a Hochschule RheinMain

Probabilistic Lazy PCF with
Real-Valued Choice

David Sabel Manfred Schmidt-SchauB
Hochschule RheinMain Goethe-University
Wiesbaden Frankfurt am Main

WPTE 2025, Birmingham, UK, 20.07.2025

Motivation

+
@ probabilistic programs represent o declarative, high-level programming
stochastic models allowing equational reasoning
@ program execution is performing a o efficient implementation of lazy
probabilistic experiment evaluation
@ reasoning on program semantics is @ semantics is different from
reasoning on the models call-by-name and call-by-value

— Investigate the semantics of probabilistic call-by-need functional languages

Evaluation Strategies

let (m @ n) represent fair probabilistic choice

Example: (A\z,y.z+2) (1©2) 3 1)

Possible results with their respective probabilities

Result Call-by-Name Call-by-Value Call-By-Need
2 0.25 0.25 0.5

3 0.5 impossible impossible

4 0.25 0.25 0.5

€ impossible 0.5 impossible

— all three strategies are different

Previous Work

Probablistic call-by-need calculus with recursive let [PPDP 2022]
@ correctness of program transformations

@ proof techniques for proving contextual equivalences

Probabilistic Lazy PCF [WPTE 2022, JLAMP 2023]
o PCF: simply typed A-calculus 4+ numbers + fix-point operator
o call-by-need-evaluation with explicit sharing by let
@ probabilistic fair choice s @ t evaluates to s or t both with probability 0.5

@ result: distribution equivalence = contextual equivalence on programs of type nat

Goals

@ Add probabilistic choice (s & t) with (computable) real-valued probability r:

@ s is chosen with probability r
@ ¢ with probability 1 —
Does this change the expressivity of the language?

Do former results on the program semantics still hold?

@ Develop techniques to approximate distribution equivalence (work in progress)

Syntax of Probabilistic Lazy PCF and the Extension

Expressions: s,t € Exp = x| Av.s | (st) | fix s | if s then ¢; else ty
| pred s | succ s | let z =sint | n wheren € N

[(s ® 1)
where 7 € (0, 1) is computable

Types: 1,0 € Typ::=nat | T — 0

Type check: standard monomorphic type system, s € Exp is well-typed iff s : 7

Operational Semantics: Small-Step Reduction =

(sr,Ibeta) R[()\:L‘S) t] i} R[let r=11in S]
(snif0) R[if O then s else t] > R[s]
(srifnot-0) R[if n then s else t] - R[t] if n. >0

sr probability - o probability
(sr,probl) R[S D t] — R[S] 0.5 (sr,probl) R[S D t] — R[S] r

(sr.probr) R[S ® t] — R[t] 0.5 (sr,probr) R[S é t] SN R[t] 1—r

“prob-steps”
where reduction contexts are
R ::= LR[A] | LR[let x = A in R[z]| LR =[]]| let z =sin LR
Aun=[]](As)|if Athen selset |pred A|succ A | fix A

Expected Convergence

sr,a1 ST,an

@ An evaluation S of s: s —— -+ —— t where t = LR[v] is a weak head normal
form (LR ::=[-] | let = s in LR and v is a number n or an abstraction Az.s).

e Probability of an evaluation P(S): product of all probability measures of all
prob-steps in s s ... 20 g

e Expected convergence EXCV(s) = sum of the probabilities of all evaluations of s
e Expected value convergence ExVCv(s,n) = sum of the probabilities of all

evaluations of s ending in the number n

EXCv(s):= Y _ P(S) and EXVCv(s,n):= » P(S)

SeEval(s) S € Eval(s),
val(WHNF(s,S)) =n

Example: Randomly Throwing Darts (Simplified)

—
1m

Some expected convergences:
EXCv(throwDart) = 1

throwDart =

let wall =0 in
1/6 1/5 1/4 1/3 1/2
let segment=1 & 2 & 3 @& (4 & (b & 6)))) in

let bullseye = 10 in
1/100
let board = bullseye @& segment

in board ﬂ@ wall

Expected value convergences:
ExXVCv(throwDart,0) =1—7/16 ~ 80.37%

Context C tests if the board is hit: ExVCv(throwDart, 1) = ... =
O = 1f [] then L olse 1 EXVCV(throwDart,6) = /16 -99/100-1/6 =~ 3.24%
ExXVCv(throwDart,i) =0 fori ¢ {0,1,2,3,4,5,6,10}

Y

Contextual Equivalence and Distribution Equivalence

For expressions s, : o:

Contextual preorder s <.t iff VC[,|: nat: EXCv(C[s]) < ExCv(C[t])
Contextual equivalence s~.t iff s<.tandt<.s

For closed expressions s,t : nat:

Distribution approximation s <;t iff Vie N:ExXVCv(s,i) <4 EXVCV(t,i)
Distribution equivalence s~gt iff s<gtandt<ys

1/6 1/5 1/4 1/3 1/2 /2 2/3 1/2 1/3 1/2
Example:a & (b & (¢ & (d & (e &) ~a (@ ®) ®) & (d & (e & f))

For closed s,t: nat: s ~.t < s~gt

Theorem Conjecture (work in progress)
J For closed s,t: nat: s <.t < s <yt

- 10 —

Conservativity

We also use distribution equivalence to compare expressions in both calculi

For every closed s : nat in ProbPC’Fﬁeed there exists a distribution-equivalent
closed s’ : nat in ProbPCF"*.

Requires to encode (s ® t) using fair choice (s @ t) only.

Approach: Use bitwise fair choice to simulate arbitrary probabilistic choice
(well-known, e.g. Arora & Barak, 2009 for Probabilistic Turing Machines)

—11 -

Encoding Real-Valued Choice with Fair Choice

Ideas:
o
.) b;
@ use the bit-expansion of r € (0,1) = 0.b1by ... (where r = Z ?)
i=1

@ since r is computable, the bit-expansion is computable
'
e simulate (s @ t) by calling g 1 where g is the recursive function

gi=1if b, =1then s® (g (1 +1))
elset® (g (i+1))

S, if bz =1
t, ifb;=0
@ in call-by-need: s and ¢ are shared (no duplication)

@ g 1 unfolds to uj @ (uz ® (us ... where u; = {

12 —

The Encoding in Probabilistic Lazy PCF

enc(F si...s,)=F enc(s1) ... enc(sy) for all language constructs F' # S
enc(sét) =1let f,=... in
fix (A\g,i,2,y. if (f» i) then 2 ® (g (succ i) z y)
else y @ (g (succ i) z y))
1 enc(s) enc(t)

(e}

b,
where f, computes the inverted bit expansion f.(i) =1 —b; of r = 2—2
i=1
. let x = enc(s) in v ifb=1
enc(s @ t) unfolds to | let y = enc(t) in | where z; = b0
(Zl@(ZQGB...)) Y L

—-13 -

Example

1/3
(m & n)

@ the bit-expansion of 1/3 is 0.01010101010101...
o the inverted sequence can be computed by f;/3 = Ai.(i mod 2)

1/3
e the encoding s = enc(m @© n) = let fi/3 = \i.(i mod 2) in fix ...

unfoldston @ (m @& (n® (me (nd ...
@ as expected:

1
EXVCV(S, m) = E m
€N €N

1 1 2
=3 and ExVCv(s,n) = Z 221 = 3

—14 —

Conservativity

For every closed s : nat in ProbPCFﬁeed there exists a distribution-equivalent

closed s : nat in ProbPCF™¢,

Proof:
e iteratively replaces each s & ¢ with enc(s @ t).

@ each step requires the equation:

for prob-free s,t: C|[s S t] ~q Clenc(s ® t)]

— 15—

Proving C[s ® t] ~q Clenc(s & t)]

Rls ® t] ~q Rlenc(s ® t)] if s,t are prob-free and R|[s S t] : nat is closed.

EXVCV(R[s S t],n) = EXVCV(R[enc(s & t)],n) is proved by:
@ For all kK € N: EXVCV(R][enc(s ® t)],n, k) < ExXVCV(R]s & t],n)
@ Ve > 0: 3k EXVOV(R[s & 1], n) — EXVCV(R[enc(s & t)],n, k) < &
Additional parameter k: at most k prob-steps are permitted

Let s,¢ : o and for all closing R|[-;] : nat: R[s] ~4 R[t]. Then
Cls,...,s] <q C[t,...,t],if Cl1,5...,n0] : nat is closing.

Again: the proof uses EXVCV(, -, k) where k restricts the number of prob-steps.

—16 —

Conclusion

Summary

@ extension by real-valued probabilistic choice is conservative w.r.t. ~g in
Probabilistic Lazy PCF

@ we applied the well-known technique exploiting the computable bit-expansion

@ proofs on ~g: enable inductive proofs by restricting the number of prob-steps

Future Work
@ prove the conjecture <, = <y
@ investigate algorithmic approximations of probabilistic (closed) programs:
@ again by restricting the number of prob-steps in evaluations
@ by restricting the number of sr-steps and perhaps stopping with no result

@ by encodings that stop after performing a limit of prob-steps

—17 -

Thank You!

