YES
by ttt2 (version ttt2 1.15)
The rewrite relation of the following TRS is considered.
| 0(1(2(x0))) | → | 0(2(1(1(x0)))) |
| 2(3(1(x0))) | → | 3(4(2(1(x0)))) |
| 0(1(2(0(x0)))) | → | 0(0(2(1(1(x0))))) |
| 0(1(2(0(x0)))) | → | 0(2(1(1(0(x0))))) |
| 0(1(2(1(x0)))) | → | 0(2(1(1(1(x0))))) |
| 0(1(2(4(x0)))) | → | 4(0(2(1(1(x0))))) |
| 0(1(2(5(x0)))) | → | 0(2(5(1(1(x0))))) |
| 0(1(2(5(x0)))) | → | 0(4(2(1(5(x0))))) |
| 0(1(3(1(x0)))) | → | 0(0(3(1(1(x0))))) |
| 0(1(3(1(x0)))) | → | 3(0(2(1(1(1(x0)))))) |
| 0(1(4(1(x0)))) | → | 4(0(1(1(1(x0))))) |
| 0(1(4(5(x0)))) | → | 0(4(1(1(5(x0))))) |
| 0(2(0(1(x0)))) | → | 0(0(2(4(1(x0))))) |
| 0(5(3(1(x0)))) | → | 5(0(3(1(1(1(x0)))))) |
| 0(5(3(2(x0)))) | → | 0(3(4(2(5(x0))))) |
| 2(3(2(0(x0)))) | → | 2(2(1(3(0(x0))))) |
| 2(4(5(2(x0)))) | → | 2(1(4(2(5(x0))))) |
| 3(0(1(2(x0)))) | → | 3(4(0(2(1(x0))))) |
| 4(4(3(2(x0)))) | → | 4(3(4(2(1(x0))))) |
| 4(5(3(1(x0)))) | → | 3(5(4(4(1(x0))))) |
| 4(5(3(1(x0)))) | → | 4(3(1(5(1(x0))))) |
| 4(5(3(2(x0)))) | → | 3(4(2(5(4(x0))))) |
| 4(5(3(2(x0)))) | → | 3(5(4(2(1(x0))))) |
| 0(1(0(2(2(x0))))) | → | 0(0(2(1(4(2(x0)))))) |
| 0(1(0(3(1(x0))))) | → | 0(3(4(0(1(1(x0)))))) |
| 0(1(4(5(1(x0))))) | → | 4(0(2(5(1(1(x0)))))) |
| 0(1(5(0(1(x0))))) | → | 0(0(1(5(5(1(x0)))))) |
| 0(2(3(1(3(x0))))) | → | 0(3(4(2(1(3(x0)))))) |
| 0(4(1(5(2(x0))))) | → | 0(4(2(5(1(1(x0)))))) |
| 0(5(1(3(2(x0))))) | → | 3(0(2(1(1(5(x0)))))) |
| 0(5(2(0(4(x0))))) | → | 0(4(2(5(0(4(x0)))))) |
| 0(5(3(1(5(x0))))) | → | 5(0(3(4(1(5(x0)))))) |
| 0(5(3(2(5(x0))))) | → | 0(4(3(5(2(5(x0)))))) |
| 2(0(1(3(1(x0))))) | → | 1(1(4(3(0(2(x0)))))) |
| 2(0(1(3(5(x0))))) | → | 2(5(1(1(0(3(x0)))))) |
| 2(0(1(5(3(x0))))) | → | 2(1(1(3(0(5(x0)))))) |
| 2(3(1(0(1(x0))))) | → | 0(3(2(1(1(5(x0)))))) |
| 2(3(1(4(1(x0))))) | → | 3(4(2(5(1(1(x0)))))) |
| 2(3(5(1(2(x0))))) | → | 2(3(2(1(5(1(x0)))))) |
| 3(0(1(2(0(x0))))) | → | 3(4(0(2(1(0(x0)))))) |
| 3(2(0(1(0(x0))))) | → | 3(2(1(5(0(0(x0)))))) |
| 3(2(3(5(1(x0))))) | → | 3(3(4(2(1(5(x0)))))) |
| 3(5(3(1(3(x0))))) | → | 3(5(4(3(1(3(x0)))))) |
| 4(0(3(3(1(x0))))) | → | 0(3(4(3(1(1(x0)))))) |
| 4(4(3(2(5(x0))))) | → | 3(4(2(4(1(5(x0)))))) |
| 4(5(0(5(2(x0))))) | → | 0(4(2(1(5(5(x0)))))) |
| 4(5(2(3(1(x0))))) | → | 5(3(4(3(2(1(x0)))))) |
| 4(5(2(5(2(x0))))) | → | 4(2(5(5(2(1(x0)))))) |
| 4(5(3(5(1(x0))))) | → | 4(5(5(4(3(1(x0)))))) |
| 2(1(0(x0))) | → | 1(1(2(0(x0)))) |
| 1(3(2(x0))) | → | 1(2(4(3(x0)))) |
| 0(2(1(0(x0)))) | → | 1(1(2(0(0(x0))))) |
| 0(2(1(0(x0)))) | → | 0(1(1(2(0(x0))))) |
| 1(2(1(0(x0)))) | → | 1(1(1(2(0(x0))))) |
| 4(2(1(0(x0)))) | → | 1(1(2(0(4(x0))))) |
| 5(2(1(0(x0)))) | → | 1(1(5(2(0(x0))))) |
| 5(2(1(0(x0)))) | → | 5(1(2(4(0(x0))))) |
| 1(3(1(0(x0)))) | → | 1(1(3(0(0(x0))))) |
| 1(3(1(0(x0)))) | → | 1(1(1(2(0(3(x0)))))) |
| 1(4(1(0(x0)))) | → | 1(1(1(0(4(x0))))) |
| 5(4(1(0(x0)))) | → | 5(1(1(4(0(x0))))) |
| 1(0(2(0(x0)))) | → | 1(4(2(0(0(x0))))) |
| 1(3(5(0(x0)))) | → | 1(1(1(3(0(5(x0)))))) |
| 2(3(5(0(x0)))) | → | 5(2(4(3(0(x0))))) |
| 0(2(3(2(x0)))) | → | 0(3(1(2(2(x0))))) |
| 2(5(4(2(x0)))) | → | 5(2(4(1(2(x0))))) |
| 2(1(0(3(x0)))) | → | 1(2(0(4(3(x0))))) |
| 2(3(4(4(x0)))) | → | 1(2(4(3(4(x0))))) |
| 1(3(5(4(x0)))) | → | 1(4(4(5(3(x0))))) |
| 1(3(5(4(x0)))) | → | 1(5(1(3(4(x0))))) |
| 2(3(5(4(x0)))) | → | 4(5(2(4(3(x0))))) |
| 2(3(5(4(x0)))) | → | 1(2(4(5(3(x0))))) |
| 2(2(0(1(0(x0))))) | → | 2(4(1(2(0(0(x0)))))) |
| 1(3(0(1(0(x0))))) | → | 1(1(0(4(3(0(x0)))))) |
| 1(5(4(1(0(x0))))) | → | 1(1(5(2(0(4(x0)))))) |
| 1(0(5(1(0(x0))))) | → | 1(5(5(1(0(0(x0)))))) |
| 3(1(3(2(0(x0))))) | → | 3(1(2(4(3(0(x0)))))) |
| 2(5(1(4(0(x0))))) | → | 1(1(5(2(4(0(x0)))))) |
| 2(3(1(5(0(x0))))) | → | 5(1(1(2(0(3(x0)))))) |
| 4(0(2(5(0(x0))))) | → | 4(0(5(2(4(0(x0)))))) |
| 5(1(3(5(0(x0))))) | → | 5(1(4(3(0(5(x0)))))) |
| 5(2(3(5(0(x0))))) | → | 5(2(5(3(4(0(x0)))))) |
| 1(3(1(0(2(x0))))) | → | 2(0(3(4(1(1(x0)))))) |
| 5(3(1(0(2(x0))))) | → | 3(0(1(1(5(2(x0)))))) |
| 3(5(1(0(2(x0))))) | → | 5(0(3(1(1(2(x0)))))) |
| 1(0(1(3(2(x0))))) | → | 5(1(1(2(3(0(x0)))))) |
| 1(4(1(3(2(x0))))) | → | 1(1(5(2(4(3(x0)))))) |
| 2(1(5(3(2(x0))))) | → | 1(5(1(2(3(2(x0)))))) |
| 0(2(1(0(3(x0))))) | → | 0(1(2(0(4(3(x0)))))) |
| 0(1(0(2(3(x0))))) | → | 0(0(5(1(2(3(x0)))))) |
| 1(5(3(2(3(x0))))) | → | 5(1(2(4(3(3(x0)))))) |
| 3(1(3(5(3(x0))))) | → | 3(1(3(4(5(3(x0)))))) |
| 1(3(3(0(4(x0))))) | → | 1(1(3(4(3(0(x0)))))) |
| 5(2(3(4(4(x0))))) | → | 5(1(4(2(4(3(x0)))))) |
| 2(5(0(5(4(x0))))) | → | 5(5(1(2(4(0(x0)))))) |
| 1(3(2(5(4(x0))))) | → | 1(2(3(4(3(5(x0)))))) |
| 2(5(2(5(4(x0))))) | → | 1(2(5(5(2(4(x0)))))) |
| 1(5(3(5(4(x0))))) | → | 1(3(4(5(5(4(x0)))))) |
final states:
{165, 160, 155, 154, 151, 148, 145, 140, 135, 134, 129, 127, 123, 119, 114, 108, 104, 101, 99, 98, 95, 93, 89, 86, 83, 81, 79, 77, 74, 70, 66, 63, 59, 54, 50, 44, 42, 39, 36, 31, 28, 24, 21, 16, 15, 14, 10, 6, 1}
transitions:
| 89 | → | 109 |
| 81 | → | 56 |
| 81 | → | 55 |
| 98 | → | 136 |
| 98 | → | 55 |
| 10 | → | 3 |
| 15 | → | 109 |
| 129 | → | 55 |
| 119 | → | 156 |
| 119 | → | 7 |
| 145 | → | 7 |
| 39 | → | 166 |
| 39 | → | 45 |
| 50 | → | 136 |
| 50 | → | 55 |
| 108 | → | 109 |
| 134 | → | 3 |
| 95 | → | 55 |
| 59 | → | 55 |
| 99 | → | 25 |
| 99 | → | 17 |
| 31 | → | 109 |
| 1 | → | 55 |
| 123 | → | 109 |
| 165 | → | 109 |
| 127 | → | 109 |
| 101 | → | 45 |
| 44 | → | 109 |
| 135 | → | 3 |
| 86 | → | 109 |
| 79 | → | 136 |
| 79 | → | 55 |
| 36 | → | 109 |
| 21 | → | 115 |
| 21 | → | 45 |
| 6 | → | 109 |
| 54 | → | 3 |
| 28 | → | 109 |
| 66 | → | 136 |
| 66 | → | 55 |
| 16 | → | 17 |
| 114 | → | 71 |
| 114 | → | 45 |
| 14 | → | 3 |
| 93 | → | 7 |
| 63 | → | 55 |
| 77 | → | 136 |
| 77 | → | 55 |
| 104 | → | 115 |
| 104 | → | 45 |
| 140 | → | 109 |
| 42 | → | 109 |
| 83 | → | 109 |
| 160 | → | 55 |
| 154 | → | 55 |
| 148 | → | 109 |
| 74 | → | 109 |
| 24 | → | 115 |
| 24 | → | 45 |
| 70 | → | 109 |
| 151 | → | 115 |
| 151 | → | 45 |
| 155 | → | 109 |
| 00(112) | → | 113 |
| 00(3) | → | 11 |
| 00(7) | → | 32 |
| 00(45) | → | 46 |
| 00(58) | → | 54 |
| 00(121) | → | 122 |
| 00(8) | → | 64 |
| 00(52) | → | 84 |
| 00(138) | → | 139 |
| 00(96) | → | 100 |
| 00(63) | → | 134 |
| 00(117) | → | 118 |
| 00(139) | → | 135 |
| 00(2) | → | 3 |
| 00(17) | → | 18 |
| 00(1) | → | 14 |
| 40(72) | → | 73 |
| 40(2) | → | 17 |
| 40(78) | → | 77 |
| 40(167) | → | 168 |
| 40(71) | → | 72 |
| 40(51) | → | 52 |
| 40(110) | → | 111 |
| 40(100) | → | 99 |
| 40(12) | → | 43 |
| 40(47) | → | 102 |
| 40(60) | → | 61 |
| 40(141) | → | 142 |
| 40(9) | → | 152 |
| 40(13) | → | 82 |
| 40(156) | → | 157 |
| 40(67) | → | 68 |
| 40(3) | → | 25 |
| 40(7) | → | 8 |
| 20(106) | → | 107 |
| 20(142) | → | 143 |
| 20(7) | → | 136 |
| 20(130) | → | 131 |
| 20(51) | → | 124 |
| 20(8) | → | 9 |
| 20(11) | → | 12 |
| 20(32) | → | 33 |
| 20(158) | → | 159 |
| 20(55) | → | 56 |
| 20(18) | → | 19 |
| 20(82) | → | 81 |
| 20(3) | → | 4 |
| 20(64) | → | 65 |
| 20(113) | → | 108 |
| 20(163) | → | 164 |
| 20(25) | → | 26 |
| 20(61) | → | 62 |
| 20(72) | → | 80 |
| 20(17) | → | 161 |
| 20(2) | → | 55 |
| 20(68) | → | 69 |
| 20(52) | → | 53 |
| 30(25) | → | 105 |
| 30(17) | → | 67 |
| 30(120) | → | 121 |
| 30(46) | → | 47 |
| 30(94) | → | 93 |
| 30(11) | → | 29 |
| 30(157) | → | 158 |
| 30(7) | → | 141 |
| 30(118) | → | 114 |
| 30(147) | → | 145 |
| 30(72) | → | 146 |
| 30(52) | → | 149 |
| 30(3) | → | 51 |
| 30(57) | → | 58 |
| 30(45) | → | 156 |
| 30(111) | → | 112 |
| 30(55) | → | 130 |
| 30(2) | → | 7 |
| 30(168) | → | 169 |
| 50(90) | → | 91 |
| 50(132) | → | 133 |
| 50(105) | → | 106 |
| 50(137) | → | 138 |
| 50(53) | → | 50 |
| 50(55) | → | 115 |
| 50(24) | → | 154 |
| 50(166) | → | 167 |
| 50(19) | → | 87 |
| 50(7) | → | 71 |
| 50(91) | → | 92 |
| 50(9) | → | 78 |
| 50(126) | → | 123 |
| 50(62) | → | 59 |
| 50(144) | → | 140 |
| 50(4) | → | 22 |
| 50(162) | → | 163 |
| 50(2) | → | 45 |
| 50(26) | → | 96 |
| 50(41) | → | 39 |
| 50(75) | → | 76 |
| 50(107) | → | 104 |
| 50(27) | → | 24 |
| 50(122) | → | 119 |
| 50(35) | → | 98 |
| 50(103) | → | 101 |
| 50(161) | → | 162 |
| 50(17) | → | 166 |
| 50(153) | → | 151 |
| f60 | → | 2 |
| 10(2) | → | 109 |
| 10(18) | → | 37 |
| 10(149) | → | 150 |
| 10(56) | → | 57 |
| 10(9) | → | 6 |
| 10(65) | → | 63 |
| 10(128) | → | 127 |
| 10(133) | → | 129 |
| 10(49) | → | 44 |
| 10(146) | → | 147 |
| 10(48) | → | 49 |
| 10(67) | → | 75 |
| 10(19) | → | 20 |
| 10(80) | → | 79 |
| 10(30) | → | 28 |
| 10(152) | → | 153 |
| 10(55) | → | 60 |
| 10(131) | → | 132 |
| 10(25) | → | 40 |
| 10(43) | → | 42 |
| 10(92) | → | 89 |
| 10(4) | → | 5 |
| 10(159) | → | 155 |
| 10(124) | → | 125 |
| 10(26) | → | 27 |
| 10(37) | → | 38 |
| 10(76) | → | 74 |
| 10(150) | → | 148 |
| 10(38) | → | 36 |
| 10(96) | → | 97 |
| 10(164) | → | 160 |
| 10(11) | → | 90 |
| 10(84) | → | 85 |
| 10(87) | → | 88 |
| 10(53) | → | 94 |
| 10(136) | → | 137 |
| 10(23) | → | 21 |
| 10(125) | → | 126 |
| 10(1) | → | 15 |
| 10(29) | → | 30 |
| 10(33) | → | 34 |
| 10(35) | → | 31 |
| 10(22) | → | 23 |
| 10(85) | → | 83 |
| 10(20) | → | 16 |
| 10(40) | → | 41 |
| 10(12) | → | 13 |
| 10(73) | → | 70 |
| 10(143) | → | 144 |
| 10(97) | → | 95 |
| 10(60) | → | 120 |
| 10(34) | → | 35 |
| 10(78) | → | 128 |
| 10(109) | → | 110 |
| 10(5) | → | 1 |
| 10(13) | → | 10 |
| 10(88) | → | 86 |
| 10(169) | → | 165 |
| 10(115) | → | 116 |
| 10(116) | → | 117 |
| 10(47) | → | 48 |
| 10(102) | → | 103 |
| 10(69) | → | 66 |