YES
by ttt2 (version ttt2 1.15)
The rewrite relation of the following TRS is considered.
| 0(1(0(2(x0)))) | → | 0(0(3(1(2(x0))))) | 
| 0(1(3(4(x0)))) | → | 0(4(1(0(3(x0))))) | 
| 0(1(3(4(x0)))) | → | 0(4(1(1(3(x0))))) | 
| 0(1(3(4(x0)))) | → | 0(4(1(3(1(x0))))) | 
| 0(2(1(4(x0)))) | → | 0(4(1(2(3(x0))))) | 
| 0(2(1(4(x0)))) | → | 0(4(1(3(2(x0))))) | 
| 0(2(1(4(x0)))) | → | 2(0(4(1(4(x0))))) | 
| 0(2(1(4(x0)))) | → | 5(5(0(4(1(2(x0)))))) | 
| 0(2(1(5(x0)))) | → | 5(0(4(1(2(x0))))) | 
| 0(2(2(4(x0)))) | → | 0(4(2(2(5(x0))))) | 
| 0(2(2(4(x0)))) | → | 0(4(2(5(2(x0))))) | 
| 3(4(0(2(x0)))) | → | 3(0(4(5(2(x0))))) | 
| 3(4(0(2(x0)))) | → | 3(5(0(4(2(x0))))) | 
| 0(0(1(4(5(x0))))) | → | 0(4(1(0(3(5(x0)))))) | 
| 0(1(0(2(4(x0))))) | → | 2(0(0(4(1(1(x0)))))) | 
| 0(1(2(3(4(x0))))) | → | 2(0(4(1(0(3(x0)))))) | 
| 0(1(3(3(4(x0))))) | → | 0(0(3(1(3(4(x0)))))) | 
| 0(1(4(0(2(x0))))) | → | 0(4(1(5(0(2(x0)))))) | 
| 0(1(4(1(5(x0))))) | → | 2(5(0(4(1(1(x0)))))) | 
| 0(1(4(3(4(x0))))) | → | 0(4(0(3(1(4(x0)))))) | 
| 0(1(4(3(4(x0))))) | → | 3(0(4(1(5(4(x0)))))) | 
| 0(1(4(3(5(x0))))) | → | 5(4(5(0(3(1(x0)))))) | 
| 0(1(5(0(2(x0))))) | → | 0(0(4(1(2(5(x0)))))) | 
| 0(1(5(1(4(x0))))) | → | 4(5(0(3(1(1(x0)))))) | 
| 0(2(1(4(4(x0))))) | → | 0(4(1(2(4(3(x0)))))) | 
| 0(2(1(4(5(x0))))) | → | 0(4(1(2(5(2(x0)))))) | 
| 0(2(1(5(4(x0))))) | → | 5(0(2(0(4(1(x0)))))) | 
| 0(2(4(1(5(x0))))) | → | 5(0(4(1(5(2(x0)))))) | 
| 0(2(4(3(5(x0))))) | → | 0(4(5(2(5(3(x0)))))) | 
| 0(2(5(1(4(x0))))) | → | 0(0(5(4(1(2(x0)))))) | 
| 3(0(1(3(2(x0))))) | → | 0(3(1(0(3(2(x0)))))) | 
| 3(0(2(1(4(x0))))) | → | 4(0(4(1(3(2(x0)))))) | 
| 3(0(2(1(5(x0))))) | → | 5(3(2(0(4(1(x0)))))) | 
| 3(0(4(0(2(x0))))) | → | 0(3(4(0(4(2(x0)))))) | 
| 3(0(4(0(2(x0))))) | → | 0(4(1(2(0(3(x0)))))) | 
| 3(0(5(1(4(x0))))) | → | 3(0(4(1(1(5(x0)))))) | 
| 3(0(5(1(5(x0))))) | → | 0(4(1(3(5(5(x0)))))) | 
| 3(2(4(1(2(x0))))) | → | 3(1(2(2(5(4(x0)))))) | 
| 3(2(4(1(5(x0))))) | → | 3(1(4(5(2(5(x0)))))) | 
| 3(4(0(1(2(x0))))) | → | 0(4(2(0(3(1(x0)))))) | 
| 3(4(0(1(4(x0))))) | → | 0(4(1(5(3(4(x0)))))) | 
| 3(4(0(1(5(x0))))) | → | 0(4(1(5(5(3(x0)))))) | 
| 3(4(0(2(4(x0))))) | → | 0(3(4(0(4(2(x0)))))) | 
| 3(4(1(2(4(x0))))) | → | 0(4(1(2(4(3(x0)))))) | 
| 3(4(1(3(5(x0))))) | → | 4(3(0(3(1(5(x0)))))) | 
| 3(4(3(0(2(x0))))) | → | 3(3(0(4(1(2(x0)))))) | 
| 3(4(5(0(2(x0))))) | → | 0(3(0(4(2(5(x0)))))) | 
| 3(5(0(2(2(x0))))) | → | 0(3(2(5(2(5(x0)))))) | 
| 3(5(2(1(4(x0))))) | → | 3(5(1(0(4(2(x0)))))) | 
| 2(0(1(0(x0)))) | → | 2(1(3(0(0(x0))))) | 
| 4(3(1(0(x0)))) | → | 3(0(1(4(0(x0))))) | 
| 4(3(1(0(x0)))) | → | 3(1(1(4(0(x0))))) | 
| 4(3(1(0(x0)))) | → | 1(3(1(4(0(x0))))) | 
| 4(1(2(0(x0)))) | → | 3(2(1(4(0(x0))))) | 
| 4(1(2(0(x0)))) | → | 2(3(1(4(0(x0))))) | 
| 4(1(2(0(x0)))) | → | 4(1(4(0(2(x0))))) | 
| 4(1(2(0(x0)))) | → | 2(1(4(0(5(5(x0)))))) | 
| 5(1(2(0(x0)))) | → | 2(1(4(0(5(x0))))) | 
| 4(2(2(0(x0)))) | → | 5(2(2(4(0(x0))))) | 
| 4(2(2(0(x0)))) | → | 2(5(2(4(0(x0))))) | 
| 2(0(4(3(x0)))) | → | 2(5(4(0(3(x0))))) | 
| 2(0(4(3(x0)))) | → | 2(4(0(5(3(x0))))) | 
| 5(4(1(0(0(x0))))) | → | 5(3(0(1(4(0(x0)))))) | 
| 4(2(0(1(0(x0))))) | → | 1(1(4(0(0(2(x0)))))) | 
| 4(3(2(1(0(x0))))) | → | 3(0(1(4(0(2(x0)))))) | 
| 4(3(3(1(0(x0))))) | → | 4(3(1(3(0(0(x0)))))) | 
| 2(0(4(1(0(x0))))) | → | 2(0(5(1(4(0(x0)))))) | 
| 5(1(4(1(0(x0))))) | → | 1(1(4(0(5(2(x0)))))) | 
| 4(3(4(1(0(x0))))) | → | 4(1(3(0(4(0(x0)))))) | 
| 4(3(4(1(0(x0))))) | → | 4(5(1(4(0(3(x0)))))) | 
| 5(3(4(1(0(x0))))) | → | 1(3(0(5(4(5(x0)))))) | 
| 2(0(5(1(0(x0))))) | → | 5(2(1(4(0(0(x0)))))) | 
| 4(1(5(1(0(x0))))) | → | 1(1(3(0(5(4(x0)))))) | 
| 4(4(1(2(0(x0))))) | → | 3(4(2(1(4(0(x0)))))) | 
| 5(4(1(2(0(x0))))) | → | 2(5(2(1(4(0(x0)))))) | 
| 4(5(1(2(0(x0))))) | → | 1(4(0(2(0(5(x0)))))) | 
| 5(1(4(2(0(x0))))) | → | 2(5(1(4(0(5(x0)))))) | 
| 5(3(4(2(0(x0))))) | → | 3(5(2(5(4(0(x0)))))) | 
| 4(1(5(2(0(x0))))) | → | 2(1(4(5(0(0(x0)))))) | 
| 2(3(1(0(3(x0))))) | → | 2(3(0(1(3(0(x0)))))) | 
| 4(1(2(0(3(x0))))) | → | 2(3(1(4(0(4(x0)))))) | 
| 5(1(2(0(3(x0))))) | → | 1(4(0(2(3(5(x0)))))) | 
| 2(0(4(0(3(x0))))) | → | 2(4(0(4(3(0(x0)))))) | 
| 2(0(4(0(3(x0))))) | → | 3(0(2(1(4(0(x0)))))) | 
| 4(1(5(0(3(x0))))) | → | 5(1(1(4(0(3(x0)))))) | 
| 5(1(5(0(3(x0))))) | → | 5(5(3(1(4(0(x0)))))) | 
| 2(1(4(2(3(x0))))) | → | 4(5(2(2(1(3(x0)))))) | 
| 5(1(4(2(3(x0))))) | → | 5(2(5(4(1(3(x0)))))) | 
| 2(1(0(4(3(x0))))) | → | 1(3(0(2(4(0(x0)))))) | 
| 4(1(0(4(3(x0))))) | → | 4(3(5(1(4(0(x0)))))) | 
| 5(1(0(4(3(x0))))) | → | 3(5(5(1(4(0(x0)))))) | 
| 4(2(0(4(3(x0))))) | → | 2(4(0(4(3(0(x0)))))) | 
| 4(2(1(4(3(x0))))) | → | 3(4(2(1(4(0(x0)))))) | 
| 5(3(1(4(3(x0))))) | → | 5(1(3(0(3(4(x0)))))) | 
| 2(0(3(4(3(x0))))) | → | 2(1(4(0(3(3(x0)))))) | 
| 2(0(5(4(3(x0))))) | → | 5(2(4(0(3(0(x0)))))) | 
| 2(2(0(5(3(x0))))) | → | 5(2(5(2(3(0(x0)))))) | 
| 4(1(2(5(3(x0))))) | → | 2(4(0(1(5(3(x0)))))) | 
final states:
{163, 159, 155, 150, 145, 143, 141, 138, 134, 129, 127, 125, 123, 119, 114, 109, 104, 100, 96, 94, 90, 88, 86, 80, 76, 71, 68, 64, 59, 56, 54, 52, 48, 47, 43, 38, 36, 33, 29, 23, 18, 17, 15, 13, 11, 7, 1}
transitions:
| 33 | → | 81 | 
| 23 | → | 81 | 
| 29 | → | 24 | 
| 80 | → | 81 | 
| 15 | → | 81 | 
| 96 | → | 44 | 
| 96 | → | 24 | 
| 129 | → | 19 | 
| 119 | → | 19 | 
| 119 | → | 81 | 
| 145 | → | 44 | 
| 145 | → | 24 | 
| 18 | → | 81 | 
| 134 | → | 24 | 
| 59 | → | 24 | 
| 90 | → | 72 | 
| 90 | → | 81 | 
| 1 | → | 19 | 
| 123 | → | 19 | 
| 71 | → | 44 | 
| 71 | → | 24 | 
| 127 | → | 24 | 
| 13 | → | 81 | 
| 125 | → | 81 | 
| 76 | → | 91 | 
| 76 | → | 19 | 
| 38 | → | 19 | 
| 86 | → | 81 | 
| 36 | → | 81 | 
| 141 | → | 81 | 
| 138 | → | 19 | 
| 150 | → | 19 | 
| 109 | → | 81 | 
| 88 | → | 82 | 
| 88 | → | 24 | 
| 54 | → | 81 | 
| 52 | → | 81 | 
| 143 | → | 24 | 
| 11 | → | 81 | 
| 114 | → | 24 | 
| 104 | → | 19 | 
| 100 | → | 81 | 
| 7 | → | 81 | 
| 64 | → | 81 | 
| 48 | → | 81 | 
| 17 | → | 81 | 
| 47 | → | 24 | 
| 68 | → | 81 | 
| 159 | → | 19 | 
| 43 | → | 19 | 
| 163 | → | 81 | 
| 56 | → | 19 | 
| 155 | → | 91 | 
| 155 | → | 19 | 
| 94 | → | 24 | 
| 30(74) | → | 75 | 
| 30(16) | → | 15 | 
| 30(65) | → | 66 | 
| 30(53) | → | 52 | 
| 30(144) | → | 143 | 
| 30(112) | → | 113 | 
| 30(3) | → | 105 | 
| 30(24) | → | 115 | 
| 30(87) | → | 86 | 
| 30(9) | → | 14 | 
| 30(83) | → | 84 | 
| 30(99) | → | 96 | 
| 30(6) | → | 55 | 
| 30(39) | → | 151 | 
| 30(81) | → | 146 | 
| 30(107) | → | 108 | 
| 30(10) | → | 7 | 
| 30(4) | → | 5 | 
| 30(124) | → | 123 | 
| 30(139) | → | 140 | 
| 30(2) | → | 39 | 
| 30(57) | → | 142 | 
| 30(147) | → | 148 | 
| 30(12) | → | 11 | 
| 00(73) | → | 74 | 
| 00(20) | → | 49 | 
| 00(2) | → | 3 | 
| 00(25) | → | 26 | 
| 00(82) | → | 83 | 
| 00(120) | → | 121 | 
| 00(19) | → | 20 | 
| 00(44) | → | 45 | 
| 00(16) | → | 124 | 
| 00(24) | → | 30 | 
| 00(34) | → | 139 | 
| 00(164) | → | 165 | 
| 00(8) | → | 65 | 
| 00(91) | → | 92 | 
| 00(60) | → | 61 | 
| 00(106) | → | 107 | 
| 00(105) | → | 156 | 
| 00(9) | → | 10 | 
| 00(57) | → | 58 | 
| 00(116) | → | 117 | 
| 00(39) | → | 40 | 
| 00(146) | → | 147 | 
| 00(3) | → | 4 | 
| 00(81) | → | 110 | 
| 00(22) | → | 53 | 
| 00(151) | → | 152 | 
| 10(148) | → | 149 | 
| 10(41) | → | 69 | 
| 10(14) | → | 13 | 
| 10(63) | → | 59 | 
| 10(85) | → | 80 | 
| 10(118) | → | 114 | 
| 10(51) | → | 48 | 
| 10(8) | → | 9 | 
| 10(84) | → | 85 | 
| 10(105) | → | 106 | 
| 10(77) | → | 78 | 
| 10(75) | → | 71 | 
| 10(69) | → | 126 | 
| 10(140) | → | 138 | 
| 10(111) | → | 112 | 
| 10(9) | → | 12 | 
| 10(50) | → | 51 | 
| 10(102) | → | 103 | 
| 10(27) | → | 28 | 
| 10(21) | → | 22 | 
| 10(31) | → | 32 | 
| 10(62) | → | 63 | 
| 10(5) | → | 6 | 
| 10(93) | → | 90 | 
| 10(153) | → | 154 | 
| 10(44) | → | 164 | 
| 10(39) | → | 130 | 
| 10(66) | → | 67 | 
| 40(101) | → | 102 | 
| 40(142) | → | 141 | 
| 40(61) | → | 62 | 
| 40(117) | → | 118 | 
| 40(152) | → | 153 | 
| 40(26) | → | 27 | 
| 40(4) | → | 77 | 
| 40(22) | → | 18 | 
| 40(92) | → | 93 | 
| 40(20) | → | 21 | 
| 40(67) | → | 64 | 
| 40(156) | → | 157 | 
| 40(49) | → | 50 | 
| 40(40) | → | 41 | 
| 40(16) | → | 87 | 
| 40(3) | → | 8 | 
| 40(165) | → | 166 | 
| 40(30) | → | 31 | 
| 40(133) | → | 129 | 
| 40(70) | → | 68 | 
| 40(110) | → | 111 | 
| 40(121) | → | 122 | 
| 40(24) | → | 72 | 
| 40(45) | → | 46 | 
| 40(130) | → | 135 | 
| 40(55) | → | 54 | 
| 40(105) | → | 120 | 
| 40(2) | → | 81 | 
| 50(132) | → | 133 | 
| 50(135) | → | 136 | 
| 50(16) | → | 89 | 
| 50(137) | → | 134 | 
| 50(72) | → | 73 | 
| 50(79) | → | 76 | 
| 50(128) | → | 127 | 
| 50(24) | → | 25 | 
| 50(34) | → | 37 | 
| 50(19) | → | 60 | 
| 50(98) | → | 99 | 
| 50(7) | → | 47 | 
| 50(32) | → | 95 | 
| 50(9) | → | 57 | 
| 50(69) | → | 70 | 
| 50(126) | → | 125 | 
| 50(4) | → | 101 | 
| 50(14) | → | 128 | 
| 50(162) | → | 159 | 
| 50(2) | → | 24 | 
| 50(41) | → | 42 | 
| 50(35) | → | 33 | 
| 50(8) | → | 97 | 
| 50(149) | → | 145 | 
| 50(39) | → | 44 | 
| 50(158) | → | 155 | 
| 50(81) | → | 82 | 
| 50(57) | → | 144 | 
| 50(160) | → | 161 | 
| f60 | → | 2 | 
| 20(2) | → | 19 | 
| 20(157) | → | 158 | 
| 20(46) | → | 43 | 
| 20(28) | → | 23 | 
| 20(9) | → | 16 | 
| 20(105) | → | 160 | 
| 20(95) | → | 94 | 
| 20(166) | → | 163 | 
| 20(113) | → | 109 | 
| 20(30) | → | 91 | 
| 20(131) | → | 132 | 
| 20(8) | → | 34 | 
| 20(37) | → | 36 | 
| 20(89) | → | 88 | 
| 20(6) | → | 1 | 
| 20(14) | → | 17 | 
| 20(136) | → | 137 | 
| 20(32) | → | 29 | 
| 20(161) | → | 162 | 
| 20(130) | → | 131 | 
| 20(103) | → | 100 | 
| 20(42) | → | 38 | 
| 20(97) | → | 98 | 
| 20(154) | → | 150 | 
| 20(108) | → | 104 | 
| 20(34) | → | 35 | 
| 20(78) | → | 79 | 
| 20(58) | → | 56 | 
| 20(115) | → | 116 | 
| 20(122) | → | 119 |