
Automating the Diagram Method
to Prove Correctness

of Program Transformations

David Sabel†

Goethe-University Frankfurt am Main, Germany

WPTE 2018, July 8th, Oxford, UK

†Research supported by the Deutsche Forschungsgemeinschaft (DFG) under grant SA 2908/3-1.

Motivation

reasoning on program transformations
w.r.t. operational semantics

for program calculi with higher-order constructs and recursive
bindings, e.g. letrec-expressions:

letrec x1 = s1; . . . ;xn = sn in t

extended call-by-need lambda calculi with letrec that model
core languages of lazy functional programming languages
like Haskell

2/22

Correctness of Program Transformations

A program transformation T is a binary relation on expressions.

It is correct iff e
T−→ e′ =⇒ (∀contexts C : C[e]↓ ⇐⇒ C[e′]↓)

↓ means successful evaluation e↓ := e
sr,∗−−→ e′ and e′ is a successful result

where
sr−→ is the small-step operational semantics (standard reduction)

and
sr,∗−−→ is the reflexive-transitive closure of

sr−→

As a core proof method, we need to show

convergence preservation: e
T ′
−→ e′ =⇒ (e ↓ =⇒ e′ ↓)

where T ′ is a contextual closure of T

3/22

Idea of the Diagram Method

Base case: For all successful e

e
successful

e′

program
transformation

e′′

successful

standard
reduction
steps

General case: For all programs e

e e′

e′′

program
transformation

standard
reduction

e′′′

standard
reduction
steps

program
transformation steps

Inductive construction

e e′

e′′′

e4

succ.

by the
induction
hypothesis

e5

successful

. . .

e′′

successful

4/22

Focused Languages and Previous Results

The diagram technique was, for instance, used for

call-by-need lambda calculi with letrec, data constructors, case, and
seq [SSSS08, JFP] and non-determinism [SSS08, MSCS]

process calculi with call-by-value [NSSSS07, MFPS] or call-by-need
evaluation [SSS11, PPDP] and [SSS12, LICS]

reasoning on whether program transformations are improvements
w.r.t. the run-time [SSS15, PPDP], [SSS17, SCP], [SSSD18,PPDP]
and space [SSD18,WPTE]

Conclusions from these works

The diagram method works well

The method requires to compute overlaps (error-prone, tedious,...)

Automation of the method would be valuable

5/22

Focused Languages and Previous Results

The diagram technique was, for instance, used for

call-by-need lambda calculi with letrec, data constructors, case, and
seq [SSSS08, JFP] and non-determinism [SSS08, MSCS]

process calculi with call-by-value [NSSSS07, MFPS] or call-by-need
evaluation [SSS11, PPDP] and [SSS12, LICS]

reasoning on whether program transformations are improvements
w.r.t. the run-time [SSS15, PPDP], [SSS17, SCP], [SSSD18,PPDP]
and space [SSD18,WPTE]

Conclusions from these works

The diagram method works well

The method requires to compute overlaps (error-prone, tedious,...)

Automation of the method would be valuable

5/22

Automation of the Diagram-Method

calculus
description

program
transformations

Input

compute
overlaps

overlaps

join
overlaps

Diagram
calculator

diagrams

translate
diagrams

(I)TRS

prove termination
(AProVE/CeTA)

Automated
induction

Structure of the LRSX-Tool

6/22

Representation of the Input

calculus
description

program
transformations

Input

compute
overlaps

overlaps

join
overlaps

Diagram
calculator

diagrams

translate
diagrams

(I)TRS

prove termination
(AProVE/CeTA)

Automated
induction

Structure of the LRSX-Tool

7/22

Requirements on the Meta-Syntax

Operational semantics of typical call-by-need calculi (excerpt)

Reduction contexts:
A ::= [·] | (A e)

R ::= A | letrecEnv inA | letrec {xi=Ai[xi+1]}n−1
i=1 , xn=An,Env , inA[x1]

Standard-reduction rules and some program transformations:

(SR,lbeta)R[(λx.e1) e2]→ R[letrec x = e2 in e1]

. . .

(T,cpx) T [letrec x = y,Env in C[x]]→ T [letrec x = y,Env in C[y]]

(T,gc,1) T [letrec Env ,Env ′ in e]→ T [letrec Env ′ in e],
if LetV ars(Env) ∩ FV (e,Env ′) = ∅

(T,gc,2) T [letrec Env in e] → T [e] if LetVars(Env) ∩ FV (e) = ∅

Meta-syntax must be capable to represent:

contexts of different classes

environments Env i and environment chains {xi=Ai[xi+1]}n−1
i=1

8/22

Syntax of the Meta-Language LRSX

Variables x ∈ Var ::= X (variable meta-variable)

| x (concrete variable)

Expressions s ∈ Expr ::= S (expression meta-variable)

| D[s] (context meta-variable)

| letrec env in s (letrec-expression)

| var x (variable)

| (f r1 . . . rar(f)) (function application)

where ri is oi, si, or xi specified by f

o ∈ HExprn::= x1. . . . xn.s (higher-order expression)

Environments env ∈ Env ::= ∅ (empty environment)

| E; env (environment meta-variable)

| Ch[x, s]; env (chain meta-variable)

| x = s; env (binding)

Ch[x, s] represents chains x=C1[var x1]; x1=C2[var x2]; . . . ; xn=Cn[s]

where Ci are contexts of class cl(Ch)

9/22

Binding and Scoping Constraints

There are restrictions on scoping and emptiness:

. . .
(T,cpx) T [letrec x = y,Env in C[x]]→ T [letrec x = y,Env in C[y]]

x, y are not captured by C in C[x], C[y]

(T,gc,2) T [letrec Env in e] → T [e] if Env 6= ∅, LetVars(Env) ∩ FV (e) = ∅

We express them by constraint tuples ∆ = (∆1,∆2,∆3):

non-empty context constraints ∆1: set of context variables
- ground substitution ρ satisfies D ∈ ∆1 iff ρ(D) 6= [·]
non-empty environment constraints ∆2: set of environment variables
- ρ satisfies E ∈ ∆2 iff ρ(E) 6= ∅
non-capture constraints (NCCs) ∆3: set of pairs (s, d)
- ρ satisfies (s, d) iff the hole of ρ(d) does not capture variables of ρ(s)

10/22

Representation of Rules

Standard reductions and transformations are represented as

`→∆ r

where `, r are LRSX-expressions and ∆ is a constraint-tuple

Example:

(T,gc,2) T [letrec Env in e] → T [e] if LetVars(Env) ∩ FV (e) = ∅

is represented as

D[letrec E in S]→(∅,{E},{(S,letrec E in [·])}) D[S]

11/22

Computing Overlaps

calculus
description

program
transformations

Input

compute
overlaps

overlaps

join
overlaps

Diagram
calculator

diagrams

translate
diagrams

(I)TRS

prove termination
(AProVE/CeTA)

Automated
induction

Structure of the LRSX-Tool

12/22

Computing Overlaps by Unification

σ(`B)σ(`A) = σ(rB)

(σ(rB),∆)

unifier σ for {`A
.
= `B}

output (σ,∆) for ({`A
.
= `B},∆A ∪∆B)

·σ(rA)

(σ(rA),∆)

program
transformation

standard
reduction *

*

Unification also has to respect the constraints ∆A ∪∆B

Occurrence Restrictions: S-variables at most twice, E-, Ch-,
D-variables at most once

The Letrec Unification Problem is NP-complete [SSS16, PPDP]

Algorithm UnifLRS [SSS16, PPDP] is sound and complete

and computes a finite representation of solutions

13/22

Computing Overlaps by Unification

σ(`B)σ(`A) = σ(rB)

(σ(rB),∆)

unifier σ for ({`A
.
= `B},∆A ∪∆B)

output (σ,∆) for ({`A
.
= `B},∆A ∪∆B)

·σ(rA)

(σ(rA),∆)

program
transformation

standard
reduction *

*

Unification also has to respect the constraints ∆A ∪∆B

Occurrence Restrictions: S-variables at most twice, E-, Ch-,
D-variables at most once

The Letrec Unification Problem is NP-complete [SSS16, PPDP]

Algorithm UnifLRS [SSS16, PPDP] is sound and complete

and computes a finite representation of solutions

13/22

Computing Overlaps by Unification

σ(`B)σ(`A) = σ(rB)

(σ(rB),∆)

unifier σ for ({`A
.
= `B},∆A ∪∆B)

output (σ,∆) for ({`A
.
= `B},∆A ∪∆B)

·σ(rA)

(σ(rA),∆)

program
transformation

standard
reduction *

*

Unification also has to respect the constraints ∆A ∪∆B

Occurrence Restrictions: S-variables at most twice, E-, Ch-,
D-variables at most once

The Letrec Unification Problem is NP-complete [SSS16, PPDP]

Algorithm UnifLRS [SSS16, PPDP] is sound and complete

and computes a finite representation of solutions

13/22

Computing Overlaps by Unification

σ(`B)σ(`A) = (σ(rB),∆)

output (σ,∆) for ({`A
.
= `B},∆A ∪∆B)

·(σ(rA),∆)

program
transformation

standard
reduction *

*

Unification also has to respect the constraints ∆A ∪∆B

Occurrence Restrictions: S-variables at most twice, E-, Ch-,
D-variables at most once

The Letrec Unification Problem is NP-complete [SSS16, PPDP]

Algorithm UnifLRS [SSS16, PPDP] is sound and complete
and computes a finite representation of solutions

13/22

Computing Joins

calculus
description

program
transformations

Input

compute
overlaps

overlaps

join
overlaps

Diagram
calculator

diagrams

translate
diagrams

(I)TRS

prove termination
(AProVE/CeTA)

Automated
induction

Structure of the LRSX-Tool

14/22

Computing Diagrams

. (t1,∇)

.(t2,∇)

program
transformation

standard
reduction *

*

computing joins
∗−→: abstract rewriting by rules `→∆ r

meta-variables in `, r are instantiable and meta-variables in ti are fixed

rewriting: match ` against ti and show that the given constraints ∇
imply the needed constraints ∆

Sound and complete matching algorithm MatchLRS [Sab17, UNIF]

15/22

Example: (gc)-Transformation

(T,gc) := (T,gc,1) ∪ (T,gc,2)

Unification computes 192 overlaps and joining results in 324
diagrams which can be represented by the diagrams

· T,gc //
SR,lbeta ��

·
SR,lbeta��

·
T,gc

// ·

· T,gc //
SR,cp ��

·
SR,cp��

·
T,gc

// ·

· T,gc //
SR,lll ��

·
SR,lll��

·
T,gc

// ·

· T,gc //
SR,lll ��

·

· T,gc

77

and the answer diagram

Ans
T,gc // Ans

16/22

Automated Induction

calculus
description

program
transformations

Input

compute
overlaps

overlaps

join
overlaps

Diagram
calculator

diagrams

translate
diagrams

(I)TRS

prove termination
(AProVE/CeTA)

Automated
induction

Structure of the LRSX-Tool

17/22

Automated Induction: Ideas [RSSS12, IJCAR]

Ignore the concrete expressions, only keep: kind of rule (SR or
transformation) and rule-names, and answers as abstract constant

· T,gc //
SR,lbeta ��

·
SR,lbeta��

·
T,gc
// ·

Ans
T,gc // Ans

Diagrams represent string rewrite rules on strings consisting of
elements (SR, name), (T, name), and Answer

(T, gc), (SR, lbeta) → (SR, lbeta), (T, gc) (T, gc), Answer → Answer

Termination of the string rewrite system implies successful induction

We use term rewrite systems and innermost-termination and apply
AProVE and certifier CeTA

18/22

Automated Induction: Ideas [RSSS12, IJCAR]

Ignore the concrete expressions, only keep: kind of rule (SR or
transformation) and rule-names, and answers as abstract constant

· T,gc //
SR,lbeta ��

·
SR,lbeta��

·
T,gc
// ·

Ans
T,gc // Ans

Diagrams represent string rewrite rules on strings consisting of
elements (SR, name), (T, name), and Answer

(T, gc), (SR, lbeta) → (SR, lbeta), (T, gc) (T, gc), Answer → Answer

Termination of the string rewrite system implies successful induction

We use term rewrite systems and innermost-termination and apply
AProVE and certifier CeTA

18/22

Automated Induction: Ideas [RSSS12, IJCAR]

Ignore the concrete expressions, only keep: kind of rule (SR or
transformation) and rule-names, and answers as abstract constant

· T,gc //
SR,lbeta ��

·
SR,lbeta��

·
T,gc
// ·

Ans
T,gc // Ans

Diagrams represent string rewrite rules on strings consisting of
elements (SR, name), (T, name), and Answer

(T, gc), (SR, lbeta) → (SR, lbeta), (T, gc) (T, gc), Answer → Answer

Termination of the string rewrite system implies successful induction

We use term rewrite systems and innermost-termination and apply
AProVE and certifier CeTA

18/22

Advanced Techniques

Symbolic α-Renaming

Joining overlaps requires α-renaming

(λX.S) (letrec E1 in S′) (λX.S) (letrec E1;E2 in S′)

letrec

X=(letrec E1 in S′)
in S

letrec X=(letrec E1;E2 in S′) in S

T, gc

sr, lbeta
sr, lbeta

X= may capture free occurrences of X in E2!

Solution: Extend the meta-language and algorithms with symbolic
α-renamings [Sab17,PPDP]

19/22

Advanced Techniques (continued)

Transitive Closures

Transitive closures of reduction / transformation rules, e.g.

A[letrec Env in s]
sr,+−−→ letrec Env in A[s]

Encoding of diagrams into TRSs uses free variables on right hand
sides to “guess” the number of steps

Case-distinctions during search for joins

Apply case distinctions whether environments E or contexts D are
empty/non-empty and

treat the cases separately

Rule reformulation (not automated)

for a copy rule (cp) the diagram set is a nonterminating TRS

Solution: cpT: target of copy not below an abstraction
cpd: target of copy inside an abstraction

The diagram set for (cpT),(cpd) is a terminating TRS.

20/22

Experiments

LRSX Tool available from http://goethe.link/LRSXTOOL61

computes diagrams and performs the automated induction

5425

joins

2242

joins# overlaps

48 secs.

computation time

→
7273

joins

3001

joins# overlaps

116 secs.

computation time

←

14729

joins

4898

joins# overlaps

149 secs.

computation time

→
18089

joins

6437

joins# overlaps

255 secs.

computation time

←

391264

joins

87041

joins# overlaps

∼ 19 hours

computation time

→
429104

joins

107333

joins# overlaps

∼ 16 hours

computation time

←

Calculus Lneed (11 SR rules, 16 transformations, 2 answers)

Calculus L+seq
need (17 SR rules, 18 transformations, 2 answers)

Calculus LR (76 SR rules, 43 transformations, 17 answers)

21/22

Conclusion and Outlook

Conclusion

Automation of the diagram method for meta-language LRSX

Algorithms for unification, matching, symbolic α-renaming

Encoding technique to apply termination provers for TRSs

Experiments show: automation works well for call-by-need calculi

Further work

Further calculi, e.g., process calculi with structural congruence

Proving improvements

Nominal techniques to ease reasoning on α-renamings:

Nominal unification with letrec [SSKLV16, LOPSTR]
Nominal unification with context variables [SSS18, FSCD]

22/22

Thank you!

