YES
by ttt2 (version ttt2 1.15)
The rewrite relation of the following TRS is considered.
| 0(1(2(x0))) | → | 0(2(1(1(x0)))) | 
| 0(1(2(x0))) | → | 0(2(1(3(x0)))) | 
| 0(1(2(x0))) | → | 0(2(1(1(3(x0))))) | 
| 0(1(2(x0))) | → | 0(2(4(1(1(x0))))) | 
| 0(1(2(x0))) | → | 0(2(4(1(3(x0))))) | 
| 0(3(2(x0))) | → | 0(2(1(3(x0)))) | 
| 0(3(2(x0))) | → | 0(2(1(1(3(x0))))) | 
| 0(3(2(x0))) | → | 0(0(2(1(1(3(x0)))))) | 
| 0(1(1(2(x0)))) | → | 0(2(1(1(3(x0))))) | 
| 0(1(2(2(x0)))) | → | 0(2(2(1(1(x0))))) | 
| 0(1(2(2(x0)))) | → | 0(2(3(2(1(x0))))) | 
| 0(1(3(2(x0)))) | → | 0(2(1(4(3(x0))))) | 
| 0(1(3(2(x0)))) | → | 3(3(0(2(1(x0))))) | 
| 0(1(3(2(x0)))) | → | 3(0(2(4(1(1(x0)))))) | 
| 0(1(5(2(x0)))) | → | 5(0(2(1(1(x0))))) | 
| 0(3(2(2(x0)))) | → | 0(0(2(3(2(x0))))) | 
| 0(3(2(2(x0)))) | → | 0(0(4(2(3(2(x0)))))) | 
| 2(0(3(2(x0)))) | → | 1(3(0(2(2(x0))))) | 
| 3(0(3(2(x0)))) | → | 3(0(0(0(2(3(x0)))))) | 
| 3(1(5(2(x0)))) | → | 0(2(1(5(3(x0))))) | 
| 3(3(5(2(x0)))) | → | 3(0(2(1(5(3(x0)))))) | 
| 4(5(2(2(x0)))) | → | 2(5(0(2(4(1(x0)))))) | 
| 5(0(1(2(x0)))) | → | 0(2(1(3(4(5(x0)))))) | 
| 5(0(2(2(x0)))) | → | 2(0(2(4(1(5(x0)))))) | 
| 5(0(3(2(x0)))) | → | 3(0(2(1(4(5(x0)))))) | 
| 5(1(2(2(x0)))) | → | 0(2(1(5(2(1(x0)))))) | 
| 5(1(2(2(x0)))) | → | 2(1(5(2(1(1(x0)))))) | 
| 0(1(2(4(2(x0))))) | → | 4(2(1(0(2(1(x0)))))) | 
| 0(1(2(5(2(x0))))) | → | 2(0(2(1(5(4(x0)))))) | 
| 0(1(5(1(2(x0))))) | → | 1(0(2(1(1(5(x0)))))) | 
| 0(1(5(5(2(x0))))) | → | 0(2(1(5(5(1(x0)))))) | 
| 0(5(0(1(2(x0))))) | → | 0(4(5(0(2(1(x0)))))) | 
| 0(5(0(3(2(x0))))) | → | 0(5(0(0(2(3(x0)))))) | 
| 0(5(5(2(2(x0))))) | → | 0(2(1(5(5(2(x0)))))) | 
| 3(0(3(1(2(x0))))) | → | 1(3(3(0(2(3(x0)))))) | 
| 3(0(3(4(2(x0))))) | → | 1(3(4(0(2(3(x0)))))) | 
| 4(5(1(4(2(x0))))) | → | 2(4(4(4(1(5(x0)))))) | 
| 5(0(1(3(2(x0))))) | → | 3(5(0(2(1(3(x0)))))) | 
| 5(0(3(1(2(x0))))) | → | 0(2(1(4(3(5(x0)))))) | 
| 5(0(4(2(2(x0))))) | → | 2(0(2(4(1(5(x0)))))) | 
| 5(1(0(3(2(x0))))) | → | 0(4(3(5(1(2(x0)))))) | 
| 5(1(0(3(2(x0))))) | → | 5(3(1(1(0(2(x0)))))) | 
| 5(1(0(5(2(x0))))) | → | 3(5(5(0(2(1(x0)))))) | 
| 5(1(0(5(2(x0))))) | → | 5(0(2(1(5(5(x0)))))) | 
| 5(2(0(3(2(x0))))) | → | 0(2(5(2(3(1(x0)))))) | 
final states:
{145, 140, 138, 133, 128, 123, 121, 118, 115, 112, 107, 105, 102, 97, 93, 87, 84, 81, 77, 73, 68, 62, 57, 56, 52, 47, 43, 40, 35, 34, 33, 30, 26, 22, 20, 19, 16, 13, 10, 6, 1}
transitions:
| 128 | → | 98 | 
| 128 | → | 63 | 
| 81 | → | 130 | 
| 81 | → | 98 | 
| 81 | → | 63 | 
| 145 | → | 108 | 
| 145 | → | 63 | 
| 133 | → | 98 | 
| 133 | → | 63 | 
| 57 | → | 64 | 
| 57 | → | 88 | 
| 62 | → | 63 | 
| 123 | → | 63 | 
| 73 | → | 63 | 
| 138 | → | 98 | 
| 138 | → | 63 | 
| 121 | → | 63 | 
| 52 | → | 146 | 
| 52 | → | 7 | 
| 118 | → | 64 | 
| 118 | → | 88 | 
| 112 | → | 7 | 
| 77 | → | 130 | 
| 77 | → | 98 | 
| 77 | → | 63 | 
| 140 | → | 98 | 
| 140 | → | 63 | 
| 115 | → | 7 | 
| 47 | → | 7 | 
| 68 | → | 63 | 
| 43 | → | 36 | 
| 56 | → | 7 | 
| f60 | → | 2 | 
| 50(31) | → | 103 | 
| 50(147) | → | 148 | 
| 50(60) | → | 61 | 
| 50(137) | → | 133 | 
| 50(88) | → | 89 | 
| 50(98) | → | 99 | 
| 50(7) | → | 53 | 
| 50(23) | → | 78 | 
| 50(50) | → | 106 | 
| 50(5) | → | 82 | 
| 50(6) | → | 122 | 
| 50(144) | → | 140 | 
| 50(63) | → | 141 | 
| 50(2) | → | 63 | 
| 50(3) | → | 98 | 
| 50(36) | → | 108 | 
| 50(129) | → | 130 | 
| 50(1) | → | 34 | 
| 50(103) | → | 139 | 
| 50(108) | → | 109 | 
| 20(126) | → | 127 | 
| 20(148) | → | 149 | 
| 20(100) | → | 101 | 
| 20(70) | → | 71 | 
| 20(14) | → | 15 | 
| 20(37) | → | 38 | 
| 20(142) | → | 143 | 
| 20(85) | → | 86 | 
| 20(7) | → | 48 | 
| 20(58) | → | 59 | 
| 20(8) | → | 9 | 
| 20(11) | → | 12 | 
| 20(79) | → | 80 | 
| 20(110) | → | 111 | 
| 20(120) | → | 118 | 
| 20(92) | → | 87 | 
| 20(90) | → | 91 | 
| 20(36) | → | 44 | 
| 20(28) | → | 29 | 
| 20(3) | → | 23 | 
| 20(54) | → | 55 | 
| 20(146) | → | 147 | 
| 20(94) | → | 95 | 
| 20(61) | → | 57 | 
| 20(72) | → | 68 | 
| 20(83) | → | 81 | 
| 20(74) | → | 75 | 
| 20(5) | → | 21 | 
| 20(17) | → | 18 | 
| 20(2) | → | 36 | 
| 20(4) | → | 5 | 
| 20(24) | → | 25 | 
| 20(66) | → | 67 | 
| 10(31) | → | 85 | 
| 10(65) | → | 66 | 
| 10(53) | → | 54 | 
| 10(46) | → | 43 | 
| 10(78) | → | 79 | 
| 10(141) | → | 142 | 
| 10(3) | → | 4 | 
| 10(7) | → | 8 | 
| 10(125) | → | 126 | 
| 10(8) | → | 11 | 
| 10(135) | → | 136 | 
| 10(134) | → | 135 | 
| 10(89) | → | 90 | 
| 10(114) | → | 112 | 
| 10(64) | → | 74 | 
| 10(82) | → | 83 | 
| 10(99) | → | 100 | 
| 10(27) | → | 28 | 
| 10(96) | → | 93 | 
| 10(109) | → | 110 | 
| 10(63) | → | 69 | 
| 10(117) | → | 115 | 
| 10(36) | → | 129 | 
| 10(2) | → | 3 | 
| 10(69) | → | 94 | 
| 30(2) | → | 7 | 
| 30(31) | → | 32 | 
| 30(45) | → | 46 | 
| 30(113) | → | 114 | 
| 30(51) | → | 47 | 
| 30(32) | → | 30 | 
| 30(136) | → | 137 | 
| 30(76) | → | 73 | 
| 30(36) | → | 37 | 
| 30(23) | → | 24 | 
| 30(64) | → | 65 | 
| 30(139) | → | 138 | 
| 30(13) | → | 33 | 
| 30(63) | → | 124 | 
| 30(116) | → | 117 | 
| 30(49) | → | 113 | 
| 30(130) | → | 131 | 
| 30(3) | → | 146 | 
| 30(52) | → | 56 | 
| 30(122) | → | 121 | 
| 00(18) | → | 16 | 
| 00(149) | → | 145 | 
| 00(91) | → | 92 | 
| 00(9) | → | 6 | 
| 00(10) | → | 19 | 
| 00(49) | → | 50 | 
| 00(48) | → | 49 | 
| 00(50) | → | 51 | 
| 00(95) | → | 96 | 
| 00(67) | → | 62 | 
| 00(80) | → | 77 | 
| 00(36) | → | 134 | 
| 00(55) | → | 52 | 
| 00(71) | → | 72 | 
| 00(25) | → | 22 | 
| 00(21) | → | 20 | 
| 00(104) | → | 102 | 
| 00(38) | → | 39 | 
| 00(23) | → | 31 | 
| 00(132) | → | 128 | 
| 00(111) | → | 107 | 
| 00(29) | → | 26 | 
| 00(15) | → | 13 | 
| 00(101) | → | 97 | 
| 00(127) | → | 123 | 
| 00(42) | → | 40 | 
| 00(75) | → | 76 | 
| 00(39) | → | 35 | 
| 00(12) | → | 10 | 
| 00(143) | → | 144 | 
| 00(41) | → | 42 | 
| 00(44) | → | 45 | 
| 00(59) | → | 60 | 
| 00(5) | → | 1 | 
| 00(106) | → | 105 | 
| 40(8) | → | 17 | 
| 40(86) | → | 84 | 
| 40(63) | → | 64 | 
| 40(69) | → | 70 | 
| 40(124) | → | 125 | 
| 40(4) | → | 14 | 
| 40(7) | → | 27 | 
| 40(49) | → | 116 | 
| 40(119) | → | 120 | 
| 40(103) | → | 104 | 
| 40(3) | → | 58 | 
| 40(70) | → | 119 | 
| 40(131) | → | 132 | 
| 40(38) | → | 41 | 
| 40(2) | → | 88 |