YES
by ttt2 (version ttt2 1.15)
The rewrite relation of the following TRS is considered.
| 0(1(2(x0))) | → | 0(1(3(2(x0)))) | 
| 0(1(2(x0))) | → | 0(2(1(0(x0)))) | 
| 0(1(2(x0))) | → | 0(2(1(3(x0)))) | 
| 0(1(2(x0))) | → | 0(2(2(1(x0)))) | 
| 0(1(2(x0))) | → | 0(2(2(1(4(x0))))) | 
| 0(1(2(x0))) | → | 5(1(0(5(2(3(x0)))))) | 
| 0(2(4(x0))) | → | 0(2(1(4(3(x0))))) | 
| 0(4(2(x0))) | → | 4(0(2(3(x0)))) | 
| 0(4(2(x0))) | → | 4(0(5(5(2(x0))))) | 
| 0(0(4(2(x0)))) | → | 0(0(2(2(3(4(x0)))))) | 
| 0(1(2(2(x0)))) | → | 0(2(1(0(2(x0))))) | 
| 0(1(2(2(x0)))) | → | 1(3(0(2(2(x0))))) | 
| 0(1(2(4(x0)))) | → | 0(1(4(2(3(x0))))) | 
| 0(1(2(4(x0)))) | → | 4(0(2(2(1(1(x0)))))) | 
| 0(1(2(4(x0)))) | → | 4(0(5(5(2(1(x0)))))) | 
| 0(1(2(5(x0)))) | → | 3(5(5(2(1(0(x0)))))) | 
| 0(1(4(2(x0)))) | → | 0(5(2(1(4(x0))))) | 
| 0(1(5(2(x0)))) | → | 1(5(0(2(3(x0))))) | 
| 0(1(5(2(x0)))) | → | 0(2(2(1(0(5(x0)))))) | 
| 0(1(5(2(x0)))) | → | 5(5(0(2(1(3(x0)))))) | 
| 0(2(4(2(x0)))) | → | 0(5(4(3(2(2(x0)))))) | 
| 0(3(1(2(x0)))) | → | 0(2(1(3(2(x0))))) | 
| 0(3(1(2(x0)))) | → | 1(0(2(5(3(x0))))) | 
| 0(3(1(2(x0)))) | → | 1(5(0(2(3(x0))))) | 
| 0(3(1(2(x0)))) | → | 3(0(2(2(1(x0))))) | 
| 0(3(1(2(x0)))) | → | 3(2(2(1(0(x0))))) | 
| 0(3(1(2(x0)))) | → | 0(3(2(3(1(3(x0)))))) | 
| 0(3(4(2(x0)))) | → | 0(2(2(3(4(x0))))) | 
| 5(0(1(2(x0)))) | → | 1(3(2(5(0(x0))))) | 
| 5(0(1(2(x0)))) | → | 5(0(2(1(3(3(x0)))))) | 
| 0(1(1(2(5(x0))))) | → | 5(0(2(5(1(1(x0)))))) | 
| 0(2(3(4(2(x0))))) | → | 3(2(2(3(4(0(x0)))))) | 
| 0(3(1(2(5(x0))))) | → | 2(3(1(3(0(5(x0)))))) | 
| 0(3(1(5(2(x0))))) | → | 0(3(2(5(1(2(x0)))))) | 
| 0(3(4(1(4(x0))))) | → | 0(5(3(1(4(4(x0)))))) | 
| 0(3(5(1(2(x0))))) | → | 5(5(3(2(1(0(x0)))))) | 
| 0(4(0(4(2(x0))))) | → | 4(4(0(0(2(2(x0)))))) | 
| 0(4(1(1(2(x0))))) | → | 3(1(4(0(2(1(x0)))))) | 
| 0(4(1(2(2(x0))))) | → | 4(1(0(2(2(3(x0)))))) | 
| 0(4(1(2(5(x0))))) | → | 3(4(1(0(2(5(x0)))))) | 
| 0(4(2(1(2(x0))))) | → | 4(1(3(2(0(2(x0)))))) | 
| 0(4(2(1(4(x0))))) | → | 0(2(1(4(4(4(x0)))))) | 
| 0(4(2(5(2(x0))))) | → | 5(4(3(2(2(0(x0)))))) | 
| 0(4(5(1(2(x0))))) | → | 1(4(2(0(5(5(x0)))))) | 
| 0(4(5(1(2(x0))))) | → | 4(0(2(5(1(1(x0)))))) | 
| 5(0(1(2(2(x0))))) | → | 5(0(2(2(1(2(x0)))))) | 
| 5(0(2(4(2(x0))))) | → | 0(2(2(5(1(4(x0)))))) | 
| 5(0(4(4(2(x0))))) | → | 0(5(2(5(4(4(x0)))))) | 
| 2(1(0(x0))) | → | 2(3(1(0(x0)))) | 
| 2(1(0(x0))) | → | 0(1(2(0(x0)))) | 
| 2(1(0(x0))) | → | 3(1(2(0(x0)))) | 
| 2(1(0(x0))) | → | 1(2(2(0(x0)))) | 
| 2(1(0(x0))) | → | 4(1(2(2(0(x0))))) | 
| 2(1(0(x0))) | → | 3(2(5(0(1(5(x0)))))) | 
| 4(2(0(x0))) | → | 3(4(1(2(0(x0))))) | 
| 2(4(0(x0))) | → | 3(2(0(4(x0)))) | 
| 2(4(0(x0))) | → | 2(5(5(0(4(x0))))) | 
| 2(4(0(0(x0)))) | → | 4(3(2(2(0(0(x0)))))) | 
| 2(2(1(0(x0)))) | → | 2(0(1(2(0(x0))))) | 
| 2(2(1(0(x0)))) | → | 2(2(0(3(1(x0))))) | 
| 4(2(1(0(x0)))) | → | 3(2(4(1(0(x0))))) | 
| 4(2(1(0(x0)))) | → | 1(1(2(2(0(4(x0)))))) | 
| 4(2(1(0(x0)))) | → | 1(2(5(5(0(4(x0)))))) | 
| 5(2(1(0(x0)))) | → | 0(1(2(5(5(3(x0)))))) | 
| 2(4(1(0(x0)))) | → | 4(1(2(5(0(x0))))) | 
| 2(5(1(0(x0)))) | → | 3(2(0(5(1(x0))))) | 
| 2(5(1(0(x0)))) | → | 5(0(1(2(2(0(x0)))))) | 
| 2(5(1(0(x0)))) | → | 3(1(2(0(5(5(x0)))))) | 
| 2(4(2(0(x0)))) | → | 2(2(3(4(5(0(x0)))))) | 
| 2(1(3(0(x0)))) | → | 2(3(1(2(0(x0))))) | 
| 2(1(3(0(x0)))) | → | 3(5(2(0(1(x0))))) | 
| 2(1(3(0(x0)))) | → | 3(2(0(5(1(x0))))) | 
| 2(1(3(0(x0)))) | → | 1(2(2(0(3(x0))))) | 
| 2(1(3(0(x0)))) | → | 0(1(2(2(3(x0))))) | 
| 2(1(3(0(x0)))) | → | 3(1(3(2(3(0(x0)))))) | 
| 2(4(3(0(x0)))) | → | 4(3(2(2(0(x0))))) | 
| 2(1(0(5(x0)))) | → | 0(5(2(3(1(x0))))) | 
| 2(1(0(5(x0)))) | → | 3(3(1(2(0(5(x0)))))) | 
| 5(2(1(1(0(x0))))) | → | 1(1(5(2(0(5(x0)))))) | 
| 2(4(3(2(0(x0))))) | → | 0(4(3(2(2(3(x0)))))) | 
| 5(2(1(3(0(x0))))) | → | 5(0(3(1(3(2(x0)))))) | 
| 2(5(1(3(0(x0))))) | → | 2(1(5(2(3(0(x0)))))) | 
| 4(1(4(3(0(x0))))) | → | 4(4(1(3(5(0(x0)))))) | 
| 2(1(5(3(0(x0))))) | → | 0(1(2(3(5(5(x0)))))) | 
| 2(4(0(4(0(x0))))) | → | 2(2(0(0(4(4(x0)))))) | 
| 2(1(1(4(0(x0))))) | → | 1(2(0(4(1(3(x0)))))) | 
| 2(2(1(4(0(x0))))) | → | 3(2(2(0(1(4(x0)))))) | 
| 5(2(1(4(0(x0))))) | → | 5(2(0(1(4(3(x0)))))) | 
| 2(1(2(4(0(x0))))) | → | 2(0(2(3(1(4(x0)))))) | 
| 4(1(2(4(0(x0))))) | → | 4(4(4(1(2(0(x0)))))) | 
| 2(5(2(4(0(x0))))) | → | 0(2(2(3(4(5(x0)))))) | 
| 2(1(5(4(0(x0))))) | → | 5(5(0(2(4(1(x0)))))) | 
| 2(1(5(4(0(x0))))) | → | 1(1(5(2(0(4(x0)))))) | 
| 2(2(1(0(5(x0))))) | → | 2(1(2(2(0(5(x0)))))) | 
| 2(4(2(0(5(x0))))) | → | 4(1(5(2(2(0(x0)))))) | 
| 2(4(4(0(5(x0))))) | → | 4(4(5(2(5(0(x0)))))) | 
final states:
{167, 164, 161, 158, 153, 148, 146, 142, 137, 132, 127, 122, 118, 114, 111, 105, 102, 99, 94, 91, 89, 84, 80, 76, 72, 71, 67, 62, 60, 56, 52, 46, 45, 42, 39, 34, 33, 28, 25, 21, 19, 13, 12, 10, 9, 6, 1}
transitions:
| 33 | → | 106 | 
| 111 | → | 106 | 
| 25 | → | 106 | 
| 102 | → | 106 | 
| 89 | → | 106 | 
| 80 | → | 106 | 
| 10 | → | 106 | 
| 84 | → | 106 | 
| 167 | → | 106 | 
| 122 | → | 106 | 
| 39 | → | 22 | 
| 146 | → | 154 | 
| 146 | → | 22 | 
| 9 | → | 106 | 
| 34 | → | 106 | 
| 175 | → | 41 | 
| 99 | → | 14 | 
| 62 | → | 106 | 
| 1 | → | 106 | 
| 71 | → | 106 | 
| 127 | → | 106 | 
| 13 | → | 106 | 
| 60 | → | 106 | 
| 76 | → | 106 | 
| 91 | → | 106 | 
| 161 | → | 106 | 
| 21 | → | 106 | 
| 72 | → | 106 | 
| 6 | → | 106 | 
| 153 | → | 106 | 
| 52 | → | 155 | 
| 52 | → | 106 | 
| 105 | → | 14 | 
| 67 | → | 106 | 
| 2 | → | 170 | 
| 28 | → | 106 | 
| 118 | → | 106 | 
| 45 | → | 22 | 
| 114 | → | 154 | 
| 114 | → | 22 | 
| 12 | → | 106 | 
| 42 | → | 22 | 
| 137 | → | 14 | 
| 46 | → | 14 | 
| 158 | → | 106 | 
| 164 | → | 106 | 
| 148 | → | 106 | 
| 132 | → | 106 | 
| 142 | → | 106 | 
| 19 | → | 22 | 
| 56 | → | 106 | 
| 94 | → | 106 | 
| 11(173) | → | 174 | 
| 01(170) | → | 171 | 
| 51(171) | → | 172 | 
| 10(115) | → | 116 | 
| 10(65) | → | 66 | 
| 10(11) | → | 10 | 
| 10(162) | → | 163 | 
| 10(120) | → | 121 | 
| 10(112) | → | 113 | 
| 10(3) | → | 4 | 
| 10(7) | → | 8 | 
| 10(25) | → | 45 | 
| 10(44) | → | 42 | 
| 10(50) | → | 51 | 
| 10(87) | → | 88 | 
| 10(165) | → | 166 | 
| 10(159) | → | 160 | 
| 10(138) | → | 139 | 
| 10(82) | → | 83 | 
| 10(131) | → | 127 | 
| 10(79) | → | 76 | 
| 10(96) | → | 97 | 
| 10(101) | → | 99 | 
| 10(107) | → | 108 | 
| 10(14) | → | 15 | 
| 10(160) | → | 158 | 
| 10(43) | → | 44 | 
| 10(47) | → | 128 | 
| 10(22) | → | 133 | 
| 10(2) | → | 35 | 
| 10(100) | → | 101 | 
| 10(54) | → | 55 | 
| 00(109) | → | 110 | 
| 00(2) | → | 3 | 
| 00(155) | → | 156 | 
| 00(124) | → | 125 | 
| 00(152) | → | 148 | 
| 00(129) | → | 130 | 
| 00(51) | → | 46 | 
| 00(133) | → | 134 | 
| 00(144) | → | 145 | 
| 00(83) | → | 80 | 
| 00(47) | → | 77 | 
| 00(8) | → | 6 | 
| 00(123) | → | 124 | 
| 00(36) | → | 37 | 
| 00(93) | → | 91 | 
| 00(14) | → | 95 | 
| 00(139) | → | 140 | 
| 00(57) | → | 58 | 
| 00(63) | → | 64 | 
| 00(121) | → | 118 | 
| 00(15) | → | 16 | 
| 00(3) | → | 29 | 
| 00(10) | → | 61 | 
| 00(104) | → | 102 | 
| 00(22) | → | 23 | 
| 00(35) | → | 73 | 
| 30(98) | → | 94 | 
| 30(106) | → | 107 | 
| 30(41) | → | 39 | 
| 30(63) | → | 119 | 
| 30(59) | → | 56 | 
| 30(86) | → | 87 | 
| 30(108) | → | 109 | 
| 30(136) | → | 132 | 
| 30(35) | → | 36 | 
| 30(8) | → | 9 | 
| 30(11) | → | 90 | 
| 30(149) | → | 150 | 
| 30(88) | → | 84 | 
| 30(75) | → | 72 | 
| 30(18) | → | 13 | 
| 30(82) | → | 103 | 
| 30(3) | → | 85 | 
| 30(97) | → | 98 | 
| 30(20) | → | 19 | 
| 30(53) | → | 115 | 
| 30(31) | → | 32 | 
| 30(133) | → | 143 | 
| 30(2) | → | 47 | 
| 30(4) | → | 5 | 
| 30(24) | → | 21 | 
| 30(68) | → | 69 | 
| 30(66) | → | 62 | 
| 40(8) | → | 20 | 
| 40(47) | → | 138 | 
| 40(53) | → | 68 | 
| 40(117) | → | 114 | 
| 40(169) | → | 167 | 
| 40(128) | → | 129 | 
| 40(4) | → | 40 | 
| 40(90) | → | 89 | 
| 40(10) | → | 12 | 
| 40(22) | → | 123 | 
| 40(147) | → | 146 | 
| 40(20) | → | 147 | 
| 40(166) | → | 164 | 
| 40(116) | → | 117 | 
| 40(14) | → | 149 | 
| 40(103) | → | 104 | 
| 40(35) | → | 154 | 
| 40(32) | → | 28 | 
| 40(55) | → | 52 | 
| 40(2) | → | 22 | 
| 40(168) | → | 169 | 
| 50(48) | → | 49 | 
| 50(16) | → | 17 | 
| 50(156) | → | 157 | 
| 50(96) | → | 100 | 
| 50(24) | → | 159 | 
| 50(157) | → | 153 | 
| 50(92) | → | 93 | 
| 50(54) | → | 168 | 
| 50(61) | → | 60 | 
| 50(23) | → | 26 | 
| 50(11) | → | 165 | 
| 50(74) | → | 75 | 
| 50(14) | → | 63 | 
| 50(2) | → | 14 | 
| 50(3) | → | 53 | 
| 50(26) | → | 27 | 
| 50(35) | → | 57 | 
| 50(110) | → | 105 | 
| 50(47) | → | 48 | 
| 50(86) | → | 112 | 
| 50(141) | → | 137 | 
| f60 | → | 2 | 
| 20(2) | → | 106 | 
| 20(163) | → | 161 | 
| 20(9) | → | 71 | 
| 20(134) | → | 135 | 
| 20(49) | → | 50 | 
| 20(95) | → | 96 | 
| 20(64) | → | 65 | 
| 20(113) | → | 111 | 
| 20(30) | → | 31 | 
| 20(36) | → | 92 | 
| 20(24) | → | 43 | 
| 20(37) | → | 38 | 
| 20(151) | → | 152 | 
| 20(150) | → | 151 | 
| 20(38) | → | 34 | 
| 20(96) | → | 162 | 
| 20(3) | → | 7 | 
| 20(17) | → | 18 | 
| 20(135) | → | 136 | 
| 20(6) | → | 33 | 
| 20(53) | → | 54 | 
| 20(140) | → | 141 | 
| 20(70) | → | 67 | 
| 20(23) | → | 24 | 
| 20(125) | → | 126 | 
| 20(81) | → | 82 | 
| 20(29) | → | 30 | 
| 20(130) | → | 131 | 
| 20(7) | → | 11 | 
| 20(27) | → | 25 | 
| 20(85) | → | 86 | 
| 20(40) | → | 41 | 
| 20(126) | → | 122 | 
| 20(73) | → | 74 | 
| 20(143) | → | 144 | 
| 20(154) | → | 155 | 
| 20(78) | → | 79 | 
| 20(58) | → | 59 | 
| 20(5) | → | 1 | 
| 20(145) | → | 142 | 
| 20(77) | → | 78 | 
| 20(119) | → | 120 | 
| 20(47) | → | 81 | 
| 20(69) | → | 70 | 
| 21(172) | → | 173 | 
| 41(174) | → | 175 |