YES
by ttt2 (version ttt2 1.15)
The rewrite relation of the following TRS is considered.
| 0(0(1(2(x0)))) | → | 0(2(1(3(3(0(x0)))))) | 
| 0(1(0(4(x0)))) | → | 0(1(3(0(4(x0))))) | 
| 0(1(0(5(x0)))) | → | 0(1(3(5(0(x0))))) | 
| 0(1(5(0(x0)))) | → | 0(1(3(5(0(x0))))) | 
| 0(3(1(0(x0)))) | → | 0(1(3(5(0(x0))))) | 
| 3(1(0(2(x0)))) | → | 1(3(5(0(2(x0))))) | 
| 3(1(0(2(x0)))) | → | 3(2(1(3(0(x0))))) | 
| 3(1(0(5(x0)))) | → | 1(3(5(3(0(x0))))) | 
| 3(1(2(0(x0)))) | → | 2(1(3(3(0(x0))))) | 
| 3(1(2(0(x0)))) | → | 3(0(2(1(4(x0))))) | 
| 3(1(2(0(x0)))) | → | 3(0(3(2(1(x0))))) | 
| 3(1(2(0(x0)))) | → | 3(3(2(1(0(x0))))) | 
| 3(1(2(0(x0)))) | → | 3(5(2(1(0(x0))))) | 
| 3(1(2(2(x0)))) | → | 3(5(2(2(1(x0))))) | 
| 3(4(2(0(x0)))) | → | 3(3(2(4(0(x0))))) | 
| 4(0(1(0(x0)))) | → | 1(3(0(4(0(x0))))) | 
| 5(1(0(5(x0)))) | → | 1(3(3(5(5(0(x0)))))) | 
| 5(2(5(0(x0)))) | → | 5(2(3(5(0(x0))))) | 
| 5(3(1(0(x0)))) | → | 0(1(3(5(5(x0))))) | 
| 0(0(4(1(0(x0))))) | → | 0(4(1(3(0(0(x0)))))) | 
| 0(1(2(0(5(x0))))) | → | 0(3(0(5(1(2(x0)))))) | 
| 0(1(3(1(2(x0))))) | → | 3(0(2(2(1(1(x0)))))) | 
| 0(1(5(0(4(x0))))) | → | 0(4(1(3(5(0(x0)))))) | 
| 0(1(5(3(5(x0))))) | → | 0(1(3(5(3(5(x0)))))) | 
| 0(2(0(3(4(x0))))) | → | 0(4(5(2(3(0(x0)))))) | 
| 0(2(3(1(5(x0))))) | → | 0(1(3(5(5(2(x0)))))) | 
| 0(2(4(1(2(x0))))) | → | 0(2(1(1(4(2(x0)))))) | 
| 0(2(5(0(2(x0))))) | → | 0(0(3(5(2(2(x0)))))) | 
| 0(2(5(5(0(x0))))) | → | 0(0(2(5(1(5(x0)))))) | 
| 0(3(1(5(0(x0))))) | → | 1(3(0(5(3(0(x0)))))) | 
| 0(5(3(2(0(x0))))) | → | 0(0(2(1(3(5(x0)))))) | 
| 3(1(0(5(2(x0))))) | → | 2(4(1(3(5(0(x0)))))) | 
| 3(1(3(0(2(x0))))) | → | 2(1(3(3(3(0(x0)))))) | 
| 3(1(3(2(0(x0))))) | → | 3(1(3(0(5(2(x0)))))) | 
| 3(1(4(1(2(x0))))) | → | 1(4(3(2(2(1(x0)))))) | 
| 3(1(4(2(0(x0))))) | → | 2(1(3(3(0(4(x0)))))) | 
| 3(1(5(0(2(x0))))) | → | 2(5(1(3(0(5(x0)))))) | 
| 3(3(1(0(0(x0))))) | → | 5(1(3(3(0(0(x0)))))) | 
| 3(4(0(2(0(x0))))) | → | 3(0(0(2(1(4(x0)))))) | 
| 3(4(2(3(2(x0))))) | → | 3(3(2(5(4(2(x0)))))) | 
| 4(3(1(0(2(x0))))) | → | 4(2(1(3(0(1(x0)))))) | 
| 4(3(1(2(0(x0))))) | → | 1(3(0(1(4(2(x0)))))) | 
| 4(5(5(1(2(x0))))) | → | 5(4(5(2(1(1(x0)))))) | 
| 4(5(5(5(0(x0))))) | → | 5(5(1(5(0(4(x0)))))) | 
| 5(1(0(1(2(x0))))) | → | 2(1(1(3(5(0(x0)))))) | 
| 5(1(1(0(4(x0))))) | → | 5(1(1(4(3(0(x0)))))) | 
| 5(1(5(2(0(x0))))) | → | 2(1(3(5(0(5(x0)))))) | 
| 5(4(1(0(5(x0))))) | → | 4(1(3(5(5(0(x0)))))) | 
| 2(1(0(0(x0)))) | → | 0(3(3(1(2(0(x0)))))) | 
| 4(0(1(0(x0)))) | → | 4(0(3(1(0(x0))))) | 
| 5(0(1(0(x0)))) | → | 0(5(3(1(0(x0))))) | 
| 0(5(1(0(x0)))) | → | 0(5(3(1(0(x0))))) | 
| 0(1(3(0(x0)))) | → | 0(5(3(1(0(x0))))) | 
| 2(0(1(3(x0)))) | → | 2(0(5(3(1(x0))))) | 
| 2(0(1(3(x0)))) | → | 0(3(1(2(3(x0))))) | 
| 5(0(1(3(x0)))) | → | 0(3(5(3(1(x0))))) | 
| 0(2(1(3(x0)))) | → | 0(3(3(1(2(x0))))) | 
| 0(2(1(3(x0)))) | → | 4(1(2(0(3(x0))))) | 
| 0(2(1(3(x0)))) | → | 1(2(3(0(3(x0))))) | 
| 0(2(1(3(x0)))) | → | 0(1(2(3(3(x0))))) | 
| 0(2(1(3(x0)))) | → | 0(1(2(5(3(x0))))) | 
| 2(2(1(3(x0)))) | → | 1(2(2(5(3(x0))))) | 
| 0(2(4(3(x0)))) | → | 0(4(2(3(3(x0))))) | 
| 0(1(0(4(x0)))) | → | 0(4(0(3(1(x0))))) | 
| 5(0(1(5(x0)))) | → | 0(5(5(3(3(1(x0)))))) | 
| 0(5(2(5(x0)))) | → | 0(5(3(2(5(x0))))) | 
| 0(1(3(5(x0)))) | → | 5(5(3(1(0(x0))))) | 
| 0(1(4(0(0(x0))))) | → | 0(0(3(1(4(0(x0)))))) | 
| 5(0(2(1(0(x0))))) | → | 2(1(5(0(3(0(x0)))))) | 
| 2(1(3(1(0(x0))))) | → | 1(1(2(2(0(3(x0)))))) | 
| 4(0(5(1(0(x0))))) | → | 0(5(3(1(4(0(x0)))))) | 
| 5(3(5(1(0(x0))))) | → | 5(3(5(3(1(0(x0)))))) | 
| 4(3(0(2(0(x0))))) | → | 0(3(2(5(4(0(x0)))))) | 
| 5(1(3(2(0(x0))))) | → | 2(5(5(3(1(0(x0)))))) | 
| 2(1(4(2(0(x0))))) | → | 2(4(1(1(2(0(x0)))))) | 
| 2(0(5(2(0(x0))))) | → | 2(2(5(3(0(0(x0)))))) | 
| 0(5(5(2(0(x0))))) | → | 5(1(5(2(0(0(x0)))))) | 
| 0(5(1(3(0(x0))))) | → | 0(3(5(0(3(1(x0)))))) | 
| 0(2(3(5(0(x0))))) | → | 5(3(1(2(0(0(x0)))))) | 
| 2(5(0(1(3(x0))))) | → | 0(5(3(1(4(2(x0)))))) | 
| 2(0(3(1(3(x0))))) | → | 0(3(3(3(1(2(x0)))))) | 
| 0(2(3(1(3(x0))))) | → | 2(5(0(3(1(3(x0)))))) | 
| 2(1(4(1(3(x0))))) | → | 1(2(2(3(4(1(x0)))))) | 
| 0(2(4(1(3(x0))))) | → | 4(0(3(3(1(2(x0)))))) | 
| 2(0(5(1(3(x0))))) | → | 5(0(3(1(5(2(x0)))))) | 
| 0(0(1(3(3(x0))))) | → | 0(0(3(3(1(5(x0)))))) | 
| 0(2(0(4(3(x0))))) | → | 4(1(2(0(0(3(x0)))))) | 
| 2(3(2(4(3(x0))))) | → | 2(4(5(2(3(3(x0)))))) | 
| 2(0(1(3(4(x0))))) | → | 1(0(3(1(2(4(x0)))))) | 
| 0(2(1(3(4(x0))))) | → | 2(4(1(0(3(1(x0)))))) | 
| 2(1(5(5(4(x0))))) | → | 1(1(2(5(4(5(x0)))))) | 
| 0(5(5(5(4(x0))))) | → | 4(0(5(1(5(5(x0)))))) | 
| 2(1(0(1(5(x0))))) | → | 0(5(3(1(1(2(x0)))))) | 
| 4(0(1(1(5(x0))))) | → | 0(3(4(1(1(5(x0)))))) | 
| 0(2(5(1(5(x0))))) | → | 5(0(5(3(1(2(x0)))))) | 
| 5(0(1(4(5(x0))))) | → | 0(5(5(3(1(4(x0)))))) | 
final states:
{168, 165, 161, 157, 152, 147, 144, 138, 135, 131, 126, 121, 120, 115, 110, 108, 103, 100, 97, 93, 88, 85, 84, 80, 78, 76, 73, 68, 63, 62, 57, 53, 50, 48, 46, 42, 38, 35, 31, 26, 24, 19, 14, 12, 8, 1}
transitions:
| 78 | → | 43 | 
| 78 | → | 58 | 
| 157 | → | 27 | 
| 80 | → | 139 | 
| 103 | → | 59 | 
| 103 | → | 27 | 
| 152 | → | 3 | 
| 97 | → | 3 | 
| 50 | → | 3 | 
| 57 | → | 3 | 
| 108 | → | 33 | 
| 108 | → | 4 | 
| 108 | → | 27 | 
| 147 | → | 27 | 
| 110 | → | 3 | 
| 62 | → | 3 | 
| 31 | → | 3 | 
| 1 | → | 27 | 
| 8 | → | 64 | 
| 8 | → | 139 | 
| 165 | → | 3 | 
| 135 | → | 21 | 
| 135 | → | 27 | 
| 73 | → | 27 | 
| 26 | → | 3 | 
| 76 | → | 64 | 
| 76 | → | 139 | 
| 38 | → | 3 | 
| 161 | → | 64 | 
| 161 | → | 139 | 
| 138 | → | 4 | 
| 138 | → | 27 | 
| 121 | → | 4 | 
| 121 | → | 27 | 
| 88 | → | 4 | 
| 88 | → | 27 | 
| 53 | → | 58 | 
| 4 | → | 58 | 
| 14 | → | 4 | 
| 14 | → | 27 | 
| 93 | → | 3 | 
| 63 | → | 3 | 
| 12 | → | 58 | 
| 12 | → | 3 | 
| 85 | → | 27 | 
| 100 | → | 3 | 
| 126 | → | 89 | 
| 126 | → | 3 | 
| 42 | → | 3 | 
| 64 | → | 3 | 
| 46 | → | 27 | 
| 35 | → | 3 | 
| 115 | → | 27 | 
| 48 | → | 3 | 
| 168 | → | 58 | 
| 68 | → | 58 | 
| 131 | → | 3 | 
| 24 | → | 58 | 
| 19 | → | 4 | 
| 19 | → | 27 | 
| 144 | → | 3 | 
| 10(51) | → | 145 | 
| 10(74) | → | 75 | 
| 10(127) | → | 162 | 
| 10(37) | → | 35 | 
| 10(95) | → | 96 | 
| 10(3) | → | 9 | 
| 10(44) | → | 45 | 
| 10(33) | → | 34 | 
| 10(58) | → | 127 | 
| 10(21) | → | 22 | 
| 10(143) | → | 138 | 
| 10(150) | → | 151 | 
| 10(140) | → | 141 | 
| 10(133) | → | 134 | 
| 10(64) | → | 65 | 
| 10(151) | → | 147 | 
| 10(27) | → | 28 | 
| 10(94) | → | 101 | 
| 10(119) | → | 115 | 
| 10(75) | → | 73 | 
| 10(71) | → | 72 | 
| 10(5) | → | 86 | 
| 10(4) | → | 5 | 
| 10(28) | → | 158 | 
| 10(47) | → | 46 | 
| 10(40) | → | 41 | 
| 10(139) | → | 169 | 
| 10(122) | → | 123 | 
| 10(2) | → | 15 | 
| 10(20) | → | 111 | 
| 10(104) | → | 105 | 
| 10(153) | → | 154 | 
| 20(72) | → | 68 | 
| 20(20) | → | 21 | 
| 20(2) | → | 27 | 
| 20(132) | → | 133 | 
| 20(117) | → | 118 | 
| 20(58) | → | 59 | 
| 20(44) | → | 47 | 
| 20(32) | → | 33 | 
| 20(87) | → | 85 | 
| 20(89) | → | 94 | 
| 20(91) | → | 92 | 
| 20(114) | → | 110 | 
| 20(92) | → | 88 | 
| 20(36) | → | 37 | 
| 20(18) | → | 14 | 
| 20(137) | → | 135 | 
| 20(139) | → | 140 | 
| 20(118) | → | 119 | 
| 20(62) | → | 84 | 
| 20(39) | → | 40 | 
| 20(33) | → | 74 | 
| 20(146) | → | 144 | 
| 20(3) | → | 4 | 
| 20(43) | → | 44 | 
| 20(81) | → | 82 | 
| 20(149) | → | 150 | 
| 30(98) | → | 99 | 
| 30(65) | → | 66 | 
| 30(123) | → | 124 | 
| 30(30) | → | 109 | 
| 30(59) | → | 60 | 
| 30(169) | → | 170 | 
| 30(105) | → | 106 | 
| 30(32) | → | 36 | 
| 30(6) | → | 7 | 
| 30(158) | → | 159 | 
| 30(29) | → | 30 | 
| 30(82) | → | 83 | 
| 30(28) | → | 29 | 
| 30(3) | → | 69 | 
| 30(111) | → | 112 | 
| 30(116) | → | 117 | 
| 30(9) | → | 10 | 
| 30(163) | → | 164 | 
| 30(101) | → | 102 | 
| 30(128) | → | 129 | 
| 30(127) | → | 128 | 
| 30(15) | → | 16 | 
| 30(20) | → | 39 | 
| 30(13) | → | 79 | 
| 30(5) | → | 6 | 
| 30(17) | → | 25 | 
| 30(2) | → | 20 | 
| 30(141) | → | 142 | 
| 30(22) | → | 23 | 
| 30(16) | → | 54 | 
| 30(89) | → | 90 | 
| 40(58) | → | 148 | 
| 40(86) | → | 87 | 
| 40(136) | → | 137 | 
| 40(26) | → | 120 | 
| 40(11) | → | 8 | 
| 40(27) | → | 104 | 
| 40(162) | → | 163 | 
| 40(15) | → | 116 | 
| 40(156) | → | 152 | 
| 40(40) | → | 49 | 
| 40(145) | → | 146 | 
| 40(3) | → | 64 | 
| 40(34) | → | 31 | 
| 40(134) | → | 131 | 
| 40(51) | → | 52 | 
| 40(2) | → | 139 | 
| 50(64) | → | 81 | 
| 50(90) | → | 91 | 
| 50(70) | → | 71 | 
| 50(16) | → | 17 | 
| 50(60) | → | 61 | 
| 50(96) | → | 93 | 
| 50(20) | → | 43 | 
| 50(55) | → | 56 | 
| 50(79) | → | 78 | 
| 50(94) | → | 95 | 
| 50(40) | → | 136 | 
| 50(125) | → | 121 | 
| 50(54) | → | 55 | 
| 50(167) | → | 165 | 
| 50(66) | → | 77 | 
| 50(148) | → | 149 | 
| 50(171) | → | 172 | 
| 50(113) | → | 114 | 
| 50(2) | → | 58 | 
| 50(170) | → | 171 | 
| 50(27) | → | 122 | 
| 50(58) | → | 153 | 
| 50(29) | → | 166 | 
| 50(10) | → | 13 | 
| 50(13) | → | 62 | 
| 50(102) | → | 100 | 
| 50(106) | → | 107 | 
| 50(51) | → | 98 | 
| 50(154) | → | 155 | 
| 50(159) | → | 160 | 
| f60 | → | 2 | 
| 00(2) | → | 3 | 
| 00(56) | → | 53 | 
| 00(10) | → | 11 | 
| 00(49) | → | 48 | 
| 00(67) | → | 63 | 
| 00(99) | → | 97 | 
| 00(166) | → | 167 | 
| 00(30) | → | 26 | 
| 00(107) | → | 103 | 
| 00(25) | → | 24 | 
| 00(124) | → | 125 | 
| 00(61) | → | 57 | 
| 00(155) | → | 156 | 
| 00(3) | → | 89 | 
| 00(164) | → | 161 | 
| 00(17) | → | 18 | 
| 00(83) | → | 80 | 
| 00(66) | → | 67 | 
| 00(23) | → | 19 | 
| 00(32) | → | 132 | 
| 00(112) | → | 113 | 
| 00(130) | → | 126 | 
| 00(7) | → | 1 | 
| 00(52) | → | 50 | 
| 00(45) | → | 42 | 
| 00(129) | → | 130 | 
| 00(172) | → | 168 | 
| 00(20) | → | 32 | 
| 00(142) | → | 143 | 
| 00(41) | → | 38 | 
| 00(16) | → | 51 | 
| 00(109) | → | 108 | 
| 00(77) | → | 76 | 
| 00(13) | → | 12 | 
| 00(160) | → | 157 | 
| 00(69) | → | 70 |