YES
by ttt2 (version ttt2 1.15)
The rewrite relation of the following TRS is considered.
| 0(0(x0)) | → | 0(1(0(2(x0)))) | 
| 0(0(x0)) | → | 1(0(2(0(x0)))) | 
| 0(0(x0)) | → | 1(0(1(0(1(x0))))) | 
| 0(0(x0)) | → | 1(0(1(2(0(x0))))) | 
| 0(0(x0)) | → | 1(0(2(0(3(x0))))) | 
| 0(0(x0)) | → | 1(0(2(2(0(x0))))) | 
| 0(0(x0)) | → | 2(1(0(2(0(x0))))) | 
| 0(0(x0)) | → | 0(1(0(2(1(2(x0)))))) | 
| 0(0(x0)) | → | 1(0(1(0(2(2(x0)))))) | 
| 0(0(x0)) | → | 1(0(1(3(0(1(x0)))))) | 
| 0(0(x0)) | → | 1(0(4(1(0(2(x0)))))) | 
| 0(0(x0)) | → | 1(1(1(0(2(0(x0)))))) | 
| 0(0(x0)) | → | 3(0(4(0(2(2(x0)))))) | 
| 0(0(x0)) | → | 3(1(0(1(0(4(x0)))))) | 
| 0(0(0(x0))) | → | 0(1(0(4(0(4(x0)))))) | 
| 0(0(0(x0))) | → | 3(0(0(1(0(2(x0)))))) | 
| 3(0(0(x0))) | → | 3(0(2(0(3(x0))))) | 
| 3(0(0(x0))) | → | 3(0(2(4(0(2(x0)))))) | 
| 5(2(0(x0))) | → | 0(2(3(5(x0)))) | 
| 5(2(0(x0))) | → | 3(5(0(2(x0)))) | 
| 5(2(0(x0))) | → | 0(2(3(3(5(x0))))) | 
| 5(2(0(x0))) | → | 1(0(2(3(5(x0))))) | 
| 5(2(0(x0))) | → | 5(1(0(2(4(x0))))) | 
| 5(2(0(x0))) | → | 5(0(1(2(2(2(x0)))))) | 
| 5(2(0(x0))) | → | 5(3(5(1(0(2(x0)))))) | 
| 0(5(2(0(x0)))) | → | 0(5(0(2(2(x0))))) | 
| 3(4(0(0(x0)))) | → | 0(3(3(0(4(5(x0)))))) | 
| 3(4(0(0(x0)))) | → | 3(0(4(5(3(0(x0)))))) | 
| 5(1(0(0(x0)))) | → | 0(3(1(0(1(5(x0)))))) | 
| 5(1(4(0(x0)))) | → | 0(1(5(2(4(x0))))) | 
| 5(1(5(0(x0)))) | → | 5(1(0(3(5(x0))))) | 
| 5(2(2(0(x0)))) | → | 0(2(1(2(4(5(x0)))))) | 
| 5(3(2(0(x0)))) | → | 5(3(0(1(2(x0))))) | 
| 5(3(2(0(x0)))) | → | 3(3(5(3(0(2(x0)))))) | 
| 5(4(0(0(x0)))) | → | 0(4(5(5(0(2(x0)))))) | 
| 5(4(2(0(x0)))) | → | 2(4(3(5(0(x0))))) | 
| 5(4(2(0(x0)))) | → | 5(0(2(2(4(x0))))) | 
| 5(4(2(0(x0)))) | → | 5(4(5(0(2(x0))))) | 
| 0(3(5(2(0(x0))))) | → | 3(0(2(5(3(0(x0)))))) | 
| 3(3(5(2(0(x0))))) | → | 3(5(2(3(0(2(x0)))))) | 
| 3(3(5(2(0(x0))))) | → | 4(3(3(5(0(2(x0)))))) | 
| 5(0(5(2(0(x0))))) | → | 0(3(5(5(0(2(x0)))))) | 
| 5(1(4(0(0(x0))))) | → | 0(2(5(0(1(4(x0)))))) | 
| 5(3(3(2(0(x0))))) | → | 5(2(3(3(0(2(x0)))))) | 
| 5(4(3(0(0(x0))))) | → | 1(0(4(0(3(5(x0)))))) | 
| 0(0(x0)) | → | 2(0(1(0(x0)))) | 
| 0(0(x0)) | → | 0(2(0(1(x0)))) | 
| 0(0(x0)) | → | 1(0(1(0(1(x0))))) | 
| 0(0(x0)) | → | 0(2(1(0(1(x0))))) | 
| 0(0(x0)) | → | 3(0(2(0(1(x0))))) | 
| 0(0(x0)) | → | 0(2(2(0(1(x0))))) | 
| 0(0(x0)) | → | 0(2(0(1(2(x0))))) | 
| 0(0(x0)) | → | 2(1(2(0(1(0(x0)))))) | 
| 0(0(x0)) | → | 2(2(0(1(0(1(x0)))))) | 
| 0(0(x0)) | → | 1(0(3(1(0(1(x0)))))) | 
| 0(0(x0)) | → | 2(0(1(4(0(1(x0)))))) | 
| 0(0(x0)) | → | 0(2(0(1(1(1(x0)))))) | 
| 0(0(x0)) | → | 2(2(0(4(0(3(x0)))))) | 
| 0(0(x0)) | → | 4(0(1(0(1(3(x0)))))) | 
| 0(0(0(x0))) | → | 4(0(4(0(1(0(x0)))))) | 
| 0(0(0(x0))) | → | 2(0(1(0(0(3(x0)))))) | 
| 0(0(3(x0))) | → | 3(0(2(0(3(x0))))) | 
| 0(0(3(x0))) | → | 2(0(4(2(0(3(x0)))))) | 
| 0(2(5(x0))) | → | 5(3(2(0(x0)))) | 
| 0(2(5(x0))) | → | 2(0(5(3(x0)))) | 
| 0(2(5(x0))) | → | 5(3(3(2(0(x0))))) | 
| 0(2(5(x0))) | → | 5(3(2(0(1(x0))))) | 
| 0(2(5(x0))) | → | 4(2(0(1(5(x0))))) | 
| 0(2(5(x0))) | → | 2(2(2(1(0(5(x0)))))) | 
| 0(2(5(x0))) | → | 2(0(1(5(3(5(x0)))))) | 
| 0(2(5(0(x0)))) | → | 2(2(0(5(0(x0))))) | 
| 0(0(4(3(x0)))) | → | 5(4(0(3(3(0(x0)))))) | 
| 0(0(4(3(x0)))) | → | 0(3(5(4(0(3(x0)))))) | 
| 0(0(1(5(x0)))) | → | 5(1(0(1(3(0(x0)))))) | 
| 0(4(1(5(x0)))) | → | 4(2(5(1(0(x0))))) | 
| 0(5(1(5(x0)))) | → | 5(3(0(1(5(x0))))) | 
| 0(2(2(5(x0)))) | → | 5(4(2(1(2(0(x0)))))) | 
| 0(2(3(5(x0)))) | → | 2(1(0(3(5(x0))))) | 
| 0(2(3(5(x0)))) | → | 2(0(3(5(3(3(x0)))))) | 
| 0(0(4(5(x0)))) | → | 2(0(5(5(4(0(x0)))))) | 
| 0(2(4(5(x0)))) | → | 0(5(3(4(2(x0))))) | 
| 0(2(4(5(x0)))) | → | 4(2(2(0(5(x0))))) | 
| 0(2(4(5(x0)))) | → | 2(0(5(4(5(x0))))) | 
| 0(2(5(3(0(x0))))) | → | 0(3(5(2(0(3(x0)))))) | 
| 0(2(5(3(3(x0))))) | → | 2(0(3(2(5(3(x0)))))) | 
| 0(2(5(3(3(x0))))) | → | 2(0(5(3(3(4(x0)))))) | 
| 0(2(5(0(5(x0))))) | → | 2(0(5(5(3(0(x0)))))) | 
| 0(0(4(1(5(x0))))) | → | 4(1(0(5(2(0(x0)))))) | 
| 0(2(3(3(5(x0))))) | → | 2(0(3(3(2(5(x0)))))) | 
| 0(0(3(4(5(x0))))) | → | 5(3(0(4(0(1(x0)))))) | 
final states:
{163, 158, 154, 150, 144, 140, 137, 133, 130, 126, 121, 116, 113, 109, 107, 104, 100, 97, 92, 88, 83, 78, 73, 71, 69, 66, 63, 60, 57, 53, 50, 45, 39, 34, 30, 27, 25, 23, 18, 16, 15, 13, 10, 6, 1}
transitions:
| 78 | → | 3 | 
| 223 | → | 167 | 
| 23 | → | 3 | 
| 221 | → | 187 | 
| 25 | → | 3 | 
| 205 | → | 184 | 
| 229 | → | 181 | 
| 10 | → | 3 | 
| 97 | → | 3 | 
| 15 | → | 3 | 
| 133 | → | 3 | 
| 18 | → | 3 | 
| 39 | → | 3 | 
| 184 | → | 204 | 
| 184 | → | 256 | 
| 50 | → | 3 | 
| 57 | → | 3 | 
| 213 | → | 169 | 
| 187 | → | 196 | 
| 187 | → | 220 | 
| 34 | → | 3 | 
| 199 | → | 54 | 
| 185 | → | 54 | 
| 185 | → | 198 | 
| 130 | → | 3 | 
| 107 | → | 79 | 
| 107 | → | 3 | 
| 1 | → | 3 | 
| 40 | → | 166 | 
| 40 | → | 181 | 
| 40 | → | 206 | 
| 40 | → | 230 | 
| 71 | → | 3 | 
| 13 | → | 3 | 
| 183 | → | 186 | 
| 183 | → | 222 | 
| 60 | → | 3 | 
| 197 | → | 184 | 
| 73 | → | 3 | 
| 233 | → | 187 | 
| 170 | → | 54 | 
| 170 | → | 212 | 
| 251 | → | 182 | 
| 150 | → | 3 | 
| 207 | → | 181 | 
| 257 | → | 168 | 
| 121 | → | 3 | 
| 6 | → | 3 | 
| 116 | → | 3 | 
| 109 | → | 3 | 
| 88 | → | 3 | 
| 249 | → | 54 | 
| 53 | → | 3 | 
| 2 | → | 250 | 
| 188 | → | 214 | 
| 45 | → | 3 | 
| 66 | → | 3 | 
| 16 | → | 3 | 
| 63 | → | 3 | 
| 104 | → | 3 | 
| 140 | → | 3 | 
| 100 | → | 3 | 
| 69 | → | 3 | 
| 113 | → | 3 | 
| 182 | → | 228 | 
| 126 | → | 3 | 
| 30 | → | 3 | 
| 137 | → | 3 | 
| 189 | → | 54 | 
| 158 | → | 3 | 
| 231 | → | 244 | 
| 83 | → | 3 | 
| 154 | → | 3 | 
| 215 | → | 169 | 
| 92 | → | 3 | 
| 144 | → | 3 | 
| 27 | → | 3 | 
| 163 | → | 54 | 
| 163 | → | 3 | 
| 01(247) | → | 248 | 
| 01(187) | → | 188 | 
| 01(231) | → | 232 | 
| 01(166) | → | 167 | 
| 01(168) | → | 169 | 
| 01(184) | → | 185 | 
| 01(245) | → | 246 | 
| 01(182) | → | 183 | 
| 11(228) | → | 229 | 
| 11(246) | → | 247 | 
| 11(188) | → | 189 | 
| 11(212) | → | 213 | 
| 11(181) | → | 182 | 
| 11(186) | → | 187 | 
| 11(167) | → | 168 | 
| 11(244) | → | 245 | 
| 31(220) | → | 221 | 
| 31(230) | → | 231 | 
| 31(250) | → | 251 | 
| 31(198) | → | 199 | 
| 10(31) | → | 32 | 
| 10(74) | → | 75 | 
| 10(35) | → | 36 | 
| 10(19) | → | 20 | 
| 10(3) | → | 4 | 
| 10(7) | → | 35 | 
| 10(93) | → | 101 | 
| 10(8) | → | 11 | 
| 10(29) | → | 27 | 
| 10(114) | → | 115 | 
| 10(64) | → | 110 | 
| 10(79) | → | 80 | 
| 10(102) | → | 103 | 
| 10(47) | → | 48 | 
| 10(40) | → | 46 | 
| 10(2) | → | 7 | 
| 10(85) | → | 86 | 
| 10(1) | → | 24 | 
| 10(156) | → | 157 | 
| 10(54) | → | 55 | 
| 10(12) | → | 10 | 
| 30(2) | → | 40 | 
| 30(159) | → | 160 | 
| 30(160) | → | 161 | 
| 30(74) | → | 84 | 
| 30(6) | → | 15 | 
| 30(98) | → | 99 | 
| 30(59) | → | 57 | 
| 30(76) | → | 108 | 
| 30(164) | → | 165 | 
| 30(141) | → | 142 | 
| 30(11) | → | 28 | 
| 30(9) | → | 72 | 
| 30(93) | → | 94 | 
| 30(64) | → | 65 | 
| 30(118) | → | 119 | 
| 30(138) | → | 139 | 
| 30(145) | → | 146 | 
| 30(146) | → | 147 | 
| 30(3) | → | 93 | 
| 30(127) | → | 128 | 
| 30(40) | → | 117 | 
| 30(65) | → | 70 | 
| 00(124) | → | 125 | 
| 00(148) | → | 149 | 
| 00(42) | → | 43 | 
| 00(41) | → | 54 | 
| 00(14) | → | 13 | 
| 00(86) | → | 87 | 
| 00(142) | → | 143 | 
| 00(7) | → | 8 | 
| 00(58) | → | 59 | 
| 00(51) | → | 52 | 
| 00(84) | → | 114 | 
| 00(11) | → | 12 | 
| 00(32) | → | 33 | 
| 00(99) | → | 97 | 
| 00(38) | → | 34 | 
| 00(152) | → | 153 | 
| 00(155) | → | 156 | 
| 00(55) | → | 56 | 
| 00(129) | → | 126 | 
| 00(46) | → | 47 | 
| 00(75) | → | 76 | 
| 00(36) | → | 37 | 
| 00(28) | → | 29 | 
| 00(40) | → | 41 | 
| 00(139) | → | 137 | 
| 00(9) | → | 6 | 
| 00(101) | → | 102 | 
| 00(161) | → | 162 | 
| 00(94) | → | 95 | 
| 00(61) | → | 62 | 
| 00(20) | → | 21 | 
| 00(135) | → | 136 | 
| 00(74) | → | 79 | 
| 00(31) | → | 164 | 
| 00(48) | → | 49 | 
| 00(67) | → | 68 | 
| 00(119) | → | 120 | 
| 00(17) | → | 16 | 
| 00(2) | → | 3 | 
| 00(4) | → | 5 | 
| 00(22) | → | 18 | 
| 00(89) | → | 90 | 
| 40(19) | → | 127 | 
| 40(106) | → | 104 | 
| 40(132) | → | 130 | 
| 40(8) | → | 31 | 
| 40(58) | → | 61 | 
| 40(5) | → | 51 | 
| 40(157) | → | 154 | 
| 40(41) | → | 42 | 
| 40(49) | → | 45 | 
| 40(52) | → | 50 | 
| 40(3) | → | 122 | 
| 40(74) | → | 134 | 
| 40(95) | → | 96 | 
| 40(77) | → | 73 | 
| 40(111) | → | 112 | 
| 40(2) | → | 145 | 
| 50(64) | → | 155 | 
| 50(70) | → | 69 | 
| 50(123) | → | 124 | 
| 50(147) | → | 148 | 
| 50(93) | → | 151 | 
| 50(96) | → | 92 | 
| 50(65) | → | 63 | 
| 50(72) | → | 71 | 
| 50(128) | → | 129 | 
| 50(40) | → | 67 | 
| 50(42) | → | 98 | 
| 50(165) | → | 163 | 
| 50(84) | → | 85 | 
| 50(117) | → | 118 | 
| 50(4) | → | 105 | 
| 50(151) | → | 152 | 
| 50(2) | → | 74 | 
| 50(3) | → | 89 | 
| 50(122) | → | 123 | 
| 50(103) | → | 100 | 
| 50(58) | → | 138 | 
| 50(108) | → | 107 | 
| 50(134) | → | 135 | 
| 50(112) | → | 109 | 
| f60 | → | 2 | 
| 20(2) | → | 19 | 
| 20(149) | → | 144 | 
| 20(56) | → | 53 | 
| 20(91) | → | 88 | 
| 20(9) | → | 17 | 
| 20(90) | → | 91 | 
| 20(105) | → | 106 | 
| 20(110) | → | 111 | 
| 20(67) | → | 141 | 
| 20(79) | → | 131 | 
| 20(80) | → | 81 | 
| 20(24) | → | 23 | 
| 20(131) | → | 132 | 
| 20(43) | → | 44 | 
| 20(8) | → | 9 | 
| 20(21) | → | 22 | 
| 20(26) | → | 25 | 
| 20(37) | → | 38 | 
| 20(76) | → | 77 | 
| 20(74) | → | 159 | 
| 20(3) | → | 64 | 
| 20(11) | → | 14 | 
| 20(87) | → | 83 | 
| 20(136) | → | 133 | 
| 20(62) | → | 60 | 
| 20(125) | → | 121 | 
| 20(81) | → | 82 | 
| 20(33) | → | 30 | 
| 20(82) | → | 78 | 
| 20(120) | → | 116 | 
| 20(12) | → | 26 | 
| 20(143) | → | 140 | 
| 20(162) | → | 158 | 
| 20(41) | → | 58 | 
| 20(44) | → | 39 | 
| 20(5) | → | 1 | 
| 20(68) | → | 66 | 
| 20(115) | → | 113 | 
| 20(153) | → | 150 | 
| 41(256) | → | 257 | 
| 41(232) | → | 233 | 
| 41(248) | → | 249 | 
| 41(222) | → | 223 | 
| 21(204) | → | 205 | 
| 21(183) | → | 184 | 
| 21(169) | → | 170 | 
| 21(196) | → | 197 | 
| 21(214) | → | 215 | 
| 21(206) | → | 207 |