YES
by ttt2 (version ttt2 1.15)
The rewrite relation of the following TRS is considered.
| 0(1(2(x0))) | → | 1(3(0(2(x0)))) |
| 0(1(2(x0))) | → | 3(1(2(0(x0)))) |
| 0(1(2(x0))) | → | 2(0(4(1(3(x0))))) |
| 0(1(2(x0))) | → | 3(0(2(1(3(x0))))) |
| 0(1(2(x0))) | → | 3(3(0(2(1(x0))))) |
| 0(1(2(x0))) | → | 1(3(3(0(2(3(x0)))))) |
| 0(1(2(x0))) | → | 2(0(4(3(1(3(x0)))))) |
| 0(1(2(x0))) | → | 3(0(1(3(1(2(x0)))))) |
| 0(1(2(x0))) | → | 3(0(5(3(1(2(x0)))))) |
| 0(5(2(x0))) | → | 1(5(0(2(x0)))) |
| 0(5(2(x0))) | → | 3(5(0(2(x0)))) |
| 0(5(2(x0))) | → | 3(0(5(1(2(x0))))) |
| 0(5(2(x0))) | → | 3(5(3(0(2(x0))))) |
| 0(5(2(x0))) | → | 1(5(5(3(0(2(x0)))))) |
| 0(5(2(x0))) | → | 5(0(4(3(1(2(x0)))))) |
| 1(5(2(x0))) | → | 5(3(1(2(x0)))) |
| 1(5(2(x0))) | → | 1(5(3(1(2(x0))))) |
| 0(0(5(4(x0)))) | → | 5(3(0(4(0(0(x0)))))) |
| 0(1(0(1(x0)))) | → | 1(1(3(0(3(0(x0)))))) |
| 0(1(1(2(x0)))) | → | 2(1(1(3(0(2(x0)))))) |
| 0(1(2(5(x0)))) | → | 3(0(5(1(2(x0))))) |
| 0(1(2(5(x0)))) | → | 3(5(3(1(2(0(x0)))))) |
| 0(1(3(2(x0)))) | → | 3(0(2(1(3(5(x0)))))) |
| 0(1(4(2(x0)))) | → | 3(0(0(4(1(2(x0)))))) |
| 0(1(4(2(x0)))) | → | 4(0(1(3(1(2(x0)))))) |
| 0(5(2(4(x0)))) | → | 5(5(3(0(2(4(x0)))))) |
| 0(5(2(5(x0)))) | → | 0(2(3(5(5(x0))))) |
| 0(5(3(2(x0)))) | → | 3(0(2(1(5(x0))))) |
| 0(5(3(2(x0)))) | → | 5(3(1(4(0(2(x0)))))) |
| 1(0(3(4(x0)))) | → | 1(0(4(1(3(x0))))) |
| 1(5(3(2(x0)))) | → | 3(1(3(5(2(x0))))) |
| 5(0(1(2(x0)))) | → | 1(5(0(4(1(2(x0)))))) |
| 5(1(0(2(x0)))) | → | 3(1(5(0(2(x0))))) |
| 5(1(1(2(x0)))) | → | 1(3(5(2(1(3(x0)))))) |
| 5(1(5(2(x0)))) | → | 1(3(5(5(2(x0))))) |
| 0(0(1(3(2(x0))))) | → | 0(3(1(2(0(3(x0)))))) |
| 0(0(5(3(2(x0))))) | → | 0(3(0(3(2(5(x0)))))) |
| 0(1(0(3(4(x0))))) | → | 4(0(1(3(0(3(x0)))))) |
| 0(1(0(5(4(x0))))) | → | 3(0(4(0(1(5(x0)))))) |
| 0(1(2(4(4(x0))))) | → | 0(4(1(2(1(4(x0)))))) |
| 0(1(5(3(2(x0))))) | → | 1(2(3(0(4(5(x0)))))) |
| 0(5(4(2(4(x0))))) | → | 4(5(3(0(4(2(x0)))))) |
| 0(5(4(4(2(x0))))) | → | 0(4(4(3(5(2(x0)))))) |
| 1(0(1(3(4(x0))))) | → | 4(1(1(3(0(3(x0)))))) |
| 1(0(3(4(5(x0))))) | → | 2(1(3(0(4(5(x0)))))) |
| 1(1(3(4(2(x0))))) | → | 2(5(1(3(1(4(x0)))))) |
| 1(5(3(2(2(x0))))) | → | 2(3(5(3(1(2(x0)))))) |
| 5(0(5(2(4(x0))))) | → | 5(1(5(0(4(2(x0)))))) |
| 5(1(0(5(2(x0))))) | → | 1(5(0(2(3(5(x0)))))) |
| 5(1(1(2(1(x0))))) | → | 3(1(2(5(1(1(x0)))))) |
final states:
{164, 160, 157, 155, 151, 149, 147, 144, 139, 134, 129, 125, 121, 116, 111, 108, 105, 104, 102, 98, 97, 93, 89, 85, 79, 78, 74, 68, 66, 64, 59, 54, 53, 38, 50, 48, 46, 43, 42, 40, 37, 32, 28, 23, 18, 15, 10, 6, 1}
transitions:
| 78 | → | 7 |
| 157 | → | 69 |
| 23 | → | 7 |
| 111 | → | 55 |
| 111 | → | 7 |
| 102 | → | 69 |
| 32 | → | 7 |
| 89 | → | 7 |
| 98 | → | 90 |
| 98 | → | 19 |
| 10 | → | 7 |
| 97 | → | 19 |
| 15 | → | 7 |
| 129 | → | 7 |
| 149 | → | 19 |
| 260 | → | 227 |
| 18 | → | 7 |
| 184 | → | 177 |
| 50 | → | 7 |
| 213 | → | 226 |
| 213 | → | 247 |
| 108 | → | 69 |
| 134 | → | 126 |
| 134 | → | 7 |
| 147 | → | 19 |
| 37 | → | 7 |
| 59 | → | 7 |
| 65 | → | 176 |
| 31 | → | 189 |
| 246 | → | 193 |
| 1 | → | 7 |
| 40 | → | 7 |
| 60 | → | 69 |
| 139 | → | 7 |
| 125 | → | 7 |
| 38 | → | 90 |
| 38 | → | 19 |
| 79 | → | 7 |
| 233 | → | 209 |
| 248 | → | 213 |
| 257 | → | 259 |
| 121 | → | 7 |
| 6 | → | 7 |
| 116 | → | 55 |
| 116 | → | 7 |
| 54 | → | 55 |
| 54 | → | 7 |
| 105 | → | 166 |
| 105 | → | 69 |
| 53 | → | 90 |
| 53 | → | 19 |
| 28 | → | 7 |
| 212 | → | 243 |
| 258 | → | 227 |
| 66 | → | 7 |
| 14 | → | 183 |
| 93 | → | 7 |
| 85 | → | 7 |
| 182 | → | 126 |
| 42 | → | 7 |
| 137 | → | 191 |
| 137 | → | 206 |
| 137 | → | 211 |
| 137 | → | 229 |
| 64 | → | 7 |
| 216 | → | 55 |
| 46 | → | 7 |
| 48 | → | 7 |
| 160 | → | 69 |
| 190 | → | 177 |
| 164 | → | 166 |
| 164 | → | 69 |
| 68 | → | 7 |
| 74 | → | 7 |
| 195 | → | 55 |
| 144 | → | 7 |
| 43 | → | 7 |
| 210 | → | 55 |
| 151 | → | 165 |
| 151 | → | 19 |
| 155 | → | 90 |
| 155 | → | 19 |
| 192 | → | 255 |
| 228 | → | 209 |
| f60 | → | 2 |
| 50(16) | → | 106 |
| 50(99) | → | 109 |
| 50(96) | → | 93 |
| 50(34) | → | 38 |
| 50(5) | → | 47 |
| 50(69) | → | 86 |
| 50(6) | → | 67 |
| 50(165) | → | 166 |
| 50(84) | → | 79 |
| 50(76) | → | 103 |
| 50(4) | → | 41 |
| 50(162) | → | 163 |
| 50(83) | → | 84 |
| 50(2) | → | 69 |
| 50(3) | → | 99 |
| 50(142) | → | 143 |
| 50(58) | → | 54 |
| 50(52) | → | 50 |
| 50(33) | → | 44 |
| 50(47) | → | 49 |
| 50(153) | → | 154 |
| 50(159) | → | 157 |
| 50(141) | → | 158 |
| 11(208) | → | 209 |
| 11(255) | → | 256 |
| 11(178) | → | 179 |
| 11(229) | → | 230 |
| 11(194) | → | 195 |
| 11(257) | → | 258 |
| 11(212) | → | 213 |
| 41(213) | → | 214 |
| 30(114) | → | 115 |
| 30(106) | → | 107 |
| 30(33) | → | 34 |
| 30(73) | → | 68 |
| 30(26) | → | 27 |
| 30(41) | → | 42 |
| 30(86) | → | 87 |
| 30(7) | → | 60 |
| 30(130) | → | 152 |
| 30(136) | → | 137 |
| 30(45) | → | 43 |
| 30(112) | → | 122 |
| 30(168) | → | 164 |
| 30(99) | → | 100 |
| 30(95) | → | 96 |
| 30(38) | → | 156 |
| 30(77) | → | 74 |
| 30(92) | → | 89 |
| 30(109) | → | 110 |
| 30(36) | → | 32 |
| 30(82) | → | 83 |
| 30(47) | → | 46 |
| 30(40) | → | 104 |
| 30(69) | → | 70 |
| 30(57) | → | 58 |
| 30(9) | → | 6 |
| 30(25) | → | 26 |
| 30(12) | → | 29 |
| 30(101) | → | 98 |
| 30(128) | → | 125 |
| 30(61) | → | 62 |
| 30(21) | → | 22 |
| 30(117) | → | 118 |
| 30(67) | → | 66 |
| 30(119) | → | 120 |
| 30(17) | → | 15 |
| 30(2) | → | 11 |
| 30(141) | → | 142 |
| 30(4) | → | 5 |
| 30(39) | → | 37 |
| 30(22) | → | 18 |
| 51(183) | → | 184 |
| 51(259) | → | 260 |
| 51(189) | → | 190 |
| 51(176) | → | 177 |
| 00(51) | → | 52 |
| 00(16) | → | 17 |
| 00(115) | → | 111 |
| 00(35) | → | 36 |
| 00(11) | → | 112 |
| 00(127) | → | 128 |
| 00(146) | → | 144 |
| 00(30) | → | 31 |
| 00(120) | → | 116 |
| 00(3) | → | 4 |
| 00(7) | → | 55 |
| 00(44) | → | 45 |
| 00(91) | → | 92 |
| 00(24) | → | 25 |
| 00(123) | → | 124 |
| 00(135) | → | 136 |
| 00(140) | → | 141 |
| 00(133) | → | 129 |
| 00(56) | → | 57 |
| 00(118) | → | 119 |
| 00(60) | → | 61 |
| 00(75) | → | 76 |
| 00(72) | → | 73 |
| 00(161) | → | 162 |
| 00(76) | → | 77 |
| 00(13) | → | 14 |
| 00(81) | → | 82 |
| 00(88) | → | 85 |
| 00(90) | → | 126 |
| 00(2) | → | 7 |
| 00(20) | → | 21 |
| 00(38) | → | 39 |
| 31(232) | → | 233 |
| 31(211) | → | 212 |
| 31(177) | → | 178 |
| 31(247) | → | 248 |
| 31(193) | → | 194 |
| 31(181) | → | 182 |
| 31(209) | → | 210 |
| 31(256) | → | 257 |
| 31(245) | → | 246 |
| 20(2) | → | 3 |
| 20(31) | → | 28 |
| 20(71) | → | 72 |
| 20(19) | → | 20 |
| 20(87) | → | 88 |
| 20(112) | → | 113 |
| 20(80) | → | 81 |
| 20(150) | → | 149 |
| 20(70) | → | 161 |
| 20(12) | → | 16 |
| 20(11) | → | 24 |
| 20(14) | → | 10 |
| 20(154) | → | 151 |
| 20(137) | → | 138 |
| 20(156) | → | 155 |
| 20(90) | → | 91 |
| 20(69) | → | 117 |
| 20(166) | → | 167 |
| 20(130) | → | 131 |
| 20(7) | → | 8 |
| 20(65) | → | 64 |
| 10(2) | → | 19 |
| 10(167) | → | 168 |
| 10(163) | → | 160 |
| 10(123) | → | 148 |
| 10(49) | → | 48 |
| 10(110) | → | 108 |
| 10(19) | → | 165 |
| 10(80) | → | 130 |
| 10(113) | → | 114 |
| 10(152) | → | 153 |
| 10(131) | → | 132 |
| 10(107) | → | 105 |
| 10(8) | → | 9 |
| 10(63) | → | 59 |
| 10(138) | → | 134 |
| 10(38) | → | 53 |
| 10(3) | → | 33 |
| 10(11) | → | 12 |
| 10(14) | → | 97 |
| 10(100) | → | 101 |
| 10(62) | → | 63 |
| 10(70) | → | 71 |
| 10(94) | → | 95 |
| 10(1) | → | 65 |
| 10(137) | → | 150 |
| 10(27) | → | 23 |
| 10(103) | → | 102 |
| 10(34) | → | 35 |
| 10(41) | → | 40 |
| 10(5) | → | 1 |
| 10(158) | → | 159 |
| 10(122) | → | 123 |
| 10(69) | → | 90 |
| 01(231) | → | 232 |
| 01(192) | → | 193 |
| 01(214) | → | 215 |
| 01(206) | → | 207 |
| 01(180) | → | 181 |
| 01(244) | → | 245 |
| 01(227) | → | 228 |
| 21(179) | → | 180 |
| 21(207) | → | 208 |
| 21(226) | → | 227 |
| 21(230) | → | 231 |
| 21(215) | → | 216 |
| 21(191) | → | 192 |
| 21(243) | → | 244 |
| 40(29) | → | 30 |
| 40(143) | → | 139 |
| 40(100) | → | 145 |
| 40(132) | → | 133 |
| 40(69) | → | 135 |
| 40(124) | → | 121 |
| 40(36) | → | 78 |
| 40(4) | → | 94 |
| 40(148) | → | 147 |
| 40(145) | → | 146 |
| 40(3) | → | 140 |
| 40(34) | → | 51 |
| 40(126) | → | 127 |
| 40(33) | → | 75 |
| 40(12) | → | 13 |
| 40(55) | → | 56 |
| 40(2) | → | 80 |