YES
Termination Proof
Termination Proof
by ttt2 (version ttt2 1.15)
Input
The rewrite relation of the following TRS is considered.
| 
b(b(x0)) | 
→ | 
a(a(a(x0))) | 
| 
b(a(b(x0))) | 
→ | 
a(x0) | 
| 
b(a(a(x0))) | 
→ | 
b(a(b(x0))) | 
Proof
1 Rule Removal
      Using the
      linear polynomial interpretation over (2 x 2)-matrices with strict dimension 1 
            over the arctic semiring over the integers
| [a(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [b(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
          the
          rules
| 
b(b(x0)) | 
→ | 
a(a(a(x0))) | 
| 
b(a(a(x0))) | 
→ | 
b(a(b(x0))) | 
          remain.
        1.1 String Reversal
        Since only unary symbols occur, one can reverse all terms and obtains the TRS        
        
| 
b(b(x0)) | 
→ | 
a(a(a(x0))) | 
| 
a(a(b(x0))) | 
→ | 
b(a(b(x0))) | 
1.1.1 Bounds
        The given TRS is 
        match-bounded by 3.
        This is shown by the following automaton.
        
- 
final states:
{5, 1}
 
- 
transitions:
| 15 | 
 →  | 
7 | 
| 15 | 
 →  | 
6 | 
| 15 | 
 →  | 
1 | 
| 5 | 
 →  | 
4 | 
| 5 | 
 →  | 
3 | 
| 34 | 
 →  | 
44 | 
| 31 | 
 →  | 
13 | 
| 31 | 
 →  | 
33 | 
| 1 | 
 →  | 
6 | 
| 14 | 
 →  | 
16 | 
| 14 | 
 →  | 
28 | 
| 12 | 
 →  | 
32 | 
| 7 | 
 →  | 
12 | 
| 35 | 
 →  | 
17 | 
| 35 | 
 →  | 
29 | 
| 47 | 
 →  | 
13 | 
| 47 | 
 →  | 
4 | 
| 47 | 
 →  | 
5 | 
| 47 | 
 →  | 
19 | 
| 47 | 
 →  | 
31 | 
| 19 | 
 →  | 
5 | 
| 
a1(18) | 
 →  | 
19 | 
| 
a1(16) | 
 →  | 
17 | 
| 
a1(13) | 
 →  | 
14 | 
| 
a1(17) | 
 →  | 
18 | 
| 
b0(7) | 
 →  | 
5 | 
| 
b0(2) | 
 →  | 
6 | 
| 
b2(34) | 
 →  | 
35 | 
| 
b2(32) | 
 →  | 
33 | 
| 
b3(46) | 
 →  | 
47 | 
| 
b3(44) | 
 →  | 
45 | 
| 
a3(45) | 
 →  | 
46 | 
| 
a2(28) | 
 →  | 
29 | 
| 
a2(30) | 
 →  | 
31 | 
| 
a2(29) | 
 →  | 
30 | 
| 
a2(33) | 
 →  | 
34 | 
| 
a0(3) | 
 →  | 
4 | 
| 
a0(4) | 
 →  | 
1 | 
| 
a0(2) | 
 →  | 
3 | 
| 
a0(6) | 
 →  | 
7 | 
| 
f20
 | 
 →  | 
2 | 
| 
b1(14) | 
 →  | 
15 | 
| 
b1(12) | 
 →  | 
13 |