YES
by ttt2 (version ttt2 1.15)
The rewrite relation of the following TRS is considered.
| 0(0(1(2(x0)))) | → | 0(2(0(1(1(x0))))) |
| 0(1(2(2(x0)))) | → | 0(2(2(1(0(x0))))) |
| 0(1(2(2(x0)))) | → | 1(0(2(2(0(x0))))) |
| 0(1(2(3(x0)))) | → | 0(2(0(1(3(x0))))) |
| 0(1(2(3(x0)))) | → | 0(2(3(3(1(x0))))) |
| 0(2(1(2(x0)))) | → | 0(2(2(0(1(x0))))) |
| 0(2(1(2(x0)))) | → | 0(2(2(2(1(x0))))) |
| 0(2(1(2(x0)))) | → | 0(2(2(2(1(1(x0)))))) |
| 0(3(2(2(x0)))) | → | 3(4(0(2(2(x0))))) |
| 0(3(2(2(x0)))) | → | 0(2(2(2(2(3(x0)))))) |
| 0(4(1(2(x0)))) | → | 0(2(2(1(4(x0))))) |
| 0(4(1(2(x0)))) | → | 4(0(2(0(1(x0))))) |
| 0(5(0(1(x0)))) | → | 0(2(0(2(5(1(x0)))))) |
| 0(5(0(5(x0)))) | → | 0(2(0(5(5(x0))))) |
| 0(5(2(1(x0)))) | → | 0(2(2(5(1(x0))))) |
| 0(5(2(5(x0)))) | → | 0(2(2(5(5(x0))))) |
| 0(5(4(2(x0)))) | → | 4(0(2(2(0(5(x0)))))) |
| 2(1(0(3(x0)))) | → | 4(0(2(2(3(1(x0)))))) |
| 2(1(0(4(x0)))) | → | 1(4(0(2(2(2(x0)))))) |
| 2(5(4(2(x0)))) | → | 4(0(2(2(5(x0))))) |
| 0(0(1(0(4(x0))))) | → | 0(0(2(0(1(4(x0)))))) |
| 0(0(5(4(2(x0))))) | → | 0(4(0(0(2(5(x0)))))) |
| 0(1(0(1(2(x0))))) | → | 0(2(0(1(4(1(x0)))))) |
| 0(1(2(0(3(x0))))) | → | 0(2(0(4(1(3(x0)))))) |
| 0(1(2(2(2(x0))))) | → | 0(2(2(2(1(2(x0)))))) |
| 0(1(2(3(2(x0))))) | → | 1(3(4(0(2(2(x0)))))) |
| 0(1(3(2(3(x0))))) | → | 0(0(2(3(3(1(x0)))))) |
| 0(1(3(4(2(x0))))) | → | 0(2(3(4(1(1(x0)))))) |
| 0(2(1(0(1(x0))))) | → | 0(0(2(0(1(1(x0)))))) |
| 0(2(1(2(2(x0))))) | → | 0(2(0(2(2(1(x0)))))) |
| 0(2(3(0(5(x0))))) | → | 0(2(0(0(5(3(x0)))))) |
| 0(3(0(1(3(x0))))) | → | 0(0(4(3(1(3(x0)))))) |
| 0(3(0(4(1(x0))))) | → | 0(0(1(4(4(3(x0)))))) |
| 0(3(2(0(4(x0))))) | → | 4(0(0(2(3(4(x0)))))) |
| 0(4(5(2(3(x0))))) | → | 0(2(2(3(4(5(x0)))))) |
| 0(5(0(0(3(x0))))) | → | 0(2(0(3(0(5(x0)))))) |
| 0(5(0(1(2(x0))))) | → | 0(0(2(0(1(5(x0)))))) |
| 0(5(1(4(2(x0))))) | → | 0(2(0(1(4(5(x0)))))) |
| 0(5(2(5(1(x0))))) | → | 0(2(0(5(5(1(x0)))))) |
| 2(1(0(0(4(x0))))) | → | 1(4(4(0(0(2(x0)))))) |
| 2(5(0(0(3(x0))))) | → | 0(2(0(0(5(3(x0)))))) |
| 2(5(3(0(1(x0))))) | → | 5(0(2(2(3(1(x0)))))) |
| 5(0(1(2(2(x0))))) | → | 5(1(0(2(0(2(x0)))))) |
| 5(2(0(1(2(x0))))) | → | 1(5(4(0(2(2(x0)))))) |
| 5(2(1(0(1(x0))))) | → | 0(2(3(1(5(1(x0)))))) |
| 5(2(3(0(1(x0))))) | → | 1(5(0(2(2(3(x0)))))) |
| 5(3(0(4(1(x0))))) | → | 4(5(0(2(3(1(x0)))))) |
| 2(1(0(0(x0)))) | → | 1(1(0(2(0(x0))))) |
| 2(2(1(0(x0)))) | → | 0(1(2(2(0(x0))))) |
| 2(2(1(0(x0)))) | → | 0(2(2(0(1(x0))))) |
| 3(2(1(0(x0)))) | → | 3(1(0(2(0(x0))))) |
| 3(2(1(0(x0)))) | → | 1(3(3(2(0(x0))))) |
| 2(1(2(0(x0)))) | → | 1(0(2(2(0(x0))))) |
| 2(1(2(0(x0)))) | → | 1(2(2(2(0(x0))))) |
| 2(1(2(0(x0)))) | → | 1(1(2(2(2(0(x0)))))) |
| 2(2(3(0(x0)))) | → | 2(2(0(4(3(x0))))) |
| 2(2(3(0(x0)))) | → | 3(2(2(2(2(0(x0)))))) |
| 2(1(4(0(x0)))) | → | 4(1(2(2(0(x0))))) |
| 2(1(4(0(x0)))) | → | 1(0(2(0(4(x0))))) |
| 1(0(5(0(x0)))) | → | 1(5(2(0(2(0(x0)))))) |
| 5(0(5(0(x0)))) | → | 5(5(0(2(0(x0))))) |
| 1(2(5(0(x0)))) | → | 1(5(2(2(0(x0))))) |
| 5(2(5(0(x0)))) | → | 5(5(2(2(0(x0))))) |
| 2(4(5(0(x0)))) | → | 5(0(2(2(0(4(x0)))))) |
| 3(0(1(2(x0)))) | → | 1(3(2(2(0(4(x0)))))) |
| 4(0(1(2(x0)))) | → | 2(2(2(0(4(1(x0)))))) |
| 2(4(5(2(x0)))) | → | 5(2(2(0(4(x0))))) |
| 4(0(1(0(0(x0))))) | → | 4(1(0(2(0(0(x0)))))) |
| 2(4(5(0(0(x0))))) | → | 5(2(0(0(4(0(x0)))))) |
| 2(1(0(1(0(x0))))) | → | 1(4(1(0(2(0(x0)))))) |
| 3(0(2(1(0(x0))))) | → | 3(1(4(0(2(0(x0)))))) |
| 2(2(2(1(0(x0))))) | → | 2(1(2(2(2(0(x0)))))) |
| 2(3(2(1(0(x0))))) | → | 2(2(0(4(3(1(x0)))))) |
| 3(2(3(1(0(x0))))) | → | 1(3(3(2(0(0(x0)))))) |
| 2(4(3(1(0(x0))))) | → | 1(1(4(3(2(0(x0)))))) |
| 1(0(1(2(0(x0))))) | → | 1(1(0(2(0(0(x0)))))) |
| 2(2(1(2(0(x0))))) | → | 1(2(2(0(2(0(x0)))))) |
| 5(0(3(2(0(x0))))) | → | 3(5(0(0(2(0(x0)))))) |
| 3(1(0(3(0(x0))))) | → | 3(1(3(4(0(0(x0)))))) |
| 1(4(0(3(0(x0))))) | → | 3(4(4(1(0(0(x0)))))) |
| 4(0(2(3(0(x0))))) | → | 4(3(2(0(0(4(x0)))))) |
| 3(2(5(4(0(x0))))) | → | 5(4(3(2(2(0(x0)))))) |
| 3(0(0(5(0(x0))))) | → | 5(0(3(0(2(0(x0)))))) |
| 2(1(0(5(0(x0))))) | → | 5(1(0(2(0(0(x0)))))) |
| 2(4(1(5(0(x0))))) | → | 5(4(1(0(2(0(x0)))))) |
| 1(5(2(5(0(x0))))) | → | 1(5(5(0(2(0(x0)))))) |
| 4(0(0(1(2(x0))))) | → | 2(0(0(4(4(1(x0)))))) |
| 3(0(0(5(2(x0))))) | → | 3(5(0(0(2(0(x0)))))) |
| 1(0(3(5(2(x0))))) | → | 1(3(2(2(0(5(x0)))))) |
| 2(2(1(0(5(x0))))) | → | 2(0(2(0(1(5(x0)))))) |
| 2(1(0(2(5(x0))))) | → | 2(2(0(4(5(1(x0)))))) |
| 1(0(1(2(5(x0))))) | → | 1(5(1(3(2(0(x0)))))) |
| 1(0(3(2(5(x0))))) | → | 3(2(2(0(5(1(x0)))))) |
| 1(4(0(3(5(x0))))) | → | 1(3(2(0(5(4(x0)))))) |
final states:
{137, 133, 130, 125, 120, 114, 110, 109, 108, 107, 104, 101, 97, 93, 89, 86, 84, 83, 80, 77, 72, 71, 68, 66, 61, 56, 55, 50, 48, 45, 44, 42, 40, 37, 32, 31, 29, 24, 23, 21, 19, 16, 15, 10, 7, 1}
transitions:
| 89 | → | 73 |
| 89 | → | 25 |
| 97 | → | 62 |
| 97 | → | 33 |
| 15 | → | 25 |
| 133 | → | 11 |
| 50 | → | 62 |
| 50 | → | 33 |
| 37 | → | 11 |
| 110 | → | 90 |
| 110 | → | 62 |
| 110 | → | 33 |
| 130 | → | 11 |
| 40 | → | 115 |
| 101 | → | 25 |
| 44 | → | 115 |
| 86 | → | 115 |
| 86 | → | 25 |
| 109 | → | 11 |
| 16 | → | 25 |
| 114 | → | 11 |
| 93 | → | 11 |
| 77 | → | 25 |
| 104 | → | 25 |
| 42 | → | 11 |
| 137 | → | 11 |
| 83 | → | 11 |
| 48 | → | 25 |
| 68 | → | 25 |
| 56 | → | 62 |
| 56 | → | 33 |
| 20(35) | → | 46 |
| 20(53) | → | 54 |
| 20(3) | → | 4 |
| 20(129) | → | 125 |
| 20(98) | → | 99 |
| 20(21) | → | 71 |
| 20(8) | → | 22 |
| 20(135) | → | 136 |
| 20(52) | → | 53 |
| 20(134) | → | 135 |
| 20(128) | → | 129 |
| 20(64) | → | 65 |
| 20(113) | → | 110 |
| 20(27) | → | 28 |
| 20(75) | → | 76 |
| 20(76) | → | 72 |
| 20(13) | → | 14 |
| 20(5) | → | 38 |
| 20(4) | → | 8 |
| 20(117) | → | 118 |
| 20(124) | → | 120 |
| 20(28) | → | 24 |
| 20(116) | → | 117 |
| 20(139) | → | 140 |
| 20(22) | → | 30 |
| 20(122) | → | 123 |
| 20(57) | → | 58 |
| 20(34) | → | 35 |
| 20(54) | → | 50 |
| 20(12) | → | 13 |
| 20(38) | → | 85 |
| 30(2) | → | 25 |
| 30(78) | → | 79 |
| 30(6) | → | 15 |
| 30(58) | → | 78 |
| 30(88) | → | 86 |
| 30(4) | → | 17 |
| 30(136) | → | 133 |
| 30(46) | → | 49 |
| 30(140) | → | 141 |
| 30(70) | → | 68 |
| 30(8) | → | 102 |
| 30(11) | → | 73 |
| 30(92) | → | 89 |
| 30(99) | → | 100 |
| 30(17) | → | 18 |
| 30(118) | → | 119 |
| 30(90) | → | 91 |
| 30(96) | → | 93 |
| 30(30) | → | 29 |
| 30(5) | → | 105 |
| 00(33) | → | 34 |
| 00(126) | → | 134 |
| 00(26) | → | 27 |
| 00(123) | → | 124 |
| 00(14) | → | 10 |
| 00(63) | → | 64 |
| 00(58) | → | 59 |
| 00(51) | → | 52 |
| 00(35) | → | 36 |
| 00(8) | → | 20 |
| 00(34) | → | 98 |
| 00(112) | → | 113 |
| 00(105) | → | 106 |
| 00(11) | → | 12 |
| 00(46) | → | 47 |
| 00(3) | → | 57 |
| 00(121) | → | 122 |
| 00(111) | → | 112 |
| 00(9) | → | 7 |
| 00(127) | → | 128 |
| 00(115) | → | 116 |
| 00(74) | → | 75 |
| 00(62) | → | 63 |
| 00(5) | → | 87 |
| 00(2) | → | 3 |
| 00(4) | → | 5 |
| 00(138) | → | 139 |
| 40(25) | → | 26 |
| 40(17) | → | 81 |
| 40(100) | → | 97 |
| 40(5) | → | 69 |
| 40(94) | → | 95 |
| 40(11) | → | 51 |
| 40(60) | → | 56 |
| 40(6) | → | 67 |
| 40(9) | → | 31 |
| 40(3) | → | 62 |
| 40(102) | → | 103 |
| 40(57) | → | 90 |
| 40(95) | → | 96 |
| 40(126) | → | 127 |
| 40(51) | → | 111 |
| 40(2) | → | 33 |
| 40(73) | → | 74 |
| 50(131) | → | 132 |
| 50(87) | → | 88 |
| 50(60) | → | 107 |
| 50(65) | → | 61 |
| 50(46) | → | 55 |
| 50(5) | → | 41 |
| 50(11) | → | 126 |
| 50(38) | → | 39 |
| 50(43) | → | 44 |
| 50(2) | → | 115 |
| 50(41) | → | 40 |
| 50(103) | → | 101 |
| 50(8) | → | 43 |
| 50(33) | → | 138 |
| 50(47) | → | 45 |
| 50(106) | → | 104 |
| 50(67) | → | 108 |
| f60 | → | 2 |
| 10(2) | → | 11 |
| 10(18) | → | 16 |
| 10(91) | → | 92 |
| 10(49) | → | 48 |
| 10(67) | → | 66 |
| 10(79) | → | 77 |
| 10(36) | → | 32 |
| 10(43) | → | 42 |
| 10(8) | → | 9 |
| 10(21) | → | 23 |
| 10(17) | → | 131 |
| 10(6) | → | 1 |
| 10(141) | → | 137 |
| 10(132) | → | 130 |
| 10(81) | → | 82 |
| 10(22) | → | 21 |
| 10(85) | → | 84 |
| 10(20) | → | 19 |
| 10(82) | → | 80 |
| 10(39) | → | 37 |
| 10(40) | → | 109 |
| 10(57) | → | 94 |
| 10(60) | → | 83 |
| 10(59) | → | 60 |
| 10(5) | → | 6 |
| 10(115) | → | 121 |
| 10(119) | → | 114 |
| 10(69) | → | 70 |