

Probabilistic Lazy PCF with Real-Valued Choice

David Sabel

Hochschule RheinMain Wiesbaden Manfred Schmidt-Schauß

Goethe-University Frankfurt am Main

WPTE 2025, Birmingham, UK, 20.07.2025

Motivation

Probabilistic Programming

+

Call-by-Need Functional Programming Languages

- probabilistic programs represent stochastic models
- program execution is performing a probabilistic experiment
- reasoning on program semantics is reasoning on the models

- declarative, high-level programming allowing equational reasoning
- efficient implementation of lazy evaluation
- semantics is different from call-by-name and call-by-value

 \rightarrow Investigate the semantics of probabilistic call-by-need functional languages

Evaluation Strategies

let $(m \oplus n)$ represent fair probabilistic choice

Example: $(\lambda x, y.x + x) \ (1 \oplus 2) \ (3 \oplus \bot)$

Possible results with their respective probabilities

Result	Call-by-Name	Call-by-Value	Call-By-Need
2	0.25	0.25	0.5
3	0.5	impossible	impossible
4	0.25	0.25	0.5
	impossible	0.5	impossible

ightarrow all three strategies are different

Previous Work

Probablistic call-by-need calculus with recursive let [PPDP 2022]

- correctness of program transformations
- proof techniques for proving contextual equivalences

Probabilistic Lazy PCF [WPTE 2022, JLAMP 2023]

- PCF: simply typed λ -calculus + numbers + fix-point operator
- call-by-need-evaluation with explicit sharing by let
- ullet probabilistic fair choice $s\oplus t$ evaluates to s or t both with probability 0.5
- result: distribution equivalence = contextual equivalence on programs of type nat

Goals

- Add probabilistic choice $(s \oplus t)$ with (computable) real-valued probability r:
 - ullet s is chosen with probability r
 - ullet t with probability 1-r

Does this change the expressivity of the language?

Do former results on the program semantics still hold?

• Develop techniques to approximate distribution equivalence (work in progress)

Syntax of Probabilistic Lazy PCF and the Extension

$ProbPCF^{need}$

$ProbPCF^{need}_{\mathbb{R}}$

Expressions: $s,t \in \textit{Exp} ::= x \mid \lambda x.s \mid (s \ t) \mid \textit{fix} \ s \mid \textit{if} \ s \ \textit{then} \ t_1 \ \textit{else} \ t_2 \ \mid \textit{pred} \ s \mid \textit{succ} \ s \mid \textit{let} \ x = s \ \textit{in} \ t \mid n \ \textit{where} \ n \in \mathbb{N}$

$$\mid (s \oplus t)$$

$$\mid (s \overset{r}{\oplus} t)$$
 where $r \in (0,1)$ is computable

Types: $\tau, \sigma \in Typ ::= nat \mid \tau \to \sigma$

Type check: standard monomorphic type system, $s \in Exp$ is well-typed iff $s : \tau$

Operational Semantics: Small-Step Reduction $\stackrel{sr}{\rightarrow}$

$ProbPCF^{need}$

$ProbPCF^{need}_{\mathbb{R}}$

```
\begin{array}{ll} \textit{(sr,lbeta)} & R[(\lambda x.s) \ t] \xrightarrow{sr} R[\texttt{let} \ x = t \ \texttt{in} \ s] \\ \textit{(sr,if-0)} & R[\texttt{if} \ 0 \ \texttt{then} \ s \ \texttt{else} \ t] \xrightarrow{sr} R[s] \\ \textit{(sr,if-not-0)} & R[\texttt{if} \ n \ \texttt{then} \ s \ \texttt{else} \ t] \xrightarrow{sr} R[t] \ \texttt{if} \ n > 0 \\ \cdots & \cdots & \cdots \end{array}
```

 $(\mathit{sr,probl}) \ R[s \oplus t] \overset{\mathit{sr}}{\longrightarrow} R[s] \ 0.5$

(sr,probr) $R[s \oplus t] \xrightarrow{sr} R[t]$

 $\begin{array}{ccc} & & & \mathsf{probability} \\ \textit{(sr,probl)} & R[s \overset{r}{\oplus} t] \overset{sr}{\longrightarrow} R[s] & r \\ \textit{(sr,probr)} & R[s \overset{r}{\oplus} t] \overset{sr}{\longrightarrow} R[t] & 1-r \end{array}$

"prob-steps"

where reduction contexts are

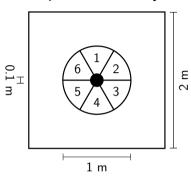
0.5

Expected Convergence

- An evaluation S of $s: s \xrightarrow{sr,a_1} \cdots \xrightarrow{sr,a_n} t$ where t = LR[v] is a weak head normal form $(LR := [\cdot] \mid \text{let } x = s \text{ in } LR \text{ and } v \text{ is a number } n \text{ or an abstraction } \lambda x.s).$
- Probability of an evaluation P(S): product of all probability measures of all prob-steps in $s \xrightarrow{sr,a_1} \cdots \xrightarrow{sr,a_n} t$
- Expected convergence ExCv(s) = sum of the probabilities of all evaluations of s
- Expected value convergence $\mathrm{ExVCv}(s,n) = \mathrm{sum}$ of the probabilities of all evaluations of s ending in the number n

$$\begin{aligned} \operatorname{ExCv}(s) := & \sum_{S \in \mathit{Eval}(s)} \operatorname{P}(S) \quad \text{and} \quad \operatorname{ExVCv}(s,n) := & \sum_{S \in \mathit{Eval}(s), \\ val(\mathit{WHNF}(s,S)) = n} \operatorname{P}(S) \end{aligned}$$

Example: Randomly Throwing Darts (Simplified)



$$throwDart =$$

let
$$wall = 0$$
 in

$$\texttt{let}\ segment = 1 \overset{1/6}{\oplus} (2 \overset{1/5}{\oplus} (3 \overset{1/4}{\oplus} (4 \overset{1/3}{\oplus} (5 \overset{1/2}{\oplus} 6))))\ \texttt{in}$$

let
$$bull seye = 10$$
 in

let
$$board = bullseye \oplus segment$$

$$ExCv(throwDart) = 1$$

Context C tests if the board is hit: $C = \mathtt{if} \ [\cdot] \ \mathtt{then} \perp \mathtt{else} \ 1$

$$\text{ExCV}(C[throwDart]) = \pi/16 \approx 19.63\%$$

Expected value convergences:

$$ExVCv(throwDart, 0) = 1 - \pi/16$$

$$\approx 80.37\%$$

$${\tt ExVCv}(\mathit{throwDart},1) \, = \ldots = \,$$

$$\text{ExVCv}(throwDart, 1) = \dots = \text{ExVCv}(throwDart, 6) = \pi/16 \cdot 99/100 \cdot 1/6 \approx 3.24\%$$

$$ExVCv(throwDart, 10) = \pi/16 \cdot 1/100 \qquad \approx 0.2\%$$

$$\text{ExVCv}(throwDart, i) = 0 \text{ for } i \notin \{0, 1, 2, 3, 4, 5, 6, 10\}$$

Contextual Equivalence and Distribution Equivalence

For expressions $s, t : \sigma$:

```
Contextual preorder s \leq_c t iff \forall C[\cdot_{\sigma}] : nat : \operatorname{ExCv}(C[s]) \leq \operatorname{ExCv}(C[t])
Contextual equivalence s \sim_c t iff s \leq_c t and t \leq_c s
```

For closed expressions s, t : nat:

```
 \begin{array}{lll} \textbf{Distribution approximation} & s \leq_d t & \text{iff} & \forall i \in \mathbb{N} : \mathrm{ExVCv}(s,i) \leq_d \mathrm{ExVCv}(t,i) \\ \textbf{Distribution equivalence} & s \sim_d t & \text{iff} & s \leq_d t \text{ and } t \leq_d s \\ \end{array}
```

$$\mathsf{Example} \colon a \overset{1/6}{\oplus} (b \overset{1/5}{\oplus} (c \overset{1/4}{\oplus} (d \overset{1/3}{\oplus} (e \overset{1/2}{\oplus} f)))) \sim_d ((a \overset{1/2}{\oplus} b) \overset{2/3}{\oplus} c) \overset{1/2}{\oplus} (d \overset{1/3}{\oplus} (e \overset{1/2}{\oplus} f))$$

Theorem

For closed $s,t:nat: s \sim_c t \iff s \sim_d t$

Conjecture (work in progress)

For closed $s, t : nat: s \leq_c t \iff s \leq_d t$

Conservativity

We also use distribution equivalence to compare expressions in both calculi

Theorem

For every closed s:nat in $ProbPCF^{need}_{\mathbb{R}}$ there exists a distribution-equivalent closed s':nat in $ProbPCF^{need}$.

Requires to encode $(s \oplus t)$ using fair choice $(s \oplus t)$ only.

Approach: Use bitwise fair choice to simulate arbitrary probabilistic choice (well-known, e.g. Arora & Barak, 2009 for Probabilistic Turing Machines)

Encoding Real-Valued Choice with Fair Choice

Ideas:

- ullet use the bit-expansion of $r\in(0,1)=0.b_1b_2\dots$ (where $r=\sum_{i=1}^\infty \frac{b_i}{2^i}$)
- ullet since r is computable, the bit-expansion is computable
- \bullet simulate $(s \overset{r}{\oplus} t)$ by calling $g \ 1$ where g is the recursive function

$$g \ i = ext{if} \ b_i = 1 \ ext{then} \ s \oplus (g \ (i+1))$$
 else $t \oplus (g \ (i+1))$

- ullet g 1 unfolds to $u_1\oplus (u_2\oplus (u_3\dots$ where $u_i=egin{cases} s, & \text{if } b_i=1 \ t, & \text{if } b_i=0 \end{cases}$
- ullet in call-by-need: s and t are shared (no duplication)

The Encoding in Probabilistic Lazy PCF

Encoding $enc: ProbPCF^{need} \rightarrow ProbPCF^{need}$

$$enc(F\ s_1\dots s_n)=F\ enc(s_1)\ \dots\ enc(s_n)$$
 for all language constructs $F
eq \overset{r}{\oplus}$ $enc(s\overset{r}{\oplus}t)$ = let $f_r=\dots$ in fix $(\lambda g,i,x,y.$ if $(f_r\ i)$ then $x\oplus (g\ (\mathrm{succ}\ i)\ x\ y)$ else $y\oplus (g\ (\mathrm{succ}\ i)\ x\ y)$) $1\ enc(s)\ enc(t)$

where f_r computes the inverted bit expansion $f_r(i) = 1 - b_i$ of $r = \sum_{i=1}^{\infty} \frac{b_i}{2^i}$

$$enc(s\stackrel{r}{\oplus}t)$$
 unfolds to $\begin{pmatrix} ext{let } x=enc(s) ext{ in } \\ ext{let } y=enc(t) ext{ in } \\ (z_1\oplus(z_2\oplus\ldots)) \end{pmatrix}$ where $z_i=\begin{cases} x, & \text{if } b_i=1 \\ y, & \text{if } b_i=0 \end{cases}$

Example

$$(m \stackrel{1/3}{\oplus} n)$$

- the bit-expansion of 1/3 is 0.0101010101010101...
- the inverted sequence can be computed by $f_{1/3} = \lambda i.(i \mod 2)$
- the encoding $s=enc(m \stackrel{1/3}{\oplus} n)=$ let $f_{1/3}=\lambda i.(i \bmod 2)$ in fix ... unfolds to $n\oplus (m\oplus (n\oplus (n\oplus \dots \oplus n))$
- as expected:

$$\mathrm{ExVCv}(s,m) = \sum_{i \in \mathbb{N}} \frac{1}{2^{2(i+1)}} = \frac{1}{3} \text{ and } \mathrm{ExVCv}(s,n) = \sum_{i \in \mathbb{N}} \frac{1}{2^{2i+1}} = \frac{2}{3}$$

Conservativity

Theorem

For every closed s:nat in $ProbPCF^{need}_{\mathbb{R}}$ there exists a distribution-equivalent closed s':nat in $ProbPCF^{need}$.

Proof:

- iteratively replaces each $s \overset{r}{\oplus} t$ with $enc(s \overset{r}{\oplus} t)$.
- each step requires the equation:

for prob-free
$$s,t$$
: $C[s \overset{r}{\oplus} t] \sim_d C[enc(s \overset{r}{\oplus} t)]$

Proving $C[s \oplus t] \sim_d C[enc(s \oplus t)]$

Proposition (Equation in Reduction Contexts)

 $R[s \overset{r}{\oplus} t] \sim_d R[enc(s \overset{r}{\oplus} t)]$ if s, t are prob-free and $R[s \overset{r}{\oplus} t] : nat$ is closed.

 $\text{ExVCv}(R[s \overset{r}{\oplus} t], n) = \text{ExVCv}(R[enc(s \overset{r}{\oplus} t)], n) \text{ is proved by:}$

- For all $k \in \mathbb{N}$: $\text{ExVCv}(R[enc(s \overset{r}{\oplus} t)], n, \overset{k}{k}) \leq \text{ExVCv}(R[s \overset{r}{\oplus} t], n)$

Additional parameter k: at most k prob-steps are permitted

Proposition (Context Lemma for \sim_d)

Let $s,t:\sigma$ and for all closing $R[\cdot_{\sigma}]:nat:R[s]\sim_d R[t]$. Then $C[s,\ldots,s]\leq_d C[t,\ldots,t]$, if $C[\cdot_{1,\sigma}\ldots,\cdot_{n,\sigma}]:nat$ is closing.

Again: the proof uses $\text{ExVCv}(\cdot, \cdot, k)$ where k restricts the number of prob-steps.

Conclusion

Summary

- \bullet extension by real-valued probabilistic choice is conservative w.r.t. \sim_d in Probabilistic Lazy PCF
- we applied the well-known technique exploiting the computable bit-expansion
- ullet proofs on \sim_d : enable inductive proofs by restricting the number of prob-steps

Future Work

- prove the conjecture $\leq_c = \leq_d$
- investigate algorithmic approximations of probabilistic (closed) programs:
 - again by restricting the number of prob-steps in evaluations
 - by restricting the number of sr-steps and perhaps stopping with no result
 - by encodings that stop after performing a limit of prob-steps

Thank You!