
0,0015,50 15,50

Probabilistic Lazy PCF with

Real-Valued Choice

David Sabel Manfred Schmidt-Schauß

Hochschule RheinMain Goethe-University
Wiesbaden Frankfurt am Main

WPTE 2025, Birmingham, UK, 20.07.2025

Motivation

Probabilistic
Programming

+
Call-by-Need

Functional Programming Languages

probabilistic programs represent
stochastic models

program execution is performing a
probabilistic experiment

reasoning on program semantics is
reasoning on the models

declarative, high-level programming
allowing equational reasoning

efficient implementation of lazy
evaluation

semantics is different from
call-by-name and call-by-value

→ Investigate the semantics of probabilistic call-by-need functional languages

– 2 –

Evaluation Strategies

let (m⊕ n) represent fair probabilistic choice

Example: (λx, y.x+ x) (1⊕ 2) (3⊕⊥)

Possible results with their respective probabilities

Result Call-by-Name Call-by-Value Call-By-Need

2 0.25 0.25 0.5

3 0.5 impossible impossible

4 0.25 0.25 0.5

⊥ impossible 0.5 impossible

→ all three strategies are different

– 3 –

Previous Work

Probablistic call-by-need calculus with recursive let [PPDP 2022]

correctness of program transformations

proof techniques for proving contextual equivalences

Probabilistic Lazy PCF [WPTE 2022, JLAMP 2023]

PCF: simply typed λ-calculus + numbers + fix-point operator

call-by-need-evaluation with explicit sharing by let

probabilistic fair choice s⊕ t evaluates to s or t both with probability 0.5

result: distribution equivalence = contextual equivalence on programs of type nat

– 4 –

Goals

Add probabilistic choice (s
r
⊕ t) with (computable) real-valued probability r:

s is chosen with probability r

t with probability 1− r

Does this change the expressivity of the language?

Do former results on the program semantics still hold?

Develop techniques to approximate distribution equivalence (work in progress)

– 5 –

Syntax of Probabilistic Lazy PCF and the Extension

ProbPCF need ProbPCF need
R

Expressions: s, t ∈ Exp ::= x | λx.s | (s t) | fix s | if s then t1 else t2
| pred s | succ s | let x = s in t | n where n ∈ N

| (s⊕ t) | (s
r
⊕ t)

where r ∈ (0, 1) is computable

Types: τ, σ ∈ Typ ::= nat | τ → σ

Type check: standard monomorphic type system, s ∈ Exp is well-typed iff s : τ

– 6 –

Operational Semantics: Small-Step Reduction
sr−→

“prob-steps”

ProbPCF need ProbPCF need
R

(sr,lbeta) R[(λx.s) t]
sr−→ R[let x = t in s]

(sr,if-0) R[if 0 then s else t]
sr−→ R[s]

(sr,if-not-0) R[if n then s else t]
sr−→ R[t] if n > 0

.

probability
(sr,probl) R[s⊕ t]

sr−→ R[s] 0.5

(sr,probr) R[s⊕ t]
sr−→ R[t] 0.5

probability

(sr,probl) R[s
r
⊕ t]

sr−→ R[s] r

(sr,probr) R[s
r
⊕ t]

sr−→ R[t] 1− r

where reduction contexts are

R ::= LR[A] | LR[let x = A in R[x]] LR ::= [·] | let x = s in LR
A ::= [·] | (A s) | if A then s else t | pred A | succ A | fix A

– 7 –

Expected Convergence

An evaluation S of s: s
sr ,a1−−−→ · · · sr ,an−−−→ t where t = LR[v] is a weak head normal

form (LR ::= [·] | let x = s in LR and v is a number n or an abstraction λx.s).

Probability of an evaluation P(S): product of all probability measures of all

prob-steps in s
sr ,a1−−−→ · · · sr ,an−−−→ t

Expected convergence ExCv(s) = sum of the probabilities of all evaluations of s

Expected value convergence ExVCv(s, n) = sum of the probabilities of all
evaluations of s ending in the number n

ExCv(s) :=
∑

S∈Eval(s)

P(S) and ExVCv(s, n) :=
∑

S ∈ Eval(s),
val(WHNF (s, S)) = n

P(S)

– 8 –

Example: Randomly Throwing Darts (Simplified)

1
2

3
4

5

6

0.1
m 2

m
1 m

throwDart =

let wall = 0 in

let segment = 1
1/6
⊕ (2

1/5
⊕ (3

1/4
⊕ (4

1/3
⊕ (5

1/2
⊕ 6)))) in

let bullseye = 10 in

let board = bullseye
1/100
⊕ segment

in board
π/16
⊕ wall

Some expected convergences:

ExCv(throwDart) = 1

Context C tests if the board is hit:
C = if [·] then ⊥ else 1

ExCv(C[throwDart]) = π/16 ≈ 19.63%

Expected value convergences:

ExVCv(throwDart , 0) = 1− π/16 ≈ 80.37%

ExVCv(throwDart , 1) = . . . =
ExVCv(throwDart , 6) = π/16 · 99/100 · 1/6 ≈ 3.24%

ExVCv(throwDart , 10)= π/16 · 1/100 ≈ 0.2%

ExVCv(throwDart , i) = 0 for i ̸∈ {0, 1, 2, 3, 4, 5, 6, 10}
– 9 –

Contextual Equivalence and Distribution Equivalence

For expressions s, t : σ:

Contextual preorder s ≤c t iff ∀C[·σ] : nat : ExCv(C[s]) ≤ ExCv(C[t])
Contextual equivalence s ∼c t iff s ≤c t and t ≤c s

For closed expressions s, t : nat :

Distribution approximation s ≤d t iff ∀i ∈ N : ExVCv(s, i) ≤d ExVCv(t, i)
Distribution equivalence s ∼d t iff s ≤d t and t ≤d s

Example: a
1/6
⊕ (b

1/5
⊕ (c

1/4
⊕ (d

1/3
⊕ (e

1/2
⊕ f)))) ∼d ((a

1/2
⊕ b)

2/3
⊕ c)

1/2
⊕ (d

1/3
⊕ (e

1/2
⊕ f))

Theorem

For closed s, t : nat : s ∼c t ⇐⇒ s ∼d t

Conjecture (work in progress)

For closed s, t : nat : s ≤c t ⇐⇒ s ≤d t

– 10 –

Conservativity

We also use distribution equivalence to compare expressions in both calculi

Theorem

For every closed s : nat in ProbPCF need
R there exists a distribution-equivalent

closed s′ : nat in ProbPCF need .

Requires to encode (s
r
⊕ t) using fair choice (s⊕ t) only.

Approach: Use bitwise fair choice to simulate arbitrary probabilistic choice
(well-known, e.g. Arora & Barak, 2009 for Probabilistic Turing Machines)

– 11 –

Encoding Real-Valued Choice with Fair Choice

Ideas:

use the bit-expansion of r ∈ (0, 1) = 0.b1b2 . . . (where r =

∞∑
i=1

bi
2i
)

since r is computable, the bit-expansion is computable

simulate (s
r
⊕ t) by calling g 1 where g is the recursive function

g i = if bi = 1 then s⊕ (g (i+ 1))
else t⊕ (g (i+ 1))

g 1 unfolds to u1 ⊕ (u2 ⊕ (u3 . . . where ui =

{
s, if bi = 1

t, if bi = 0

in call-by-need: s and t are shared (no duplication)

– 12 –

The Encoding in Probabilistic Lazy PCF

Encoding enc : ProbPCF need
R → ProbPCF need

enc(F s1 . . . sn)= F enc(s1) . . . enc(sn) for all language constructs F ̸=
r
⊕

enc(s
r
⊕ t) = let fr = . . . in

fix
(
λg, i, x, y. if (fr i) then x⊕ (g (succ i) x y)

else y ⊕ (g (succ i) x y)
)

1 enc(s) enc(t)

where fr computes the inverted bit expansion fr(i) = 1− bi of r =

∞∑
i=1

bi
2i

enc(s
r
⊕ t) unfolds to

let x = enc(s) in
let y = enc(t) in
(z1 ⊕ (z2 ⊕ . . .))

 where zi =

{
x, if bi = 1

y, if bi = 0

– 13 –

Example

(m
1/3
⊕ n)

the bit-expansion of 1/3 is 0.01010101010101 . . .

the inverted sequence can be computed by f1/3 = λi.(i mod 2)

the encoding s = enc(m
1/3
⊕ n) = let f1/3 = λi.(i mod 2) in fix . . .

unfolds to n⊕ (m⊕ (n⊕ (m⊕ (n⊕ . . .

as expected:

ExVCv(s,m) =
∑
i∈N

1

22(i+1)
=

1

3
and ExVCv(s, n) =

∑
i∈N

1

22i+1
=

2

3

– 14 –

Conservativity

Theorem

For every closed s : nat in ProbPCF need
R there exists a distribution-equivalent

closed s′ : nat in ProbPCF need .

Proof:

iteratively replaces each s
r
⊕ t with enc(s

r
⊕ t).

each step requires the equation:

for prob-free s, t: C[s
r
⊕ t] ∼d C[enc(s

r
⊕ t)]

– 15 –

Proving C[s
r
⊕ t] ∼d C[enc(s

r
⊕ t)]

Proposition (Equation in Reduction Contexts)

R[s
r
⊕ t] ∼d R[enc(s

r
⊕ t)] if s, t are prob-free and R[s

r
⊕ t] : nat is closed.

ExVCv(R[s
r
⊕ t], n) = ExVCv(R[enc(s

r
⊕ t)], n) is proved by:

1 For all k ∈ N: ExVCv(R[enc(s
r
⊕ t)], n, k) ≤ ExVCv(R[s

r
⊕ t], n)

2 ∀ε > 0 : ∃k: ExVCv(R[s
r
⊕ t], n)−ExVCv(R[enc(s

r
⊕ t)], n, k) < ε

Additional parameter k: at most k prob-steps are permitted

Proposition (Context Lemma for ∼d)

Let s, t : σ and for all closing R[·σ] : nat : R[s] ∼d R[t]. Then
C[s, . . . , s] ≤d C[t, . . . , t], if C[·1,σ . . . , ·n,σ] : nat is closing.

Again: the proof uses ExVCv(·, ·, k) where k restricts the number of prob-steps.

– 16 –

Conclusion

Summary

extension by real-valued probabilistic choice is conservative w.r.t. ∼d in
Probabilistic Lazy PCF

we applied the well-known technique exploiting the computable bit-expansion

proofs on ∼d: enable inductive proofs by restricting the number of prob-steps

Future Work

prove the conjecture ≤c = ≤d

investigate algorithmic approximations of probabilistic (closed) programs:

again by restricting the number of prob-steps in evaluations

by restricting the number of sr-steps and perhaps stopping with no result

by encodings that stop after performing a limit of prob-steps

– 17 –

Thank You!

