YES
by ttt2 (version ttt2 1.15)
The rewrite relation of the following TRS is considered.
| 0(1(2(x0))) | → | 2(3(0(3(1(x0))))) |
| 0(0(0(2(x0)))) | → | 3(0(0(3(0(2(x0)))))) |
| 0(0(2(2(x0)))) | → | 2(3(0(0(3(2(x0)))))) |
| 0(1(1(2(x0)))) | → | 2(3(0(3(1(1(x0)))))) |
| 0(1(2(1(x0)))) | → | 0(1(2(4(1(3(x0)))))) |
| 0(1(2(2(x0)))) | → | 2(3(0(3(1(2(x0)))))) |
| 0(1(2(5(x0)))) | → | 2(0(5(3(1(x0))))) |
| 0(1(5(1(x0)))) | → | 1(0(3(5(3(1(x0)))))) |
| 0(1(5(2(x0)))) | → | 2(4(1(0(3(5(x0)))))) |
| 0(1(5(2(x0)))) | → | 2(4(3(1(0(5(x0)))))) |
| 0(1(5(2(x0)))) | → | 3(1(3(0(5(2(x0)))))) |
| 0(1(5(5(x0)))) | → | 1(3(0(5(5(x0))))) |
| 0(2(1(2(x0)))) | → | 2(2(3(0(3(1(x0)))))) |
| 0(2(5(2(x0)))) | → | 2(2(3(0(5(x0))))) |
| 1(1(4(5(x0)))) | → | 5(4(1(3(1(x0))))) |
| 1(5(1(5(x0)))) | → | 1(3(5(5(3(1(x0)))))) |
| 1(5(5(1(x0)))) | → | 1(5(3(1(5(3(x0)))))) |
| 2(0(1(2(x0)))) | → | 2(2(3(0(3(1(x0)))))) |
| 2(0(1(5(x0)))) | → | 2(1(3(0(5(x0))))) |
| 5(0(1(2(x0)))) | → | 3(0(5(3(1(2(x0)))))) |
| 5(0(1(2(x0)))) | → | 4(2(3(0(5(1(x0)))))) |
| 0(0(0(0(1(x0))))) | → | 0(0(1(0(0(3(x0)))))) |
| 0(0(1(2(5(x0))))) | → | 2(0(0(5(3(1(x0)))))) |
| 0(0(1(5(2(x0))))) | → | 0(1(0(3(5(2(x0)))))) |
| 0(1(0(4(5(x0))))) | → | 5(4(0(0(3(1(x0)))))) |
| 0(1(1(1(2(x0))))) | → | 1(0(3(1(1(2(x0)))))) |
| 0(1(2(1(5(x0))))) | → | 2(1(0(5(3(1(x0)))))) |
| 0(1(3(5(2(x0))))) | → | 3(0(4(1(5(2(x0)))))) |
| 0(1(4(2(5(x0))))) | → | 2(4(3(0(5(1(x0)))))) |
| 0(1(4(4(2(x0))))) | → | 1(0(4(4(4(2(x0)))))) |
| 0(1(5(0(1(x0))))) | → | 0(1(1(0(5(3(x0)))))) |
| 0(1(5(0(5(x0))))) | → | 3(5(1(0(5(0(x0)))))) |
| 0(2(4(2(1(x0))))) | → | 2(1(2(4(3(0(x0)))))) |
| 0(4(0(2(1(x0))))) | → | 3(0(4(1(2(0(x0)))))) |
| 0(5(0(1(5(x0))))) | → | 0(5(0(5(3(1(x0)))))) |
| 1(0(0(1(5(x0))))) | → | 5(1(0(0(3(1(x0)))))) |
| 1(0(1(4(5(x0))))) | → | 1(4(4(1(0(5(x0)))))) |
| 1(4(0(1(5(x0))))) | → | 1(4(1(3(0(5(x0)))))) |
| 2(0(1(5(2(x0))))) | → | 2(1(0(3(5(2(x0)))))) |
| 2(0(4(2(1(x0))))) | → | 2(1(4(2(3(0(x0)))))) |
| 2(0(5(1(2(x0))))) | → | 0(3(1(5(2(2(x0)))))) |
| 2(2(1(1(2(x0))))) | → | 2(2(1(3(1(2(x0)))))) |
| 2(5(1(5(2(x0))))) | → | 2(4(1(5(5(2(x0)))))) |
| 5(0(1(4(5(x0))))) | → | 4(1(0(3(5(5(x0)))))) |
| 5(1(0(1(5(x0))))) | → | 3(1(5(1(0(5(x0)))))) |
| 5(4(0(2(1(x0))))) | → | 4(1(3(5(2(0(x0)))))) |
| 5(5(1(4(5(x0))))) | → | 5(4(1(3(5(5(x0)))))) |
final states:
{173, 169, 166, 162, 158, 155, 150, 146, 145, 143, 140, 138, 136, 131, 126, 120, 116, 111, 109, 105, 103, 99, 96, 92, 90, 85, 80, 77, 75, 70, 67, 64, 61, 60, 56, 51, 46, 40, 37, 34, 29, 23, 18, 13, 7, 1}
transitions:
| 23 | → | 121 |
| 111 | → | 121 |
| 61 | → | 9 |
| 61 | → | 121 |
| 205 | → | 122 |
| 29 | → | 121 |
| 80 | → | 122 |
| 80 | → | 41 |
| 103 | → | 121 |
| 51 | → | 121 |
| 181 | → | 23 |
| 181 | → | 188 |
| 96 | → | 121 |
| 136 | → | 123 |
| 136 | → | 47 |
| 136 | → | 121 |
| 211 | → | 122 |
| 145 | → | 132 |
| 145 | → | 8 |
| 18 | → | 121 |
| 120 | → | 121 |
| 146 | → | 132 |
| 146 | → | 8 |
| 37 | → | 121 |
| 34 | → | 121 |
| 90 | → | 121 |
| 99 | → | 121 |
| 1 | → | 121 |
| 40 | → | 121 |
| 13 | → | 121 |
| 60 | → | 9 |
| 60 | → | 121 |
| 60 | → | 8 |
| 26 | → | 176 |
| 26 | → | 199 |
| 177 | → | 206 |
| 138 | → | 3 |
| 150 | → | 132 |
| 150 | → | 8 |
| 173 | → | 57 |
| 173 | → | 41 |
| 116 | → | 121 |
| 109 | → | 121 |
| 75 | → | 132 |
| 75 | → | 8 |
| 105 | → | 121 |
| 67 | → | 3 |
| 143 | → | 3 |
| 85 | → | 121 |
| 169 | → | 41 |
| 77 | → | 122 |
| 77 | → | 41 |
| 140 | → | 3 |
| 7 | → | 121 |
| 126 | → | 9 |
| 126 | → | 121 |
| 64 | → | 19 |
| 64 | → | 3 |
| 46 | → | 121 |
| 189 | → | 132 |
| 162 | → | 122 |
| 162 | → | 41 |
| 158 | → | 8 |
| 131 | → | 121 |
| 92 | → | 121 |
| 70 | → | 3 |
| 166 | → | 81 |
| 166 | → | 41 |
| 56 | → | 121 |
| 155 | → | 151 |
| 155 | → | 8 |
| 31(208) | → | 209 |
| 31(204) | → | 205 |
| 31(177) | → | 178 |
| 31(201) | → | 202 |
| 31(179) | → | 180 |
| 51(206) | → | 207 |
| 51(202) | → | 203 |
| 41(210) | → | 211 |
| 11(176) | → | 177 |
| 11(200) | → | 201 |
| 00(31) | → | 32 |
| 00(137) | → | 136 |
| 00(35) | → | 36 |
| 00(11) | → | 12 |
| 00(78) | → | 79 |
| 00(41) | → | 47 |
| 00(95) | → | 92 |
| 00(86) | → | 87 |
| 00(24) | → | 86 |
| 00(93) | → | 94 |
| 00(8) | → | 9 |
| 00(52) | → | 53 |
| 00(134) | → | 135 |
| 00(89) | → | 85 |
| 00(114) | → | 115 |
| 00(119) | → | 116 |
| 00(71) | → | 117 |
| 00(15) | → | 16 |
| 00(101) | → | 102 |
| 00(42) | → | 43 |
| 00(81) | → | 82 |
| 00(107) | → | 108 |
| 00(10) | → | 11 |
| 00(88) | → | 89 |
| 00(5) | → | 97 |
| 00(4) | → | 5 |
| 00(28) | → | 23 |
| 00(14) | → | 15 |
| 00(36) | → | 91 |
| 00(163) | → | 164 |
| 00(122) | → | 123 |
| 00(2) | → | 121 |
| 00(57) | → | 58 |
| 00(154) | → | 150 |
| 00(20) | → | 21 |
| 00(38) | → | 39 |
| 10(2) | → | 3 |
| 10(132) | → | 133 |
| 10(31) | → | 156 |
| 10(117) | → | 118 |
| 10(159) | → | 160 |
| 10(74) | → | 70 |
| 10(102) | → | 99 |
| 10(152) | → | 153 |
| 10(167) | → | 168 |
| 10(71) | → | 72 |
| 10(129) | → | 130 |
| 10(87) | → | 88 |
| 10(4) | → | 65 |
| 10(59) | → | 56 |
| 10(24) | → | 25 |
| 10(115) | → | 111 |
| 10(144) | → | 143 |
| 10(164) | → | 165 |
| 10(47) | → | 48 |
| 10(8) | → | 30 |
| 10(123) | → | 124 |
| 10(36) | → | 104 |
| 10(27) | → | 28 |
| 10(163) | → | 174 |
| 10(54) | → | 55 |
| 10(97) | → | 139 |
| 10(148) | → | 149 |
| 10(118) | → | 119 |
| 10(62) | → | 76 |
| 10(69) | → | 67 |
| 10(39) | → | 37 |
| 10(142) | → | 140 |
| 10(3) | → | 19 |
| 10(52) | → | 106 |
| 10(43) | → | 44 |
| 10(94) | → | 95 |
| 10(171) | → | 172 |
| 10(30) | → | 100 |
| 30(100) | → | 101 |
| 30(170) | → | 171 |
| 30(41) | → | 42 |
| 30(30) | → | 31 |
| 30(19) | → | 20 |
| 30(108) | → | 105 |
| 30(58) | → | 59 |
| 30(35) | → | 38 |
| 30(8) | → | 14 |
| 30(125) | → | 120 |
| 30(168) | → | 166 |
| 30(32) | → | 33 |
| 30(79) | → | 77 |
| 30(55) | → | 51 |
| 30(82) | → | 83 |
| 30(3) | → | 4 |
| 30(47) | → | 62 |
| 30(121) | → | 127 |
| 30(57) | → | 163 |
| 30(9) | → | 10 |
| 30(12) | → | 7 |
| 30(72) | → | 73 |
| 30(135) | → | 131 |
| 30(21) | → | 22 |
| 30(53) | → | 54 |
| 30(48) | → | 49 |
| 30(5) | → | 6 |
| 30(2) | → | 24 |
| 30(153) | → | 154 |
| 30(68) | → | 69 |
| 30(16) | → | 17 |
| 30(52) | → | 93 |
| 40(25) | → | 26 |
| 40(106) | → | 107 |
| 40(112) | → | 113 |
| 40(8) | → | 112 |
| 40(160) | → | 161 |
| 40(97) | → | 98 |
| 40(172) | → | 169 |
| 40(141) | → | 142 |
| 40(44) | → | 45 |
| 40(84) | → | 80 |
| 40(147) | → | 148 |
| 40(83) | → | 110 |
| 40(49) | → | 50 |
| 40(48) | → | 141 |
| 40(165) | → | 162 |
| 40(133) | → | 134 |
| 40(65) | → | 66 |
| 40(76) | → | 144 |
| 40(174) | → | 175 |
| 40(127) | → | 128 |
| 40(113) | → | 114 |
| 50(31) | → | 78 |
| 50(132) | → | 170 |
| 50(121) | → | 122 |
| 50(48) | → | 167 |
| 50(24) | → | 71 |
| 50(175) | → | 173 |
| 50(139) | → | 138 |
| 50(98) | → | 96 |
| 50(73) | → | 74 |
| 50(66) | → | 64 |
| 50(4) | → | 35 |
| 50(151) | → | 152 |
| 50(2) | → | 41 |
| 50(3) | → | 81 |
| 50(36) | → | 137 |
| 50(41) | → | 57 |
| 50(124) | → | 125 |
| 50(35) | → | 68 |
| 50(8) | → | 52 |
| 50(52) | → | 159 |
| f60 | → | 2 |
| 20(2) | → | 8 |
| 20(157) | → | 155 |
| 20(149) | → | 146 |
| 20(156) | → | 157 |
| 20(91) | → | 90 |
| 20(128) | → | 129 |
| 20(110) | → | 109 |
| 20(50) | → | 46 |
| 20(95) | → | 145 |
| 20(36) | → | 34 |
| 20(8) | → | 151 |
| 20(63) | → | 61 |
| 20(26) | → | 27 |
| 20(104) | → | 103 |
| 20(76) | → | 75 |
| 20(17) | → | 13 |
| 20(6) | → | 1 |
| 20(83) | → | 84 |
| 20(62) | → | 63 |
| 20(121) | → | 132 |
| 20(161) | → | 158 |
| 20(1) | → | 60 |
| 20(130) | → | 126 |
| 20(33) | → | 29 |
| 20(45) | → | 40 |
| 20(22) | → | 18 |
| 20(127) | → | 147 |
| 01(207) | → | 208 |
| 01(203) | → | 204 |
| 01(178) | → | 179 |
| 21(199) | → | 200 |
| 21(180) | → | 181 |
| 21(188) | → | 189 |
| 21(209) | → | 210 |