 and 2.9

show that contextual equivalence holds, and Theorem 2.14 shows the claim on

the reduction length.

2. Let the reduction be a (gc) that eliminates bindings of set constants.

Then we cannot use (gc) on s in every case, hence other arguments are

required. We show that s ∈ γ(t′). Let t = (letrec Envt,ac,Envt,up in t0), s =

(letrec Envs,sh,Envs,ac,Envs,up in s0), and let Env′t,ac be the reduced

environment. For convenience assume that LV(Envt,ac) = LV(Envs,ac) has

the bindings xi = ui, for i = 1, . . . , n, and the name correspondence is

according to the definition of concretization. Let Envs,ac = Env′s,ac ·∪Env′′s,ac
with LV(Env′s,ac) = LV(Env′t,ac), and Env′s,sh = Envs,sh ·∪Env′′s,ac. The condition

FV (Envs,up, s0) ⊆ LV(Env′s,ac) holds, since (gc) is applicable to t.

From xi ∈ LV(Env′s,ac) for all i, and from s ∈ γ(t) we derive

(letrec Envs,sh,Env′s,ac,Env′′s,ac in xi) ∈ γ(ui), hence s ∈ γ(t′).
3. Let the reduction be a (seq-Fun) reduction. It is sufficient to consider the case:

t := (letrec x = Fun, . . . in C[(seq x r)]) → (letrec x = Fun, . . . in C[r]).

Let s ∈ γ(t). Then s = (letrec Envs,sh,Envs,ac,Envs,up in C[(seq x r)]),

where x ∈ LV(Envs,ac), and (letrec Envs,sh,Envs,ac in x) ∈ γ(Fun).

The definition of γ(Fun) implies that there is a reduction sequence of

(letrec Envs,sh,Envs,ac in x) to a FWHNF. The same reductions can be made

on s giving s′′ = (letrec Env′′s,sh,Env′′s,ac,Envs,up in C[(seq x r)]), such that x is

bound to an abstraction in Env′′s,ac. Moreover, s ∼c s′′, and rl��(s) � rl��(s′′).

Now a (seq)-reduction is possible: s′′ = (letrec . . . in C[(seq x r)]) →
(letrec . . . in C[r]) =: s′. We have rl��(s′′) � rl��(s′). To check the conditions

for s′ ∈ γ(t′), the only missing part is (letrec Env′′s,sh,Env′′s,ac in xi) ∈ γ(ui) for

other set constants. This follows from Theorem 2.4, and since γ(ui) is closed

w.r.t. ∼c. We obtain s′ ∈ γ(t′). �

Proposition 3.24

Let t be an abstract expression. If t→ t′ by an abstract sp-reduction (see Definition

3.19), but not a (cp), and s ∈ γ(t), then there is an expression s′ ∈ γ(t′) with s ∼c s′
and rl��(s) > rl��(s′).

Proof

We have only to argue that there is an expression s′ ∈ γ(t′) with rl��(s) > rl��(s′).

Using Proposition 2.15 and since inner redexes are in surface contexts, the proof

of Lemma 3.23 shows the claim for abstract sp-reductions that are not (cp) and

not (seq-Fun) reductions. In the case of a (seq-Fun) reduction, we have to show

that the redex (seq x r) in s′′ remains a strict subterm after the reduction sequence

s
∗−→ s′′. This holds, since there are no modifications in Envup and C[(seq x r)]. Now

Proposition 2.15 shows the claim on the length. �

Lemma 3.25

Let t = (letrec Envt,ac,Envt,up in tin) be an abstract expression, s ∈ γ(t) with s⇓,
let x1 = u1, . . . , xN = uN be the ac-bindings, xi = ui be a fixed binding in Envt,ac
and let ui = {⊥} ∪ r1 ∪ . . . ∪ rk be the defining equation for ui. Let tj for j = 1, . . . , k
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be the ucx-modification (see Definition 3.15) according to rj . Then there is some

j ∈ {0, . . . , k} and an s′ ∈ γ(tj), such that s ∼c s′ and rl��(s) � rl��(s′).

Proof

Let s ∈ γ(t). Then s can be represented as s := (letrec Envs,sh,Envs,ac,Envs,up in sin).

With s := (letrec Envs,sh,Envs,ac in xi), we have in particular s ∈ γ(ui).
If s⇑, then we let j = 0, s′ := s, and we have s′ ∈ γ(t0). Assume s⇓. Then there

is a normal-order reduction of s to a WHNF. If it is a FWHNF, then the same

reductions as for s⇓ can be made on s with the exception of the last (cp), resulting

in s′ = (letrec Env′s,sh,Env′s,ac,Envs,up in sin). We have s ∼c s′ and rl��(s) � rl��(s′)

by Theorems 2.4 and 2.14. It is obvious that r1 = Fun, and furthermore s′ ∈ γ(t1).
If the WHNF of s is a CWHNF, then let c be the corresponding constructor

of the value v in the CWHNF. The normal order reduction reduces s to s′′ :=

(letrec Env′s,sh,Env′s,ac in xi), such that xi is bound to an expression (c a1 . . . aar(c)).

The same transformations can be performed for s and produce an expression

s′′ := (letrec Env′s,sh,Env′s,ac,Envs,up in sin) with s ∼c s′′ and rl��(s) � rl��(s′′) by

Theorems 2.4 and 2.14. There is a reduction sequence s′′
(cpcx,cpx,gc)∗

−−−−−−−→ s′, where the

environment contains the bindings xi = (c xi,1 . . . xi,ar(c)), xi,1 = a1, . . . , xi,ar(c) = ai,ar(c).

The same reductions performed for s′′ yield: s′′
(cpcx,cpx,gc)∗

−−−−−−−→ s′, where s ∼c s′ and

rl��(s′′) = rl��(s′) by Theorem 2.14.

It remains to show that s′ ∈ γ(tj) for some j. For any ac-variable xh �= xi, the

membership (letrec Env′s,sh,Env′s,ac in xh) ∈ γ(uh) holds also in s′, since (cpcx),

(cpx), (gc) are correct program transformations. Since γ(ui) = {⊥} ∪
⋃
h=1,... ,k ψ

∗(rh),

there is some j such that s′ ∈ {(c b1 . . . bar(c)) | bh ∈ γ(ui,h), h = 1, . . . , ar(c)}. For the

thus chosen tj , we show that s′ ∈ γ(tj):
The modifications of s to generate s′ are in the environments Envs,sh,Envs,ac,

with the exception of the bindings xi = (c xi,1 . . . xi,ar(c)), xi,1 = a1, . . . , xi,ar(c) = ai,ar(c),

where the first binding moves into the upper part, and the other bindings move into

the ac-part of s′. This corresponds to the environment of tj , hence the renaming

condition is satisfied. The conditions (letrec Env′s,sh,Env′s,ac in xi,h) ∈ γ(ui,h) for

h = 1, . . . , ar(c) follow from Corollary 2.21, and since we have only used correct

program transformations. The membership (letrec Envs,sh,Envs,ac in xh) ∈ γ(uh)
for h �= i follows since only correct program transformations are used. �

3.3 The Algorithm SAL

We present the algorithm SAL (strictness analyzer for a lazy functional language),

which is a reformulation of the algorithm Nöcker implemented for Clean. The core

is a method to detect nontermination of concretizations of abstract terms.

Intuitively, strictness of a function f is detected if the normal order reduction

of (f ⊥) in the abstract language can only yield ⊥ or nontermination. This may

be represented by the set constant ⊥, or by a proof that normal order reduction

sequences will not successfully terminate. The calculus is also applicable for detecting

more general forms of strictness. For example strictness in the ith argument of an

abstraction f can be detected by feeding (f � · · · � ⊥ � · · · �) into the analyzer. By



Safety of Nöcker’s strictness analysis 537

providing other set constants apart from � and ⊥, even more complicated analyzes

are possible like a test for tail-strictness, or strictness under certain conditions.

Reduction of expressions (caseT � . . . ) will require a case analysis, which is in

(Nöcker 1993) as a propagation of unions, whereas our calculus uses the equivalent

method of generating a directed graph, in which the union of cases is represented

by forking.

Definition 3.26 (SAL)

The data structure for the algorithm SAL is a directed graph, where the nodes are

labeled by abstract terms that are simplified. The edges may carry specific labels.

The algorithm SAL starts with a directed graph consisting only of one node labeled

with the simplified initial abstract term.

Given a directed graph D, a new directed graph D′ is constructed by using

some rule from definition 3.27 below. For every node added, we assume that the

simplification rules (i.e. (lwas), (llet), (gc), (cpax)) and the bot-reduction rules (see

Figure 4 and Definition 3.13) have been applied exhaustively.

The algorithm stops successfully, if all leaves in the graph are labeled with ⊥, i.e.

if every non-⊥ node has an outgoing edge.

Note that the rules only generate cycles in the graph with at least one edge in the

cycle being labeled.

The labels at edges in the directed graph indicate that the reductions lengths of

the concretizations along this edge can be strictly decreased.

Definition 3.27 (Rules of SAL)

The nondeterministic construction rules of SAL are given. The subsume-rules only

add edges to the graph, whereas all other rules focus a given leaf L, add one or

more new leaves L1, . . . , Ln, and add edges from L to every new leaf. According to

the conditions given in the rules, a label may be added to the new edges.

nred Let a leaf L be labeled with t, and let t
a−→ t′ be an abstract sp-reduction. Let

t′′ := simp(t′). Then generate a new node L′ labeled with t′′ and add a directed

edge from L to L′. If a is (case), (lbeta), (seq), or (seq-Fun), then the edge is to be

labeled with the kind of reduction.

ired Let a leaf L be labeled with t and let t
a−→ t′ by a reduction that is not an

abstract sp-reduction, which may be a (case), (seq), (lbeta), (cp), or (seq-Fun). Let

t′′ := simp(t′). Then generate a new node L′ labeled with t′′ and add an unlabeled

directed edge from L to L′.

scsplit Let a leaf L be labeled with t, and assume t has an occurrence of a proper

set constant u. Let the defining equation for the set constant u have the right hand

side {⊥} ∪ r1 ∪ . . . ∪ rk . Then generate new expressions tj , j = 0, . . . , k from t, as

follows.

• For j = 0, let t0 be generated from t by replacing u by ⊥ in the ac-environment.

• If rj = Fun, then tj is generated by replacing u by Fun in the ac-environment.

• If rj = (c uj,1 . . . uj,ar(c)), then let tj be the expression generated from t by

replacing u by (c x1 . . . xar(cj )), where xi, i = 1, . . . , ar(cj) are new variables. For

xi, i = 1, . . . , ar(c) add xi = uj,i to the ac-environment.
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For j = 0, . . . , k first simplify tj , i.e. let t′j := simp(tj) and then construct new

nodes Lj with label t′j and add directed, unlabeled edges from L to Lj for all j.

subsume Let L be a leaf with term label t1 �= ⊥, and let N �= L be a node with term

label t2. For the purposes of the subsume-rules let
ucp,simp,∗
←−−−−→ be a transformation

consisting of, perhaps several, (ucp)-transformations, simplifications, or their

reverses. If there are abstract terms t′1, t
′
2 with t1

ucp,simp,∗
←−−−−→ t′1, t2

ucp,simp,∗
←−−−−→ t′2

such that t′1 ⊆γ t′2 holds, then add a directed unlabeled edge from L to N under

the following condition: After completion of this operation, the graph does not

contain a cycle of unlabeled directed edges.

subsume2 Let L be a leaf with term label t1 where ⊥ �= t1, and let N be a node

with N �= L with term label t2. Let there be abstract terms t′1, t
′′
1 , t
′
2 with t′1 ⊆γ t′2,

such that the following conditions hold:

1. t1
ucp,simp,∗
←−−−−→ t′′1 ≡ (letrec Env1, x = tx, x1 = r1 in x1), such that tx is a strict

and deep subterm in t′′1; this implies that the term r1 is an application, a

seq-expression or a case-expression; and

2. (letrec Env, x = tx in x)
ucp,simp,∗
←−−−−→ t′1; and

3. t2
ucp,simp,∗
←−−−−→ t′2 = (letrec Env2, x = tx in x).

Then add a directed edge from L to N labeled with (subsume2).

generalizeFun Let a leaf L be labeled with t, and let t ≡ S[(x r)], where S is a

surface context, and x is bound to Fun. Then apply the rule generalize such that

t′ = S[top], where top is an ac-variable bound to �.

generalize Given a leaf L with label t, construct a new term t′ as follows: add a

binding top = � to the top letrec-environment, where top is a new ac-variable.

Select a subterm of t on a surface position and in the upper part of t and replace

this subterm by the variable top. Add an unlabeled directed edge from L to the

node L′ labeled with t′.

Note that a subsume-edge may end in any node. It is not necessary that it is

a predecessor of the leaf. Note also that in order to make ⊆γ effective in the rule

subsume, the criterion in Lemma 3.22 can be applied. The subsume rules can be

made effective by bounding the number of applications of (ucp).

The usual strategy for the construction of the directed graph is to apply the

following rules ordered by their priority.

• subsume-rules.

• nred, i.e. abstract sp-reduction.

• scsplit only if for the splitted set constant u, the corresponding variable x

from the binding x = u has a strict occurrences as a subterm in t.

• generalizeFun if the generalized application is a strict subterm.

• The other rules.

SAL has the following sources of nondeterminism.

• The different possibilities for applying reduction.

• The different possibilities for applying a split.
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Correspondence Between Concrete and Abstract Terms

The following theorem may well be the central one in the correctness proof of SAL,

though it is rather technical. It claims, given a terminating fixed concretization s of a

node, that we will always find a directed edge to some successor node, such that this

successor node has a concretization s′ and the reduction measure does not increase,

and if the edge is labeled, then we can find an s′ with a strictly smaller measure.

Theorem 3.28

Let t be a closed abstract term, such that s ∈ γ(t) and s⇓.

1. (nred) Let t
a−→ t′ be an abstract sp-reduction with a ∈ {(case), (seq), (lbeta),

(cp), (seq-Fun)}. Then there is a term s′ ∈ γ(t′), such that s
a−→ s′. If a ∈ {(case),

(seq), (lbeta), (seq-Fun)} then rl��(s) > rl��(s′) and if a = (cp) then rl��(s) �
rl��(s′).

2. (ired) Let t
a−→ t′, where

a−→ is a base-reduction, an extra reduction, or a

simplification. Then there is some s′ ∈ γ(t′) with s ∼c s′ and rl��(s) � rl��(s′).

3. Let the rule (scsplit) be applied to the term t resulting in the sons t0, t1, . . . , tk .

Then there exists a j ∈ {0, 1, . . . , k}, and an s′ ∈ γ(tj) such that s ∼c s′, and

rl��(s) � rl��(s′).

4. (generalize) If t′ is the result of a generalization (generalize or

generalizeFun) applied to t, then there is a concretization s′ ∈ γ(t′) with

s′ ∼c s and rl��(s) = rl��(s′).

Proof

1. This follows from Proposition 3.24 and Lemma 3.23.

2. This follows from Lemma 3.23 and Proposition 3.18.

3. In the case of an scsplit, this follows from Lemma 3.25.

4. Let t′ be the result of a generalization applied to t. Let s ∈ γ(t) where

s = (letrec Env, y = S[s0] in s1) and S[] indicates the position of the

generalization (the other case can be treated similarly). Then a reverse (ucp)

yields s′ = (letrec Env, y = S[z], z = s0 in s1) where s ∼c s′. Generalization

means for t to have a binding z = top, top = � in t′. Since � is maximal

by Lemma 3.8 we obtain s′ ∈ γ(t′). From Theorem 2.14 we derive rl��(s) =

rl��(s′). �

Proposition 3.29

Let (N1, N2) be an edge introduced by one of the subsume-rules. Let t1 be the term

at N1 and t2 be the term at N2. Let s1 ∈ γ(t1) with s1⇓. Then the following holds.

1. If the edge is generated by the rule (subsume), then there some s2 ∈ γ(t2) with

s2⇓ and rl��(s1) = rl��(s2).

2. If the edge is generated by the rule (subsume2), then there is a concretization

s2 ∈ γ(t2) with s2⇓ and rl��(s2) < rl��(s1).

Proof

Assume the rule (subsume) has been applied. There is some s′1 ∈ γ(t′1), where

s′1
ucp,simp,∗
←−−−−→ s1 and t1

ucp,simp,∗
←−−−−→ t′1. There is some t′2

ucp,simp,∗
←−−−−→ t2, with t′1 ⊆γ t′2, hence
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s′1 ∈ γ(t′2). There is some s2 ∈ γ(t2) with s′1
ucp,simp,∗
←−−−−→ s2. Theorem 2.14 implies that

rl��(s1) = rl��(s′1) = rl��(s2).

Assume, the rule (subsume2) has been applied. From s1 ∈ γ(t1), s1⇓ and

t1
ucp,simp,∗
←−−−−→ t′′1, we obtain a concretization s′′1 ∈ γ(t′′1) with s′′1⇓ and rl��(s′′1) = rl��(s1)

applying Theorem 2.14. Proposition 2.19 implies that by omitting the binding x1 = r1
in s′′1, we obtain a concretization s′1 ∈ γ(t′1) with s′1⇓ and rl��(s′1) < rl��(s′′1). From

s′1 ∈ γ(t′2), t
′
1 ⊆γ t′2 and t′2

ucp,simp,∗
←−−−−→ t2, we obtain that there is a concretization

s2
ucp,simp,∗
←−−−−→ s′1 with s2 ∈ γ(t2) and rl��(s′1) = rl��(s2). �

Corollary 3.30

Let N,N ′ be two nodes in a graph generated by SAL, such that (N,N ′) is an edge.

Let t, t′ be the corresponding abstract terms. Let s ∈ γ(t) with s⇓ be a concretization.

1. If the edge is labeled, then there exists s′ ∈ γ(t′) with rl��(s) > rl��(s′).

2. If the edge is not labeled and was generated using nred, ired, generalizeFun

or generalize, then there is a concretization s′ ∈ γ(t′) with rl��(s) � rl��(s′).

3. Let the sons N0, N1 . . . , Nk be generated using scsplit. Then there is a Nj with

term label tj , and a concretization s′ ∈ γ(tj) with s ∼c s′ and rl��(s) � rl��(s′).

Exploiting Already Known Strictness Information

If we already have strictness information available. e.g. after several successful runs

of the strictness analyzer SAL and using Corollaries 3.33 and 3.34, the steps nred

and subsume2 can be made more effective and applicable in more situations:

Suppose there is already a finite family of finite sets of concrete closed expressions

(functions) SF n,i for i, n ∈ � with 1 � i � n, such that every expression f ∈ SF n,i is

known to be strict in its ith argument for arity n. These functions are assumed to be

defined via a binding x = f in the top level letrec, where the variable x is in the

upper part.

Then the detection of strict positions can additionally use the rule:

if f t1 . . . ti−1 ti ti+1 . . . tn is a strict subexpression and f is strict in its ith argument

for arity n, then also ti is strict subexpression, which is formulated in the following

lemma. Note that this does not directly follow from the results of SAL, since the

terms ti may be open terms.

Proposition 3.31

If f is strict in its ith argument for arity n, and t0 := (f t1 . . . ti−1 ti ti+1 . . . tn) is a

strict subexpression of t in a surface context, then ti is also a strict subexpression

of t.

Proof

Follows from Corollary 2.23. �

The algorithm SAL has several places where it can exploit these kinds of

computations: For the detection of abstract sp-reductions, and for the subsume2-

rule.
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3.4 Correctness of Strictness Detection

Main Theorems

Theorem 3.32

Let t be a closed abstract term. If t leads to successful termination using SAL, then

s ∈ γ(t)⇒ s⇑, i.e. s ∼c Ω.

Proof

Assume that there is a closed concrete term s ∈ γ(t) with s⇓. Theorem 3.28 and

Corollary 3.30 show that for every node N: if tN at N has a concretization sN with

WHNF, then there is a direct successor node N ′ with abstract term tN ′ , sN ′ ∈ γ(tN ′ )
and rl��(sN) � rl��(sN ′ ). If the edge is labeled, then we have rl��(sN) > rl��(sN ′ )

by Corollary 3.30 and Proposition 3.29. It is not possible that s has a successor in

a leaf labeled ⊥. Among the nodes that have a terminating concretization we select

a node Nmin with term label tN,min that has the minimal length rl��(sN,min) of all

terminating concretization sN,min ∈ γ(tN,min). Since sN,min⇓, there is an outgoing edge

of Nmin to a node Nmin,2. Minimality shows that the corresponding edge cannot be

labeled. The same holds for Nmin,2, such that we find a path Nmin, Nmin,2, Nmin,3, . . .

of nodes connected with unlabeled edges. However, since the graph is finite, this

enforces a cycle with unlabeled edges, which does not exist due to the construction.

This is a contradiction, and we have thus shown that for all s ∈ γ(t) : s⇑. �

Corollary 3.33

Let f be a closed expression. If f ⊥ leads to successful termination using SAL, then

f is strict in its argument.

Proof

The term s := (f Ω) is a concretization of (f ⊥). Theorem 3.32 implies that

(f Ω) ∼c Ω. Hence by the definition of strictness, f is strict in its argument. �

Corollary 3.34

Let f be a closed LR-expression. If the term

t := letrec top1 = �, . . . , topn = �
in (f top1 . . . topi−1 ⊥ topi+1 . . . topn)

leads to successful termination using SAL, then f is strict in its ith argument for

arity n.

Proof

The definition of strictness requires that for every closed expression tj , j = 1, . . . , n:

f t1 . . . ti−1 Ω ti+1 . . . tn ∼c Ω. We have

f t1 . . . ti−1 Ω ti+1 . . . tn
∼c letrec x1 = t1, . . . , xi−1 = ti−1, xi+1 = ti+1, . . . , xn = tn

in f x1 . . . xi−1 Ω xi+1 . . . xn ,

=: s.

This follows using correctness of (ucp) (see Theorem 2.9). We also have s ∈ γ(t) by

Lemma 3.8. Theorem 3.32 implies that s ∼c Ω. By the definition of strictness, we

obtain that f is strict in its ith argument for arity n. �
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Remark 3.35

Discussion: A difference between Nöcker’s subsumption rule and the subsumption

rule in SAL is that in Nöcker’s algorithm, it is always assumed that different

occurrences of set constants are independent. Translated into SAL this means

that ac-variables occur at most once in the upper part. This means that Nöcker’s

subsumption rule appears to be stronger, since set constants in expressions can be

subsumed, regardless of sharing. However, this can easily be simulated by SAL

by applying the rule generalize for equal �’s, and by adding a rule similar to

generalize that makes all the occurrences of ac-variables distinct.

Interestingly, adding a linearized subsumption rule to SAL would make SAL

incorrect, an example can easily be constructed on the basis of Example 3.43.

Presumably, a linearized subsumption rule could also be used in SAL if the

subsumption is only permitted for ancestors w.r.t. abstract reduction. The argument

for justifying this rule is that the graph can be further expanded such that the

linearization will occur in a deeper part of the graph.

Correctness of Strictness Optimization

We show that strictness optimization in LR is correct.

Definition 3.36 (strictness evaluation)

Let t be an LR term. A reduction sequence is a strictness evaluation, iff for every

reduction step t → t′ the following holds: t = S[s], t′ = S[s′], where S is a surface

context, s is a strict subexpression of t, s → s′ is a base reduction, and the inner

redex of the reduction is also a strict subexpression of t in a surface context.

Theorem 3.37 (correctness of strictness evaluation)

Let t be a closed expression. Then the following holds.

1. If t has an evaluation, then every strictness evaluation terminates.

2. If some strictness evaluation of t terminates with a WHNF, then t⇓.
Proof

Theorem 2.14 shows that base reductions do not increase the measure rl��(·) during

reduction. Proposition 2.7 shows that there is no infinite sequence consisting only

of (lll)-reductions. Proposition 2.15 shows that a reduction that is not an (lll)- and

not a (cp)-reduction, and where the inner redex is a strict subexpression, strictly

decreases rl��(·). The missing argument is that there is no infinite reduction that

consists only of (cp)- and (lll)-reductions, where the inner redex is in a surface

context. This holds, since every such (cp)-reduction strictly decreases the number of

occurrences of variables that are in a surface context, and (lll)-reductions do not

change this measure. That t⇓ holds, if there is some strict evaluation of t, follows

from Theorem 2.4. �

Corollary 3.38

Let f1, . . . , fn be expressions, such that for j = 1, . . . , n the expression fj is strict in

its ithj argument for arity nj . Let t be an expression with a subexpression (fj t1 . . . tnj ),

that is itself strict in the top term t. Then it is permitted to first locally evaluate the

argument tij . Applying this strategy throughout the reduction will terminate iff t⇓.
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Proof

The claim follows from Lemma D.3 since the strict subterms remain strict ones after

a base reduction, and thus the strict evaluation can proceed locally evaluating the

respective argument, and other strict arguments of strict subexpressions fj t1 . . . tnj
also remain strict in the top term. �

As a remark on the lengths of the evaluation and strict evaluation, there is no

essential difference: the number of (case)- and (lbeta)- reduction is the same. The

optimization effect of strictness optimizations shows up only at the level of an

abstract machine.

Remark 3.39

Note that the bot-reduction rules will also be necessary in SAL in our formulation,

even if SAL starts with a (polymorphically) well-typed term. There are two different

types of uses. The first one means eliminating in an expression (case Tx...) the

untyped constructor instantiations for x, which is done immediately, and without

loss of efficiency, if x is in a reduction context. The other use is that after several

steps, the term at the nodes may be no longer well typed. This happens, e.g., since

constructors are not typed in our formulation and that in � : � the second � might

be instantiated with a nonlist.

3.5 Examples

We demonstrate the algorithm SAL for some nontrivial functions and show the

generated directed graphs. However, for readability, the graphs differ from the SAL

graphs in the following respects. The top letrec environment is not shown, instead

the ac-variables are written using set-variables directly. Not all reductions are shown,

e.g. sometimes (cp)-reductions are not shown. Case distinctions for � in the rule

scsplit are only depicted for the list-constructors.

Example 3.40

We show in figure 5 that the tail-recursive length function (lenr) is strict in its second

argument:

letrec len = λlst .lenr lst 0

lenr = λlst .λs. caselst lst

(Nil→ s)

(x : xs→ (letrec z = 1 + s in lenr xs z))

in . . . .

This can be shown by running SAL on the expression (letrec top =

� in (lenr top ⊥)), including the definition of the functions in the environment. In

the first diagram of Figure 5, we write � for a variable that is bound to �.

Example 3.41

We show that the function lenr is tail-strict in the first argument in Figure 5: For

the definition of Inf and the properties see the definition in subsection 3.1 and



544 M. Schmidt-Schauss et al.

Fig. 5. SAL-graphs of Examples 3.40 and 3.41.

Lemma 3.8. Here we use the fact—which is, however, not proved in this paper—that

a 2-ary function f is tail-strict in the first argument, if (f Inf �) has no terminating

concretization.

Example 3.42

We show that the function sum is tail-strict in its argument.

Let sum be defined in the environment by

sum = λxs .caselst xs (Nil→ 0) (y : ys → y + (sum ys)).

The resulting graph is

sum Inf

lbeta ��
caselst Inf

(Nil→ 0) (y : ys→ y + (sum ys))

�����������������
��

⊥ caselst (� : Inf )
(Nil→ 0) (y : ys→ y + (sum ys))

case
��

�+ (sum Inf )

subsume2

��

Here the subterm criterion (subsume2) was used, and strictness of + in both

arguments. Note that the simplification step in the subsume rule is used.
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Example 3.43

We want to show that sharing of abstract constants is sometimes a (slight)

improvement of SAL over Nöcker’s method as described in (Nöcker 1993):

f = λx.λz.g x x z

g = λx.λy.λz. if x then (if y then z else False)

else (if y then False else z).

Checking whether f is strict in its second argument means to check (letrec top =

�, . . . in f top ⊥).

Reducing this by (cp), (lbeta) yields (letrec top = �, . . . in g top top ⊥).

Now the effect is that the variable is the same, and � is not copied. The expression

if top then (if top then ⊥ else False)

else (if top then False else ⊥)

yields for the True case

if True then (if True then ⊥ else False)

else (if True then False else ⊥),

which evaluates to ⊥. The case False yields also ⊥. Hence SAL will detect strictness

in the second argument of f.

As published, Nöcker’s method copies the � and the information that it is the

same variable is lost. Hence it is unable to detect this strictness.

Example 3.44

Further set constants from Nöcker Nöcker (1990) can also be used in the analysis,

slightly adapted:

Topmem = {⊥} ∪ Nil ∪ (� : Topmem)

Botelem = {⊥} ∪ (� : Botelem) ∪ (⊥ : Topmem).

As a complicated example, we show how SAL shows that (reverse (concat

Botelem)) is nonterminating, which indicates that in the expression (reverse

(concat xs)), the elements of the list xs can be evaluated first. The definitions

are

reverse = λxs .rev xs Nil

rev = λxs .λst .caselst xs (Nil→ st) (y : ys→ rev ys (y : st))

concat = λxs .foldr (++) Nil xs

foldr = λf.λe.λxs .caselst xs (Nil→ e) (y : ys → f y (foldr f e ys)).

We assume that we already know that the append-operator (++) is strict in its

first argument. The presentation below will not show the letrec-structure, and

the (++)-reductions will be done in one step. In step 2, there is a generalization,

which has to be guessed. Also, the application of rev with second argument �,

will be immediately followed by a generalization to deshare the two �s for the

Stack. The standard strategy will not find a subsumption possibility, since at the

stack position, the successive expressions are: Nil,� : Nil,� : � : Nil. One
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possibility of a directed graph successfully generated by SAL in linear notation is as

follows:

1. reverse (concat Botelem)

2. rev (concat Botelem) Nil

Here we add a generalization for the stack

3. rev (concat Botelem) �
4. (caselst (concat Botelem) (Nil→ �) (y : ys→ (rev ys (y : �)))

5. (caselst (foldr (++) Nil Botelem)

(Nil→ �) (y : ys→ (rev ys (y : �))))

6. (caselst (caselst Botelem

(Nil→ Nil) (y : ys→ y ++ (foldr (++) Nil ys)))

(Nil→ �) (y : ys→ (rev ys (y : �))))

Now Botelem will be splitted:

7.A simp((caselst (caselst ⊥ . . . ) . . . )) = ⊥
7.B.1 (caselst (caselst (� : Botelem) (Nil→ Nil) . . . )

7.B.2 (caselst (� ++ (foldr (++) Nil Botelem))

(Nil→ �) (y : ys→ (rev ys (y : �))))

� will be splitted into ⊥, Nil,� : � omitting untyped cases

7.B.2.A simp(caselst ⊥ . . . ) = ⊥
7.B.2.B (caselst (foldr (++) Nil Botelem)

(Nil→ �) (y : ys→ (rev ys (y : �))))

Subsume-Link back to 5.

7.B.2.C.1 (caselst (� : (� ++ (foldr (++) Nil Botelem)))

(Nil→ �) (y : ys→ (rev ys (y : �))))

7.B.2.C.2 (rev (� ++ (foldr (++) Nil Botelem)) (� : �))

7.B.2.C.3 (caselst (� ++ (foldr (++) Nil Botelem))

(Nil→ (� : �)) (y : ys→ (rev ys (y : � : �))))

Two generalisation steps for � : �
7.B.2.C.4 (caselst (� ++ (foldr (++) Nil Botelem))

(Nil→ �) (y : ys→ (rev ys (y : �))))

Subsume-Link to 7.B.2

7.C.1 (caselst (caselst (⊥ : Topmem)

(Nil→ Nil) (y : ys→ y ++ (foldr (++) Nil ys)))

(Nil→ �) (y : ys→ (rev ys (y : �))))

7.C.2 (caselst (⊥ ++ (foldr (++) Nil Topmem))

(Nil→ �) (y : ys→ (rev ys (y : �))))

7.C.3 (since ++ is strict in its first argument)

simp(caselst ⊥(Nil→ �) (y : ys→ (rev ys (y : �)))) = ⊥

The corresponding final graph looks as follows, where edges that contain labeled

nred-steps are denoted with double arrows:
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1.
��

2.
��

3.
��

4.
��

5.
��

6.

������������������������������

�� �������������������������������

7.A 7.B.1
��

7.C.1
��

7.B.2

������������
�� ������������ 7.C.2

��
7.B.2.A 7.B.2.B

		

7.B.2.C.1
��

7.C.3

7.B.2.C.2
��

7.B.2.C.3
��

7.B.2.C.4





4 Related Work

Strictness analysis has been approached from many different perspectives. These

can roughly be characterized as based on abstract interpretation (e.g. Burn et al.

(1985); Abramsky & Hankin (1987); Burn (1991); Cousot & Cousot (1977); Mycroft

(1981); Wadler (1987)), projections (e.g. Wadler & Hughes (1987); Paterson (1996);

Launchbury & Peyton Jones (1995)), nonstandard type systems (e.g. Kuo & Mishra

(1989); Jensen (1998); Gasser et al. (1998); Coppo et al. (2002)) or abstract reduction

(Nöcker 1992). For a detailed comparison of many of these approaches we refer to

(Pape 1998, 2000).

Moran and Sands in (Moran & Sands 1999) developed the tool of improvement

theory for the detailed analysis of reduction lengths in a lambda calculus with

letrec, case and constructors. Unfortunately their methods and results could not

be used here, since only certain essential normal order reduction steps are relevant

and counting the number of letrec-shufflings is not appropriate for the proof of

correctness of Nöcker’s strictness analysis.

Contextual equivalence is also used to analyze equality and transformations in

strict functional languages (Felleisen & Hieb 1992).

The methods in (Clark et al. 2000) (see also Ariola & Arvind (1995)) used

a supercombinator calculus with letrec and a variant of modeling of case-

constructor-primitives. The absence of abstractions allowed them to view expressions

as graphs, and to arrive at a nice and easy-to-obtain confluence result for graph

reduction. However, the papers of (Ariola & Klop 1997) and (Ariola & Blom 2002)

provide examples showing that a lambda calculus using letrec, abstractions and
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a copy reduction for expressions is in general not confluent, hence it is impossible

to transfer the confluence result to our calculus. The paper (Ariola & Blom 2002)

proposes to use a generalized confluence, called skew-confluence, but the relation of

the equality defined by skew-confluence to contextual equivalence remains unclear,

and skew-confluence appears to be weaker than our contextual equivalence.

4.1 Conclusion and Future Research

This paper defines SAL, a reconstruction of Nöcker’s strictness analysis in a call-

by-need lambda-calculus using letrec, case, and set constants equipped with a

contextual semantics. It provides a correctness proof for all the essential steps of the

algorithm including the loop-detection rules. It also provides a proof for correctness

of strictness optimization following from the resulting strictness information w.r.t

the contextual semantics. This is a foundation for using the strictness analysis in

the lazy functional programming languages Haskell and Clean. We showed that

rearranging evaluations or parallelizing them does not decrease the number of

essential reductions, but improves determinacy of execution on an abstract machine.

Our work also lays the foundation for potential refinements and extensions of the

analysis and also for other analyzes.

Our proof is an improved and modified version of the proof in (Schmidt-Schauß

et al. 2004), which used a nondeterministic lambda-calculus, where non-determinism

was exploited for representing sets of expressions. However, the correctness proof

in (Schmidt-Schauß et al. 2004) requires a conjecture on the relation between

simulation and contextual preorder in this nondeterministic calculus. We believe

that this conjecture holds, a support for this belief is a proof in (Mann 2004) that

bisimulation implies contextual preorder for a nondeterministic lambda-calculus,

which however uses a nonrecursive let and is constructor-free.

Extending the weakly typed lambda calculus by polymorphic types (e.g. as in

(Pitts 2000)) and adapting and improving SAL, such that no untyped guesses have

to be made and to show correctness of the adaptation, is left for future research.

The gain of polymorphic typing would be that e.g. the treatment of Fun would be

no longer necessary, as well as trying constructors for � in (caseT � . . . ) which do

not belong to the type T .
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