YES
by ttt2 (version ttt2 1.15)
The rewrite relation of the following TRS is considered.
| 0(1(2(x0))) | → | 2(1(0(3(x0)))) |
| 0(1(2(x0))) | → | 2(1(3(0(x0)))) |
| 0(1(2(x0))) | → | 2(1(3(0(4(x0))))) |
| 0(1(2(x0))) | → | 2(1(3(4(0(x0))))) |
| 0(1(2(x0))) | → | 2(1(3(4(0(4(x0)))))) |
| 0(0(1(2(x0)))) | → | 0(2(1(0(3(x0))))) |
| 0(1(1(2(x0)))) | → | 1(0(4(1(2(x0))))) |
| 0(1(1(2(x0)))) | → | 1(2(1(0(3(x0))))) |
| 0(1(2(0(x0)))) | → | 2(1(0(3(0(3(x0)))))) |
| 0(1(2(5(x0)))) | → | 2(1(0(3(5(x0))))) |
| 0(1(2(5(x0)))) | → | 5(1(0(3(2(x0))))) |
| 0(1(4(2(x0)))) | → | 2(1(3(4(0(x0))))) |
| 0(1(4(2(x0)))) | → | 2(4(1(0(3(x0))))) |
| 0(1(4(2(x0)))) | → | 0(2(1(0(3(4(x0)))))) |
| 2(1(1(5(x0)))) | → | 2(5(1(4(1(x0))))) |
| 2(1(1(5(x0)))) | → | 5(1(3(2(1(x0))))) |
| 2(1(2(0(x0)))) | → | 2(2(1(0(3(x0))))) |
| 2(3(5(5(x0)))) | → | 5(1(0(3(2(5(x0)))))) |
| 2(5(3(2(x0)))) | → | 5(1(3(2(2(x0))))) |
| 5(1(2(0(x0)))) | → | 2(5(1(0(3(x0))))) |
| 0(1(0(1(2(x0))))) | → | 0(2(1(1(3(0(x0)))))) |
| 0(1(1(2(5(x0))))) | → | 0(1(3(5(1(2(x0)))))) |
| 0(1(1(4(2(x0))))) | → | 4(1(0(3(2(1(x0)))))) |
| 0(1(1(5(0(x0))))) | → | 0(1(0(5(4(1(x0)))))) |
| 0(1(1(5(4(x0))))) | → | 1(4(1(0(3(5(x0)))))) |
| 0(1(2(3(5(x0))))) | → | 0(1(3(4(5(2(x0)))))) |
| 0(1(2(3(5(x0))))) | → | 0(2(5(1(0(3(x0)))))) |
| 0(1(2(3(5(x0))))) | → | 1(0(3(0(2(5(x0)))))) |
| 0(1(2(3(5(x0))))) | → | 5(1(3(0(2(0(x0)))))) |
| 0(1(4(0(2(x0))))) | → | 4(0(1(3(0(2(x0)))))) |
| 0(1(4(0(2(x0))))) | → | 4(0(2(1(3(0(x0)))))) |
| 0(4(5(3(5(x0))))) | → | 5(1(0(3(4(5(x0)))))) |
| 2(1(0(1(5(x0))))) | → | 1(0(3(2(5(1(x0)))))) |
| 2(1(4(3(5(x0))))) | → | 1(3(5(4(4(2(x0)))))) |
| 2(1(4(3(5(x0))))) | → | 5(4(4(1(3(2(x0)))))) |
| 2(1(4(5(0(x0))))) | → | 2(4(1(0(3(5(x0)))))) |
| 2(2(3(5(0(x0))))) | → | 5(2(4(2(0(3(x0)))))) |
| 2(2(4(3(5(x0))))) | → | 5(1(3(4(2(2(x0)))))) |
| 2(3(1(1(2(x0))))) | → | 1(3(2(1(2(0(x0)))))) |
| 2(3(1(1(2(x0))))) | → | 4(1(2(2(1(3(x0)))))) |
| 2(3(2(0(5(x0))))) | → | 2(2(1(0(3(5(x0)))))) |
| 2(3(3(1(5(x0))))) | → | 1(3(5(1(3(2(x0)))))) |
| 2(5(0(3(5(x0))))) | → | 5(2(1(3(0(5(x0)))))) |
| 4(2(0(1(2(x0))))) | → | 4(2(2(1(3(0(x0)))))) |
| 5(0(1(2(2(x0))))) | → | 4(1(5(2(0(2(x0)))))) |
| 5(1(4(2(2(x0))))) | → | 5(1(3(2(4(2(x0)))))) |
| 5(1(4(3(2(x0))))) | → | 4(5(1(3(4(2(x0)))))) |
| 5(5(4(3(2(x0))))) | → | 5(1(3(4(5(2(x0)))))) |
| 2(1(0(x0))) | → | 3(0(1(2(x0)))) |
| 2(1(0(x0))) | → | 0(3(1(2(x0)))) |
| 2(1(0(x0))) | → | 4(0(3(1(2(x0))))) |
| 2(1(0(x0))) | → | 0(4(3(1(2(x0))))) |
| 2(1(0(x0))) | → | 4(0(4(3(1(2(x0)))))) |
| 2(1(0(0(x0)))) | → | 3(0(1(2(0(x0))))) |
| 2(1(1(0(x0)))) | → | 2(1(4(0(1(x0))))) |
| 2(1(1(0(x0)))) | → | 3(0(1(2(1(x0))))) |
| 0(2(1(0(x0)))) | → | 3(0(3(0(1(2(x0)))))) |
| 5(2(1(0(x0)))) | → | 5(3(0(1(2(x0))))) |
| 5(2(1(0(x0)))) | → | 2(3(0(1(5(x0))))) |
| 2(4(1(0(x0)))) | → | 0(4(3(1(2(x0))))) |
| 2(4(1(0(x0)))) | → | 3(0(1(4(2(x0))))) |
| 2(4(1(0(x0)))) | → | 4(3(0(1(2(0(x0)))))) |
| 5(1(1(2(x0)))) | → | 1(4(1(5(2(x0))))) |
| 5(1(1(2(x0)))) | → | 1(2(3(1(5(x0))))) |
| 0(2(1(2(x0)))) | → | 3(0(1(2(2(x0))))) |
| 5(5(3(2(x0)))) | → | 5(2(3(0(1(5(x0)))))) |
| 2(3(5(2(x0)))) | → | 2(2(3(1(5(x0))))) |
| 0(2(1(5(x0)))) | → | 3(0(1(5(2(x0))))) |
| 2(1(0(1(0(x0))))) | → | 0(3(1(1(2(0(x0)))))) |
| 5(2(1(1(0(x0))))) | → | 2(1(5(3(1(0(x0)))))) |
| 2(4(1(1(0(x0))))) | → | 1(2(3(0(1(4(x0)))))) |
| 0(5(1(1(0(x0))))) | → | 1(4(5(0(1(0(x0)))))) |
| 4(5(1(1(0(x0))))) | → | 5(3(0(1(4(1(x0)))))) |
| 5(3(2(1(0(x0))))) | → | 2(5(4(3(1(0(x0)))))) |
| 5(3(2(1(0(x0))))) | → | 3(0(1(5(2(0(x0)))))) |
| 5(3(2(1(0(x0))))) | → | 5(2(0(3(0(1(x0)))))) |
| 5(3(2(1(0(x0))))) | → | 0(2(0(3(1(5(x0)))))) |
| 2(0(4(1(0(x0))))) | → | 2(0(3(1(0(4(x0)))))) |
| 2(0(4(1(0(x0))))) | → | 0(3(1(2(0(4(x0)))))) |
| 5(3(5(4(0(x0))))) | → | 5(4(3(0(1(5(x0)))))) |
| 5(1(0(1(2(x0))))) | → | 1(5(2(3(0(1(x0)))))) |
| 5(3(4(1(2(x0))))) | → | 2(4(4(5(3(1(x0)))))) |
| 5(3(4(1(2(x0))))) | → | 2(3(1(4(4(5(x0)))))) |
| 0(5(4(1(2(x0))))) | → | 5(3(0(1(4(2(x0)))))) |
| 0(5(3(2(2(x0))))) | → | 3(0(2(4(2(5(x0)))))) |
| 5(3(4(2(2(x0))))) | → | 2(2(4(3(1(5(x0)))))) |
| 2(1(1(3(2(x0))))) | → | 0(2(1(2(3(1(x0)))))) |
| 2(1(1(3(2(x0))))) | → | 3(1(2(2(1(4(x0)))))) |
| 5(0(2(3(2(x0))))) | → | 5(3(0(1(2(2(x0)))))) |
| 5(1(3(3(2(x0))))) | → | 2(3(1(5(3(1(x0)))))) |
| 5(3(0(5(2(x0))))) | → | 5(0(3(1(2(5(x0)))))) |
| 2(1(0(2(4(x0))))) | → | 0(3(1(2(2(4(x0)))))) |
| 2(2(1(0(5(x0))))) | → | 2(0(2(5(1(4(x0)))))) |
| 2(2(4(1(5(x0))))) | → | 2(4(2(3(1(5(x0)))))) |
| 2(3(4(1(5(x0))))) | → | 2(4(3(1(5(4(x0)))))) |
| 2(3(4(5(5(x0))))) | → | 2(5(4(3(1(5(x0)))))) |
final states:
{156, 151, 149, 145, 140, 136, 133, 132, 128, 124, 121, 116, 115, 110, 105, 102, 100, 96, 91, 88, 84, 80, 77, 72, 68, 62, 57, 54, 52, 51, 50, 46, 43, 39, 38, 34, 29, 28, 26, 22, 17, 12, 11, 9, 8, 6, 1}
transitions:
| 102 | → | 30 |
| 29 | → | 40 |
| 29 | → | 30 |
| 128 | → | 23 |
| 128 | → | 3 |
| 80 | → | 30 |
| 51 | → | 3 |
| 96 | → | 97 |
| 96 | → | 14 |
| 96 | → | 3 |
| 84 | → | 30 |
| 136 | → | 30 |
| 149 | → | 142 |
| 149 | → | 47 |
| 149 | → | 3 |
| 145 | → | 47 |
| 145 | → | 3 |
| 133 | → | 30 |
| 39 | → | 30 |
| 50 | → | 30 |
| 57 | → | 40 |
| 57 | → | 30 |
| 9 | → | 23 |
| 9 | → | 3 |
| 9 | → | 141 |
| 110 | → | 30 |
| 34 | → | 141 |
| 34 | → | 3 |
| 62 | → | 141 |
| 62 | → | 3 |
| 1 | → | 23 |
| 1 | → | 3 |
| 8 | → | 23 |
| 8 | → | 3 |
| 26 | → | 13 |
| 91 | → | 97 |
| 91 | → | 14 |
| 91 | → | 3 |
| 72 | → | 111 |
| 72 | → | 63 |
| 121 | → | 30 |
| 6 | → | 23 |
| 6 | → | 3 |
| 116 | → | 13 |
| 88 | → | 30 |
| 54 | → | 23 |
| 54 | → | 3 |
| 52 | → | 13 |
| 22 | → | 23 |
| 22 | → | 3 |
| 105 | → | 30 |
| 124 | → | 23 |
| 124 | → | 3 |
| 11 | → | 23 |
| 11 | → | 3 |
| 28 | → | 30 |
| 28 | → | 13 |
| 106 | → | 164 |
| 12 | → | 23 |
| 12 | → | 3 |
| 169 | → | 124 |
| 77 | → | 30 |
| 140 | → | 23 |
| 140 | → | 3 |
| 100 | → | 30 |
| 46 | → | 13 |
| 35 | → | 141 |
| 35 | → | 3 |
| 17 | → | 23 |
| 17 | → | 3 |
| 68 | → | 13 |
| 132 | → | 30 |
| 43 | → | 30 |
| 151 | → | 3 |
| 156 | → | 3 |
| f60 | → | 2 |
| 50(64) | → | 146 |
| 50(59) | → | 60 |
| 50(87) | → | 84 |
| 50(139) | → | 136 |
| 50(34) | → | 115 |
| 50(46) | → | 132 |
| 50(69) | → | 70 |
| 50(76) | → | 72 |
| 50(14) | → | 81 |
| 50(63) | → | 152 |
| 50(2) | → | 30 |
| 50(3) | → | 40 |
| 50(122) | → | 157 |
| 50(1) | → | 28 |
| 50(103) | → | 104 |
| 50(29) | → | 50 |
| 50(78) | → | 79 |
| 50(101) | → | 100 |
| 50(106) | → | 107 |
| 21(165) | → | 166 |
| 21(164) | → | 165 |
| 00(1) | → | 27 |
| 00(41) | → | 53 |
| 00(63) | → | 92 |
| 00(144) | → | 140 |
| 00(147) | → | 148 |
| 00(85) | → | 86 |
| 00(7) | → | 6 |
| 00(58) | → | 69 |
| 00(99) | → | 96 |
| 00(56) | → | 54 |
| 00(90) | → | 88 |
| 00(36) | → | 37 |
| 00(18) | → | 19 |
| 00(82) | → | 83 |
| 00(64) | → | 65 |
| 00(94) | → | 95 |
| 00(127) | → | 124 |
| 00(15) | → | 16 |
| 00(74) | → | 75 |
| 00(31) | → | 32 |
| 00(48) | → | 49 |
| 00(119) | → | 120 |
| 00(10) | → | 9 |
| 00(2) | → | 13 |
| 00(4) | → | 5 |
| 00(24) | → | 25 |
| 00(44) | → | 89 |
| 00(138) | → | 139 |
| 10(130) | → | 131 |
| 10(35) | → | 36 |
| 10(67) | → | 62 |
| 10(73) | → | 74 |
| 10(92) | → | 93 |
| 10(30) | → | 31 |
| 10(112) | → | 113 |
| 10(3) | → | 4 |
| 10(45) | → | 43 |
| 10(125) | → | 126 |
| 10(142) | → | 143 |
| 10(60) | → | 61 |
| 10(71) | → | 68 |
| 10(15) | → | 55 |
| 10(42) | → | 39 |
| 10(97) | → | 98 |
| 10(13) | → | 58 |
| 10(81) | → | 82 |
| 10(107) | → | 134 |
| 10(63) | → | 64 |
| 10(117) | → | 137 |
| 10(14) | → | 15 |
| 10(47) | → | 48 |
| 10(40) | → | 41 |
| 10(2) | → | 18 |
| 10(23) | → | 24 |
| 10(20) | → | 21 |
| 10(104) | → | 102 |
| 10(152) | → | 153 |
| 31(168) | → | 169 |
| 20(109) | → | 105 |
| 20(2) | → | 3 |
| 20(45) | → | 51 |
| 20(21) | → | 17 |
| 20(95) | → | 91 |
| 20(155) | → | 151 |
| 20(129) | → | 130 |
| 20(157) | → | 156 |
| 20(44) | → | 45 |
| 20(85) | → | 103 |
| 20(150) | → | 149 |
| 20(89) | → | 90 |
| 20(114) | → | 110 |
| 20(123) | → | 121 |
| 20(61) | → | 57 |
| 20(106) | → | 125 |
| 20(141) | → | 142 |
| 20(126) | → | 127 |
| 20(135) | → | 133 |
| 20(92) | → | 97 |
| 20(18) | → | 23 |
| 20(64) | → | 129 |
| 20(13) | → | 14 |
| 20(148) | → | 145 |
| 20(118) | → | 119 |
| 20(79) | → | 77 |
| 20(63) | → | 141 |
| 20(66) | → | 67 |
| 20(33) | → | 29 |
| 20(146) | → | 147 |
| 20(86) | → | 87 |
| 20(3) | → | 47 |
| 20(30) | → | 117 |
| 20(122) | → | 123 |
| 30(18) | → | 106 |
| 30(65) | → | 66 |
| 30(134) | → | 135 |
| 30(49) | → | 46 |
| 30(98) | → | 99 |
| 30(19) | → | 85 |
| 30(113) | → | 114 |
| 30(55) | → | 56 |
| 30(131) | → | 128 |
| 30(25) | → | 22 |
| 30(4) | → | 7 |
| 30(37) | → | 34 |
| 30(83) | → | 80 |
| 30(53) | → | 52 |
| 30(32) | → | 33 |
| 30(137) | → | 138 |
| 30(27) | → | 26 |
| 30(93) | → | 94 |
| 30(75) | → | 76 |
| 30(120) | → | 116 |
| 30(143) | → | 144 |
| 30(16) | → | 12 |
| 30(31) | → | 44 |
| 30(58) | → | 59 |
| 30(5) | → | 1 |
| 30(153) | → | 154 |
| 01(167) | → | 168 |
| 11(166) | → | 167 |
| 40(19) | → | 20 |
| 40(108) | → | 109 |
| 40(117) | → | 118 |
| 40(44) | → | 122 |
| 40(59) | → | 78 |
| 40(7) | → | 10 |
| 40(6) | → | 8 |
| 40(41) | → | 42 |
| 40(107) | → | 108 |
| 40(9) | → | 11 |
| 40(154) | → | 155 |
| 40(3) | → | 35 |
| 40(30) | → | 111 |
| 40(70) | → | 71 |
| 40(18) | → | 73 |
| 40(45) | → | 150 |
| 40(33) | → | 101 |
| 40(12) | → | 38 |
| 40(111) | → | 112 |
| 40(2) | → | 63 |