YES
by ttt2 (version ttt2 1.15)
The rewrite relation of the following TRS is considered.
| 0(1(2(x0))) | → | 0(2(1(1(x0)))) |
| 0(1(2(x0))) | → | 0(2(1(3(x0)))) |
| 0(1(2(x0))) | → | 0(2(1(1(3(x0))))) |
| 0(1(2(x0))) | → | 0(2(4(1(1(x0))))) |
| 0(1(2(x0))) | → | 0(2(4(1(3(x0))))) |
| 0(3(2(x0))) | → | 0(2(1(3(x0)))) |
| 0(3(2(x0))) | → | 0(2(1(1(3(x0))))) |
| 0(3(2(x0))) | → | 0(0(2(1(1(3(x0)))))) |
| 0(1(1(2(x0)))) | → | 0(2(1(1(3(x0))))) |
| 0(1(2(2(x0)))) | → | 0(2(2(1(1(x0))))) |
| 0(1(2(2(x0)))) | → | 0(2(3(2(1(x0))))) |
| 0(1(3(2(x0)))) | → | 0(2(1(4(3(x0))))) |
| 0(1(3(2(x0)))) | → | 3(3(0(2(1(x0))))) |
| 0(1(3(2(x0)))) | → | 3(0(2(4(1(1(x0)))))) |
| 0(1(5(2(x0)))) | → | 5(0(2(1(1(x0))))) |
| 0(3(2(2(x0)))) | → | 0(0(2(3(2(x0))))) |
| 0(3(2(2(x0)))) | → | 0(0(4(2(3(2(x0)))))) |
| 2(0(3(2(x0)))) | → | 1(3(0(2(2(x0))))) |
| 3(0(3(2(x0)))) | → | 3(0(0(0(2(3(x0)))))) |
| 3(1(5(2(x0)))) | → | 0(2(1(5(3(x0))))) |
| 3(3(5(2(x0)))) | → | 3(0(2(1(5(3(x0)))))) |
| 4(5(2(2(x0)))) | → | 2(5(0(2(4(1(x0)))))) |
| 5(0(1(2(x0)))) | → | 0(2(1(3(4(5(x0)))))) |
| 5(0(2(2(x0)))) | → | 2(0(2(4(1(5(x0)))))) |
| 5(0(3(2(x0)))) | → | 3(0(2(1(4(5(x0)))))) |
| 5(1(2(2(x0)))) | → | 0(2(1(5(2(1(x0)))))) |
| 5(1(2(2(x0)))) | → | 2(1(5(2(1(1(x0)))))) |
| 0(1(2(4(2(x0))))) | → | 4(2(1(0(2(1(x0)))))) |
| 0(1(2(5(2(x0))))) | → | 2(0(2(1(5(4(x0)))))) |
| 0(1(5(1(2(x0))))) | → | 1(0(2(1(1(5(x0)))))) |
| 0(1(5(5(2(x0))))) | → | 0(2(1(5(5(1(x0)))))) |
| 0(5(0(1(2(x0))))) | → | 0(4(5(0(2(1(x0)))))) |
| 0(5(0(3(2(x0))))) | → | 0(5(0(0(2(3(x0)))))) |
| 0(5(5(2(2(x0))))) | → | 0(2(1(5(5(2(x0)))))) |
| 3(0(3(1(2(x0))))) | → | 1(3(3(0(2(3(x0)))))) |
| 3(0(3(4(2(x0))))) | → | 1(3(4(0(2(3(x0)))))) |
| 4(5(1(4(2(x0))))) | → | 2(4(4(4(1(5(x0)))))) |
| 5(0(1(3(2(x0))))) | → | 3(5(0(2(1(3(x0)))))) |
| 5(0(3(1(2(x0))))) | → | 0(2(1(4(3(5(x0)))))) |
| 5(0(4(2(2(x0))))) | → | 2(0(2(4(1(5(x0)))))) |
| 5(1(0(3(2(x0))))) | → | 0(4(3(5(1(2(x0)))))) |
| 5(1(0(3(2(x0))))) | → | 5(3(1(1(0(2(x0)))))) |
| 5(1(0(5(2(x0))))) | → | 3(5(5(0(2(1(x0)))))) |
| 5(1(0(5(2(x0))))) | → | 5(0(2(1(5(5(x0)))))) |
| 5(2(0(3(2(x0))))) | → | 0(2(5(2(3(1(x0)))))) |
final states:
{145, 140, 138, 133, 128, 123, 121, 118, 115, 112, 107, 105, 102, 97, 93, 87, 84, 81, 77, 73, 68, 62, 57, 56, 52, 47, 43, 40, 35, 34, 33, 30, 26, 22, 20, 19, 16, 13, 10, 6, 1}
transitions:
| 128 | → | 98 |
| 128 | → | 63 |
| 81 | → | 130 |
| 81 | → | 98 |
| 81 | → | 63 |
| 145 | → | 108 |
| 145 | → | 63 |
| 133 | → | 98 |
| 133 | → | 63 |
| 57 | → | 64 |
| 57 | → | 88 |
| 62 | → | 63 |
| 123 | → | 63 |
| 73 | → | 63 |
| 138 | → | 98 |
| 138 | → | 63 |
| 121 | → | 63 |
| 52 | → | 146 |
| 52 | → | 7 |
| 118 | → | 64 |
| 118 | → | 88 |
| 112 | → | 7 |
| 77 | → | 130 |
| 77 | → | 98 |
| 77 | → | 63 |
| 140 | → | 98 |
| 140 | → | 63 |
| 115 | → | 7 |
| 47 | → | 7 |
| 68 | → | 63 |
| 43 | → | 36 |
| 56 | → | 7 |
| f60 | → | 2 |
| 50(31) | → | 103 |
| 50(147) | → | 148 |
| 50(60) | → | 61 |
| 50(137) | → | 133 |
| 50(88) | → | 89 |
| 50(98) | → | 99 |
| 50(7) | → | 53 |
| 50(23) | → | 78 |
| 50(50) | → | 106 |
| 50(5) | → | 82 |
| 50(6) | → | 122 |
| 50(144) | → | 140 |
| 50(63) | → | 141 |
| 50(2) | → | 63 |
| 50(3) | → | 98 |
| 50(36) | → | 108 |
| 50(129) | → | 130 |
| 50(1) | → | 34 |
| 50(103) | → | 139 |
| 50(108) | → | 109 |
| 20(126) | → | 127 |
| 20(148) | → | 149 |
| 20(100) | → | 101 |
| 20(70) | → | 71 |
| 20(14) | → | 15 |
| 20(37) | → | 38 |
| 20(142) | → | 143 |
| 20(85) | → | 86 |
| 20(7) | → | 48 |
| 20(58) | → | 59 |
| 20(8) | → | 9 |
| 20(11) | → | 12 |
| 20(79) | → | 80 |
| 20(110) | → | 111 |
| 20(120) | → | 118 |
| 20(92) | → | 87 |
| 20(90) | → | 91 |
| 20(36) | → | 44 |
| 20(28) | → | 29 |
| 20(3) | → | 23 |
| 20(54) | → | 55 |
| 20(146) | → | 147 |
| 20(94) | → | 95 |
| 20(61) | → | 57 |
| 20(72) | → | 68 |
| 20(83) | → | 81 |
| 20(74) | → | 75 |
| 20(5) | → | 21 |
| 20(17) | → | 18 |
| 20(2) | → | 36 |
| 20(4) | → | 5 |
| 20(24) | → | 25 |
| 20(66) | → | 67 |
| 10(31) | → | 85 |
| 10(65) | → | 66 |
| 10(53) | → | 54 |
| 10(46) | → | 43 |
| 10(78) | → | 79 |
| 10(141) | → | 142 |
| 10(3) | → | 4 |
| 10(7) | → | 8 |
| 10(125) | → | 126 |
| 10(8) | → | 11 |
| 10(135) | → | 136 |
| 10(134) | → | 135 |
| 10(89) | → | 90 |
| 10(114) | → | 112 |
| 10(64) | → | 74 |
| 10(82) | → | 83 |
| 10(99) | → | 100 |
| 10(27) | → | 28 |
| 10(96) | → | 93 |
| 10(109) | → | 110 |
| 10(63) | → | 69 |
| 10(117) | → | 115 |
| 10(36) | → | 129 |
| 10(2) | → | 3 |
| 10(69) | → | 94 |
| 30(2) | → | 7 |
| 30(31) | → | 32 |
| 30(45) | → | 46 |
| 30(113) | → | 114 |
| 30(51) | → | 47 |
| 30(32) | → | 30 |
| 30(136) | → | 137 |
| 30(76) | → | 73 |
| 30(36) | → | 37 |
| 30(23) | → | 24 |
| 30(64) | → | 65 |
| 30(139) | → | 138 |
| 30(13) | → | 33 |
| 30(63) | → | 124 |
| 30(116) | → | 117 |
| 30(49) | → | 113 |
| 30(130) | → | 131 |
| 30(3) | → | 146 |
| 30(52) | → | 56 |
| 30(122) | → | 121 |
| 00(18) | → | 16 |
| 00(149) | → | 145 |
| 00(91) | → | 92 |
| 00(9) | → | 6 |
| 00(10) | → | 19 |
| 00(49) | → | 50 |
| 00(48) | → | 49 |
| 00(50) | → | 51 |
| 00(95) | → | 96 |
| 00(67) | → | 62 |
| 00(80) | → | 77 |
| 00(36) | → | 134 |
| 00(55) | → | 52 |
| 00(71) | → | 72 |
| 00(25) | → | 22 |
| 00(21) | → | 20 |
| 00(104) | → | 102 |
| 00(38) | → | 39 |
| 00(23) | → | 31 |
| 00(132) | → | 128 |
| 00(111) | → | 107 |
| 00(29) | → | 26 |
| 00(15) | → | 13 |
| 00(101) | → | 97 |
| 00(127) | → | 123 |
| 00(42) | → | 40 |
| 00(75) | → | 76 |
| 00(39) | → | 35 |
| 00(12) | → | 10 |
| 00(143) | → | 144 |
| 00(41) | → | 42 |
| 00(44) | → | 45 |
| 00(59) | → | 60 |
| 00(5) | → | 1 |
| 00(106) | → | 105 |
| 40(8) | → | 17 |
| 40(86) | → | 84 |
| 40(63) | → | 64 |
| 40(69) | → | 70 |
| 40(124) | → | 125 |
| 40(4) | → | 14 |
| 40(7) | → | 27 |
| 40(49) | → | 116 |
| 40(119) | → | 120 |
| 40(103) | → | 104 |
| 40(3) | → | 58 |
| 40(70) | → | 119 |
| 40(131) | → | 132 |
| 40(38) | → | 41 |
| 40(2) | → | 88 |