YES
by ttt2 (version ttt2 1.15)
The rewrite relation of the following TRS is considered.
| 0(1(2(x0))) | → | 1(3(0(2(x0)))) | 
| 0(1(2(x0))) | → | 3(1(2(0(x0)))) | 
| 0(1(2(x0))) | → | 2(0(4(1(3(x0))))) | 
| 0(1(2(x0))) | → | 3(0(2(1(3(x0))))) | 
| 0(1(2(x0))) | → | 3(3(0(2(1(x0))))) | 
| 0(1(2(x0))) | → | 1(3(3(0(2(3(x0)))))) | 
| 0(1(2(x0))) | → | 2(0(4(3(1(3(x0)))))) | 
| 0(1(2(x0))) | → | 3(0(1(3(1(2(x0)))))) | 
| 0(1(2(x0))) | → | 3(0(5(3(1(2(x0)))))) | 
| 0(5(2(x0))) | → | 1(5(0(2(x0)))) | 
| 0(5(2(x0))) | → | 3(5(0(2(x0)))) | 
| 0(5(2(x0))) | → | 3(0(5(1(2(x0))))) | 
| 0(5(2(x0))) | → | 3(5(3(0(2(x0))))) | 
| 0(5(2(x0))) | → | 1(5(5(3(0(2(x0)))))) | 
| 0(5(2(x0))) | → | 5(0(4(3(1(2(x0)))))) | 
| 1(5(2(x0))) | → | 5(3(1(2(x0)))) | 
| 1(5(2(x0))) | → | 1(5(3(1(2(x0))))) | 
| 0(0(5(4(x0)))) | → | 5(3(0(4(0(0(x0)))))) | 
| 0(1(0(1(x0)))) | → | 1(1(3(0(3(0(x0)))))) | 
| 0(1(1(2(x0)))) | → | 2(1(1(3(0(2(x0)))))) | 
| 0(1(2(5(x0)))) | → | 3(0(5(1(2(x0))))) | 
| 0(1(2(5(x0)))) | → | 3(5(3(1(2(0(x0)))))) | 
| 0(1(3(2(x0)))) | → | 3(0(2(1(3(5(x0)))))) | 
| 0(1(4(2(x0)))) | → | 3(0(0(4(1(2(x0)))))) | 
| 0(1(4(2(x0)))) | → | 4(0(1(3(1(2(x0)))))) | 
| 0(5(2(4(x0)))) | → | 5(5(3(0(2(4(x0)))))) | 
| 0(5(2(5(x0)))) | → | 0(2(3(5(5(x0))))) | 
| 0(5(3(2(x0)))) | → | 3(0(2(1(5(x0))))) | 
| 0(5(3(2(x0)))) | → | 5(3(1(4(0(2(x0)))))) | 
| 1(0(3(4(x0)))) | → | 1(0(4(1(3(x0))))) | 
| 1(5(3(2(x0)))) | → | 3(1(3(5(2(x0))))) | 
| 5(0(1(2(x0)))) | → | 1(5(0(4(1(2(x0)))))) | 
| 5(1(0(2(x0)))) | → | 3(1(5(0(2(x0))))) | 
| 5(1(1(2(x0)))) | → | 1(3(5(2(1(3(x0)))))) | 
| 5(1(5(2(x0)))) | → | 1(3(5(5(2(x0))))) | 
| 0(0(1(3(2(x0))))) | → | 0(3(1(2(0(3(x0)))))) | 
| 0(0(5(3(2(x0))))) | → | 0(3(0(3(2(5(x0)))))) | 
| 0(1(0(3(4(x0))))) | → | 4(0(1(3(0(3(x0)))))) | 
| 0(1(0(5(4(x0))))) | → | 3(0(4(0(1(5(x0)))))) | 
| 0(1(2(4(4(x0))))) | → | 0(4(1(2(1(4(x0)))))) | 
| 0(1(5(3(2(x0))))) | → | 1(2(3(0(4(5(x0)))))) | 
| 0(5(4(2(4(x0))))) | → | 4(5(3(0(4(2(x0)))))) | 
| 0(5(4(4(2(x0))))) | → | 0(4(4(3(5(2(x0)))))) | 
| 1(0(1(3(4(x0))))) | → | 4(1(1(3(0(3(x0)))))) | 
| 1(0(3(4(5(x0))))) | → | 2(1(3(0(4(5(x0)))))) | 
| 1(1(3(4(2(x0))))) | → | 2(5(1(3(1(4(x0)))))) | 
| 1(5(3(2(2(x0))))) | → | 2(3(5(3(1(2(x0)))))) | 
| 5(0(5(2(4(x0))))) | → | 5(1(5(0(4(2(x0)))))) | 
| 5(1(0(5(2(x0))))) | → | 1(5(0(2(3(5(x0)))))) | 
| 5(1(1(2(1(x0))))) | → | 3(1(2(5(1(1(x0)))))) | 
final states:
{164, 160, 157, 155, 151, 149, 147, 144, 139, 134, 129, 125, 121, 116, 111, 108, 105, 104, 102, 98, 97, 93, 89, 85, 79, 78, 74, 68, 66, 64, 59, 54, 53, 38, 50, 48, 46, 43, 42, 40, 37, 32, 28, 23, 18, 15, 10, 6, 1}
transitions:
| 78 | → | 7 | 
| 157 | → | 69 | 
| 23 | → | 7 | 
| 111 | → | 55 | 
| 111 | → | 7 | 
| 102 | → | 69 | 
| 32 | → | 7 | 
| 89 | → | 7 | 
| 98 | → | 90 | 
| 98 | → | 19 | 
| 10 | → | 7 | 
| 97 | → | 19 | 
| 15 | → | 7 | 
| 129 | → | 7 | 
| 149 | → | 19 | 
| 260 | → | 227 | 
| 18 | → | 7 | 
| 184 | → | 177 | 
| 50 | → | 7 | 
| 213 | → | 226 | 
| 213 | → | 247 | 
| 108 | → | 69 | 
| 134 | → | 126 | 
| 134 | → | 7 | 
| 147 | → | 19 | 
| 37 | → | 7 | 
| 59 | → | 7 | 
| 65 | → | 176 | 
| 31 | → | 189 | 
| 246 | → | 193 | 
| 1 | → | 7 | 
| 40 | → | 7 | 
| 60 | → | 69 | 
| 139 | → | 7 | 
| 125 | → | 7 | 
| 38 | → | 90 | 
| 38 | → | 19 | 
| 79 | → | 7 | 
| 233 | → | 209 | 
| 248 | → | 213 | 
| 257 | → | 259 | 
| 121 | → | 7 | 
| 6 | → | 7 | 
| 116 | → | 55 | 
| 116 | → | 7 | 
| 54 | → | 55 | 
| 54 | → | 7 | 
| 105 | → | 166 | 
| 105 | → | 69 | 
| 53 | → | 90 | 
| 53 | → | 19 | 
| 28 | → | 7 | 
| 212 | → | 243 | 
| 258 | → | 227 | 
| 66 | → | 7 | 
| 14 | → | 183 | 
| 93 | → | 7 | 
| 85 | → | 7 | 
| 182 | → | 126 | 
| 42 | → | 7 | 
| 137 | → | 191 | 
| 137 | → | 206 | 
| 137 | → | 211 | 
| 137 | → | 229 | 
| 64 | → | 7 | 
| 216 | → | 55 | 
| 46 | → | 7 | 
| 48 | → | 7 | 
| 160 | → | 69 | 
| 190 | → | 177 | 
| 164 | → | 166 | 
| 164 | → | 69 | 
| 68 | → | 7 | 
| 74 | → | 7 | 
| 195 | → | 55 | 
| 144 | → | 7 | 
| 43 | → | 7 | 
| 210 | → | 55 | 
| 151 | → | 165 | 
| 151 | → | 19 | 
| 155 | → | 90 | 
| 155 | → | 19 | 
| 192 | → | 255 | 
| 228 | → | 209 | 
| f60 | → | 2 | 
| 50(16) | → | 106 | 
| 50(99) | → | 109 | 
| 50(96) | → | 93 | 
| 50(34) | → | 38 | 
| 50(5) | → | 47 | 
| 50(69) | → | 86 | 
| 50(6) | → | 67 | 
| 50(165) | → | 166 | 
| 50(84) | → | 79 | 
| 50(76) | → | 103 | 
| 50(4) | → | 41 | 
| 50(162) | → | 163 | 
| 50(83) | → | 84 | 
| 50(2) | → | 69 | 
| 50(3) | → | 99 | 
| 50(142) | → | 143 | 
| 50(58) | → | 54 | 
| 50(52) | → | 50 | 
| 50(33) | → | 44 | 
| 50(47) | → | 49 | 
| 50(153) | → | 154 | 
| 50(159) | → | 157 | 
| 50(141) | → | 158 | 
| 11(208) | → | 209 | 
| 11(255) | → | 256 | 
| 11(178) | → | 179 | 
| 11(229) | → | 230 | 
| 11(194) | → | 195 | 
| 11(257) | → | 258 | 
| 11(212) | → | 213 | 
| 41(213) | → | 214 | 
| 30(114) | → | 115 | 
| 30(106) | → | 107 | 
| 30(33) | → | 34 | 
| 30(73) | → | 68 | 
| 30(26) | → | 27 | 
| 30(41) | → | 42 | 
| 30(86) | → | 87 | 
| 30(7) | → | 60 | 
| 30(130) | → | 152 | 
| 30(136) | → | 137 | 
| 30(45) | → | 43 | 
| 30(112) | → | 122 | 
| 30(168) | → | 164 | 
| 30(99) | → | 100 | 
| 30(95) | → | 96 | 
| 30(38) | → | 156 | 
| 30(77) | → | 74 | 
| 30(92) | → | 89 | 
| 30(109) | → | 110 | 
| 30(36) | → | 32 | 
| 30(82) | → | 83 | 
| 30(47) | → | 46 | 
| 30(40) | → | 104 | 
| 30(69) | → | 70 | 
| 30(57) | → | 58 | 
| 30(9) | → | 6 | 
| 30(25) | → | 26 | 
| 30(12) | → | 29 | 
| 30(101) | → | 98 | 
| 30(128) | → | 125 | 
| 30(61) | → | 62 | 
| 30(21) | → | 22 | 
| 30(117) | → | 118 | 
| 30(67) | → | 66 | 
| 30(119) | → | 120 | 
| 30(17) | → | 15 | 
| 30(2) | → | 11 | 
| 30(141) | → | 142 | 
| 30(4) | → | 5 | 
| 30(39) | → | 37 | 
| 30(22) | → | 18 | 
| 51(183) | → | 184 | 
| 51(259) | → | 260 | 
| 51(189) | → | 190 | 
| 51(176) | → | 177 | 
| 00(51) | → | 52 | 
| 00(16) | → | 17 | 
| 00(115) | → | 111 | 
| 00(35) | → | 36 | 
| 00(11) | → | 112 | 
| 00(127) | → | 128 | 
| 00(146) | → | 144 | 
| 00(30) | → | 31 | 
| 00(120) | → | 116 | 
| 00(3) | → | 4 | 
| 00(7) | → | 55 | 
| 00(44) | → | 45 | 
| 00(91) | → | 92 | 
| 00(24) | → | 25 | 
| 00(123) | → | 124 | 
| 00(135) | → | 136 | 
| 00(140) | → | 141 | 
| 00(133) | → | 129 | 
| 00(56) | → | 57 | 
| 00(118) | → | 119 | 
| 00(60) | → | 61 | 
| 00(75) | → | 76 | 
| 00(72) | → | 73 | 
| 00(161) | → | 162 | 
| 00(76) | → | 77 | 
| 00(13) | → | 14 | 
| 00(81) | → | 82 | 
| 00(88) | → | 85 | 
| 00(90) | → | 126 | 
| 00(2) | → | 7 | 
| 00(20) | → | 21 | 
| 00(38) | → | 39 | 
| 31(232) | → | 233 | 
| 31(211) | → | 212 | 
| 31(177) | → | 178 | 
| 31(247) | → | 248 | 
| 31(193) | → | 194 | 
| 31(181) | → | 182 | 
| 31(209) | → | 210 | 
| 31(256) | → | 257 | 
| 31(245) | → | 246 | 
| 20(2) | → | 3 | 
| 20(31) | → | 28 | 
| 20(71) | → | 72 | 
| 20(19) | → | 20 | 
| 20(87) | → | 88 | 
| 20(112) | → | 113 | 
| 20(80) | → | 81 | 
| 20(150) | → | 149 | 
| 20(70) | → | 161 | 
| 20(12) | → | 16 | 
| 20(11) | → | 24 | 
| 20(14) | → | 10 | 
| 20(154) | → | 151 | 
| 20(137) | → | 138 | 
| 20(156) | → | 155 | 
| 20(90) | → | 91 | 
| 20(69) | → | 117 | 
| 20(166) | → | 167 | 
| 20(130) | → | 131 | 
| 20(7) | → | 8 | 
| 20(65) | → | 64 | 
| 10(2) | → | 19 | 
| 10(167) | → | 168 | 
| 10(163) | → | 160 | 
| 10(123) | → | 148 | 
| 10(49) | → | 48 | 
| 10(110) | → | 108 | 
| 10(19) | → | 165 | 
| 10(80) | → | 130 | 
| 10(113) | → | 114 | 
| 10(152) | → | 153 | 
| 10(131) | → | 132 | 
| 10(107) | → | 105 | 
| 10(8) | → | 9 | 
| 10(63) | → | 59 | 
| 10(138) | → | 134 | 
| 10(38) | → | 53 | 
| 10(3) | → | 33 | 
| 10(11) | → | 12 | 
| 10(14) | → | 97 | 
| 10(100) | → | 101 | 
| 10(62) | → | 63 | 
| 10(70) | → | 71 | 
| 10(94) | → | 95 | 
| 10(1) | → | 65 | 
| 10(137) | → | 150 | 
| 10(27) | → | 23 | 
| 10(103) | → | 102 | 
| 10(34) | → | 35 | 
| 10(41) | → | 40 | 
| 10(5) | → | 1 | 
| 10(158) | → | 159 | 
| 10(122) | → | 123 | 
| 10(69) | → | 90 | 
| 01(231) | → | 232 | 
| 01(192) | → | 193 | 
| 01(214) | → | 215 | 
| 01(206) | → | 207 | 
| 01(180) | → | 181 | 
| 01(244) | → | 245 | 
| 01(227) | → | 228 | 
| 21(179) | → | 180 | 
| 21(207) | → | 208 | 
| 21(226) | → | 227 | 
| 21(230) | → | 231 | 
| 21(215) | → | 216 | 
| 21(191) | → | 192 | 
| 21(243) | → | 244 | 
| 40(29) | → | 30 | 
| 40(143) | → | 139 | 
| 40(100) | → | 145 | 
| 40(132) | → | 133 | 
| 40(69) | → | 135 | 
| 40(124) | → | 121 | 
| 40(36) | → | 78 | 
| 40(4) | → | 94 | 
| 40(148) | → | 147 | 
| 40(145) | → | 146 | 
| 40(3) | → | 140 | 
| 40(34) | → | 51 | 
| 40(126) | → | 127 | 
| 40(33) | → | 75 | 
| 40(12) | → | 13 | 
| 40(55) | → | 56 | 
| 40(2) | → | 80 |