YES
by ttt2 (version ttt2 1.15)
The rewrite relation of the following TRS is considered.
| 0(1(0(2(x0)))) | → | 0(0(1(3(2(x0))))) |
| 0(1(2(2(x0)))) | → | 0(3(2(2(1(x0))))) |
| 0(2(1(1(x0)))) | → | 0(1(1(1(3(2(x0)))))) |
| 0(2(3(2(x0)))) | → | 0(3(0(3(2(2(x0)))))) |
| 0(2(4(4(x0)))) | → | 3(0(4(2(4(x0))))) |
| 0(4(0(2(x0)))) | → | 3(0(0(4(2(x0))))) |
| 0(4(0(2(x0)))) | → | 3(0(0(0(4(2(x0)))))) |
| 0(4(5(1(x0)))) | → | 0(0(0(4(1(5(x0)))))) |
| 0(5(1(1(x0)))) | → | 0(1(1(3(5(x0))))) |
| 0(5(1(1(x0)))) | → | 0(1(3(1(5(x0))))) |
| 0(5(1(4(x0)))) | → | 0(3(3(4(1(5(x0)))))) |
| 0(5(3(2(x0)))) | → | 0(3(0(5(5(2(x0)))))) |
| 0(5(3(2(x0)))) | → | 3(0(3(5(5(2(x0)))))) |
| 0(5(4(1(x0)))) | → | 0(3(1(5(4(x0))))) |
| 0(5(4(1(x0)))) | → | 0(0(4(1(1(5(x0)))))) |
| 0(5(4(4(x0)))) | → | 4(0(4(3(5(x0))))) |
| 2(0(2(4(x0)))) | → | 2(2(4(0(0(x0))))) |
| 2(0(5(1(x0)))) | → | 0(0(0(5(2(1(x0)))))) |
| 2(0(5(1(x0)))) | → | 5(0(3(5(2(1(x0)))))) |
| 2(0(5(1(x0)))) | → | 5(3(0(5(2(1(x0)))))) |
| 2(0(5(4(x0)))) | → | 2(4(0(3(5(x0))))) |
| 5(1(0(2(x0)))) | → | 2(5(0(3(1(x0))))) |
| 5(3(2(4(x0)))) | → | 2(3(4(3(5(x0))))) |
| 5(4(0(2(x0)))) | → | 5(0(3(0(4(2(x0)))))) |
| 0(0(2(1(1(x0))))) | → | 0(3(0(1(2(1(x0)))))) |
| 0(1(5(1(4(x0))))) | → | 0(4(3(1(1(5(x0)))))) |
| 0(1(5(4(1(x0))))) | → | 4(0(1(1(3(5(x0)))))) |
| 0(2(0(2(4(x0))))) | → | 0(0(2(1(2(4(x0)))))) |
| 0(2(0(5(1(x0))))) | → | 5(0(0(0(2(1(x0)))))) |
| 0(2(1(3(2(x0))))) | → | 3(0(3(1(2(2(x0)))))) |
| 0(2(1(5(1(x0))))) | → | 0(5(2(1(1(0(x0)))))) |
| 0(2(3(5(1(x0))))) | → | 5(2(1(0(0(3(x0)))))) |
| 0(4(0(4(2(x0))))) | → | 3(0(0(4(4(2(x0)))))) |
| 0(5(0(2(4(x0))))) | → | 0(4(0(5(2(4(x0)))))) |
| 0(5(1(3(2(x0))))) | → | 0(3(4(1(5(2(x0)))))) |
| 0(5(4(3(2(x0))))) | → | 0(0(3(4(2(5(x0)))))) |
| 0(5(5(4(2(x0))))) | → | 4(0(3(5(5(2(x0)))))) |
| 2(0(1(2(4(x0))))) | → | 2(2(1(3(4(0(x0)))))) |
| 2(0(5(1(1(x0))))) | → | 5(0(2(3(1(1(x0)))))) |
| 2(5(5(1(1(x0))))) | → | 5(5(2(1(1(3(x0)))))) |
| 3(4(2(1(1(x0))))) | → | 3(4(3(1(1(2(x0)))))) |
| 3(5(0(2(1(x0))))) | → | 1(2(5(0(3(3(x0)))))) |
| 4(1(2(1(1(x0))))) | → | 3(4(1(1(2(1(x0)))))) |
| 4(1(2(4(1(x0))))) | → | 4(3(4(1(1(2(x0)))))) |
| 4(3(5(1(1(x0))))) | → | 3(4(1(1(1(5(x0)))))) |
| 5(0(1(5(1(x0))))) | → | 5(0(3(1(1(5(x0)))))) |
| 5(0(5(0(2(x0))))) | → | 2(0(0(0(5(5(x0)))))) |
| 5(1(4(5(1(x0))))) | → | 5(0(1(1(5(4(x0)))))) |
| 5(1(4(5(1(x0))))) | → | 5(3(4(1(1(5(x0)))))) |
| 5(3(1(5(4(x0))))) | → | 5(3(4(1(3(5(x0)))))) |
final states:
{187, 185, 182, 177, 175, 172, 169, 166, 161, 156, 151, 146, 141, 140, 135, 131, 127, 123, 117, 112, 108, 104, 100, 99, 96, 92, 89, 87, 83, 80, 78, 75, 71, 66, 63, 59, 55, 52, 47, 44, 41, 37, 31, 29, 25, 20, 15, 12, 7, 1}
transitions:
| 78 | → | 3 |
| 25 | → | 67 |
| 29 | → | 67 |
| 89 | → | 56 |
| 89 | → | 32 |
| 87 | → | 32 |
| 80 | → | 3 |
| 15 | → | 67 |
| 96 | → | 67 |
| 41 | → | 67 |
| 146 | → | 3 |
| 187 | → | 32 |
| 108 | → | 105 |
| 108 | → | 67 |
| 37 | → | 67 |
| 59 | → | 67 |
| 185 | → | 32 |
| 55 | → | 67 |
| 175 | → | 32 |
| 20 | → | 67 |
| 99 | → | 67 |
| 31 | → | 67 |
| 1 | → | 67 |
| 123 | → | 67 |
| 71 | → | 3 |
| 127 | → | 67 |
| 44 | → | 67 |
| 135 | → | 67 |
| 161 | → | 38 |
| 161 | → | 118 |
| 177 | → | 32 |
| 141 | → | 3 |
| 172 | → | 64 |
| 172 | → | 21 |
| 52 | → | 67 |
| 75 | → | 3 |
| 117 | → | 67 |
| 66 | → | 3 |
| 63 | → | 67 |
| 12 | → | 105 |
| 12 | → | 67 |
| 112 | → | 105 |
| 112 | → | 67 |
| 169 | → | 21 |
| 104 | → | 67 |
| 140 | → | 179 |
| 140 | → | 67 |
| 100 | → | 67 |
| 7 | → | 67 |
| 182 | → | 32 |
| 83 | → | 32 |
| 47 | → | 67 |
| 131 | → | 67 |
| 92 | → | 106 |
| 92 | → | 68 |
| 92 | → | 67 |
| 166 | → | 21 |
| 151 | → | 136 |
| 151 | → | 3 |
| 156 | → | 118 |
| f60 | → | 2 |
| 50(184) | → | 182 |
| 50(176) | → | 175 |
| 50(48) | → | 49 |
| 50(77) | → | 75 |
| 50(189) | → | 187 |
| 50(155) | → | 151 |
| 50(79) | → | 78 |
| 50(21) | → | 56 |
| 50(32) | → | 178 |
| 50(91) | → | 89 |
| 50(22) | → | 128 |
| 50(9) | → | 72 |
| 50(186) | → | 185 |
| 50(85) | → | 86 |
| 50(2) | → | 32 |
| 50(163) | → | 164 |
| 50(3) | → | 48 |
| 50(107) | → | 104 |
| 50(122) | → | 117 |
| 50(115) | → | 116 |
| 50(154) | → | 155 |
| 50(150) | → | 146 |
| 10(33) | → | 60 |
| 10(165) | → | 161 |
| 10(42) | → | 43 |
| 10(118) | → | 152 |
| 10(8) | → | 147 |
| 10(143) | → | 144 |
| 10(32) | → | 33 |
| 10(38) | → | 39 |
| 10(60) | → | 173 |
| 10(152) | → | 153 |
| 10(120) | → | 121 |
| 10(56) | → | 57 |
| 10(3) | → | 157 |
| 10(113) | → | 114 |
| 10(57) | → | 183 |
| 10(9) | → | 93 |
| 10(13) | → | 14 |
| 10(48) | → | 132 |
| 10(5) | → | 13 |
| 10(67) | → | 113 |
| 10(93) | → | 167 |
| 10(2) | → | 8 |
| 10(4) | → | 5 |
| 10(39) | → | 40 |
| 10(157) | → | 158 |
| 10(22) | → | 101 |
| 10(16) | → | 109 |
| 30(137) | → | 138 |
| 30(16) | → | 17 |
| 30(73) | → | 79 |
| 30(30) | → | 29 |
| 30(49) | → | 53 |
| 30(158) | → | 159 |
| 30(174) | → | 172 |
| 30(3) | → | 4 |
| 30(33) | → | 42 |
| 30(45) | → | 46 |
| 30(32) | → | 38 |
| 30(24) | → | 20 |
| 30(61) | → | 186 |
| 30(50) | → | 51 |
| 30(8) | → | 84 |
| 30(133) | → | 134 |
| 30(111) | → | 108 |
| 30(170) | → | 171 |
| 30(142) | → | 143 |
| 30(18) | → | 19 |
| 30(64) | → | 88 |
| 30(118) | → | 162 |
| 30(27) | → | 90 |
| 30(94) | → | 95 |
| 30(60) | → | 97 |
| 30(109) | → | 110 |
| 30(72) | → | 76 |
| 30(126) | → | 123 |
| 30(10) | → | 11 |
| 30(28) | → | 25 |
| 30(160) | → | 156 |
| 30(2) | → | 118 |
| 30(57) | → | 58 |
| 30(147) | → | 148 |
| 30(34) | → | 45 |
| 30(168) | → | 166 |
| 30(54) | → | 52 |
| 30(188) | → | 189 |
| 20(2) | → | 3 |
| 20(82) | → | 80 |
| 20(21) | → | 22 |
| 20(88) | → | 87 |
| 20(32) | → | 136 |
| 20(144) | → | 145 |
| 20(164) | → | 165 |
| 20(70) | → | 66 |
| 20(8) | → | 9 |
| 20(114) | → | 115 |
| 20(9) | → | 10 |
| 20(181) | → | 177 |
| 20(148) | → | 149 |
| 20(69) | → | 70 |
| 20(121) | → | 122 |
| 20(145) | → | 141 |
| 20(86) | → | 83 |
| 20(3) | → | 16 |
| 20(101) | → | 102 |
| 20(153) | → | 154 |
| 00(2) | → | 67 |
| 00(51) | → | 47 |
| 00(149) | → | 150 |
| 00(46) | → | 44 |
| 00(28) | → | 30 |
| 00(9) | → | 105 |
| 00(90) | → | 91 |
| 00(128) | → | 129 |
| 00(134) | → | 131 |
| 00(49) | → | 50 |
| 00(105) | → | 106 |
| 00(110) | → | 111 |
| 00(98) | → | 96 |
| 00(95) | → | 92 |
| 00(64) | → | 65 |
| 00(67) | → | 68 |
| 00(19) | → | 15 |
| 00(36) | → | 31 |
| 00(43) | → | 41 |
| 00(124) | → | 125 |
| 00(61) | → | 62 |
| 00(26) | → | 27 |
| 00(76) | → | 77 |
| 00(138) | → | 139 |
| 00(74) | → | 71 |
| 00(178) | → | 179 |
| 00(38) | → | 81 |
| 00(17) | → | 18 |
| 00(11) | → | 7 |
| 00(84) | → | 85 |
| 00(6) | → | 1 |
| 00(14) | → | 12 |
| 00(118) | → | 119 |
| 00(53) | → | 54 |
| 00(62) | → | 59 |
| 00(23) | → | 24 |
| 00(125) | → | 126 |
| 00(139) | → | 135 |
| 00(130) | → | 127 |
| 00(180) | → | 181 |
| 00(27) | → | 28 |
| 00(35) | → | 36 |
| 00(93) | → | 94 |
| 00(103) | → | 100 |
| 00(183) | → | 184 |
| 00(40) | → | 37 |
| 00(73) | → | 74 |
| 00(97) | → | 176 |
| 00(162) | → | 163 |
| 00(34) | → | 35 |
| 00(58) | → | 55 |
| 00(5) | → | 6 |
| 00(106) | → | 107 |
| 00(179) | → | 180 |
| 00(72) | → | 73 |
| 00(116) | → | 112 |
| 00(119) | → | 120 |
| 00(102) | → | 103 |
| 40(132) | → | 133 |
| 40(171) | → | 169 |
| 40(97) | → | 98 |
| 40(129) | → | 130 |
| 40(136) | → | 137 |
| 40(26) | → | 124 |
| 40(60) | → | 61 |
| 40(54) | → | 140 |
| 40(39) | → | 188 |
| 40(22) | → | 23 |
| 40(67) | → | 142 |
| 40(167) | → | 168 |
| 40(159) | → | 160 |
| 40(3) | → | 26 |
| 40(65) | → | 63 |
| 40(158) | → | 170 |
| 40(81) | → | 82 |
| 40(173) | → | 174 |
| 40(38) | → | 64 |
| 40(33) | → | 34 |
| 40(37) | → | 99 |
| 40(68) | → | 69 |
| 40(2) | → | 21 |