YES
by ttt2 (version ttt2 1.15)
The rewrite relation of the following TRS is considered.
| 0(1(2(3(x0)))) | → | 2(0(3(1(2(x0))))) | 
| 0(1(2(3(x0)))) | → | 2(0(3(1(3(x0))))) | 
| 0(1(2(3(x0)))) | → | 2(0(3(2(1(x0))))) | 
| 0(1(2(3(x0)))) | → | 2(1(0(3(0(x0))))) | 
| 0(1(2(3(x0)))) | → | 2(1(3(0(2(x0))))) | 
| 0(1(2(3(x0)))) | → | 2(1(4(3(0(x0))))) | 
| 0(1(2(3(x0)))) | → | 2(3(0(2(1(x0))))) | 
| 0(1(2(3(x0)))) | → | 2(0(3(2(1(1(x0)))))) | 
| 0(1(2(3(x0)))) | → | 2(0(3(3(2(1(x0)))))) | 
| 0(1(2(3(x0)))) | → | 2(1(3(0(3(0(x0)))))) | 
| 0(1(5(3(x0)))) | → | 2(1(0(3(3(5(x0)))))) | 
| 0(1(5(3(x0)))) | → | 2(1(0(3(4(5(x0)))))) | 
| 0(5(2(3(x0)))) | → | 2(0(3(3(5(x0))))) | 
| 0(5(2(3(x0)))) | → | 2(0(0(3(5(3(x0)))))) | 
| 0(0(1(2(3(x0))))) | → | 0(2(0(3(1(0(x0)))))) | 
| 0(0(1(2(3(x0))))) | → | 2(1(1(3(0(0(x0)))))) | 
| 0(0(4(2(3(x0))))) | → | 0(3(4(0(3(2(x0)))))) | 
| 0(0(4(2(3(x0))))) | → | 3(0(0(2(4(4(x0)))))) | 
| 0(0(5(2(3(x0))))) | → | 0(3(5(2(4(0(x0)))))) | 
| 0(1(0(2(3(x0))))) | → | 3(2(4(1(0(0(x0)))))) | 
| 0(1(0(5(3(x0))))) | → | 0(1(1(5(0(3(x0)))))) | 
| 0(1(0(5(3(x0))))) | → | 1(5(0(0(3(4(x0)))))) | 
| 0(1(2(1(3(x0))))) | → | 2(1(0(0(3(1(x0)))))) | 
| 0(1(2(2(3(x0))))) | → | 2(0(3(3(1(2(x0)))))) | 
| 0(1(2(3(3(x0))))) | → | 2(0(3(3(4(1(x0)))))) | 
| 0(1(2(5(3(x0))))) | → | 2(5(0(3(1(0(x0)))))) | 
| 0(4(5(5(3(x0))))) | → | 5(0(3(4(1(5(x0)))))) | 
| 0(4(5(5(3(x0))))) | → | 5(4(0(3(3(5(x0)))))) | 
| 0(5(2(1(3(x0))))) | → | 2(1(0(3(3(5(x0)))))) | 
| 0(5(4(2(3(x0))))) | → | 2(0(3(4(5(1(x0)))))) | 
| 1(0(0(5(3(x0))))) | → | 0(3(1(3(5(0(x0)))))) | 
| 1(0(1(2(3(x0))))) | → | 1(1(1(2(3(0(x0)))))) | 
| 1(0(1(2(3(x0))))) | → | 1(2(0(3(5(1(x0)))))) | 
| 1(5(3(5(3(x0))))) | → | 5(5(0(3(3(1(x0)))))) | 
| 4(0(1(2(3(x0))))) | → | 2(1(4(4(0(3(x0)))))) | 
| 4(0(1(2(3(x0))))) | → | 4(3(2(1(0(0(x0)))))) | 
| 5(0(0(5(3(x0))))) | → | 3(0(3(5(5(0(x0)))))) | 
| 5(0(1(2(3(x0))))) | → | 3(0(3(1(2(5(x0)))))) | 
| 5(0(1(2(3(x0))))) | → | 4(5(3(0(2(1(x0)))))) | 
| 5(0(1(2(3(x0))))) | → | 5(1(0(3(0(2(x0)))))) | 
| 5(0(1(2(3(x0))))) | → | 5(1(0(3(1(2(x0)))))) | 
| 5(0(4(2(3(x0))))) | → | 0(2(4(1(5(3(x0)))))) | 
| 5(0(4(2(3(x0))))) | → | 0(3(3(5(2(4(x0)))))) | 
| 5(0(4(2(3(x0))))) | → | 2(4(4(0(3(5(x0)))))) | 
| 5(0(5(2(3(x0))))) | → | 5(0(3(5(4(2(x0)))))) | 
| 5(3(0(5(3(x0))))) | → | 5(5(3(0(0(3(x0)))))) | 
| 5(3(1(2(3(x0))))) | → | 2(0(3(1(5(3(x0)))))) | 
| 5(3(1(2(3(x0))))) | → | 3(3(0(2(1(5(x0)))))) | 
final states:
{192, 189, 185, 180, 176, 171, 167, 165, 162, 160, 155, 151, 148, 144, 140, 136, 132, 127, 122, 120, 115, 113, 108, 105, 100, 95, 90, 86, 81, 75, 70, 65, 60, 55, 54, 49, 43, 40, 37, 32, 29, 26, 22, 17, 12, 7, 1}
transitions:
| 176 | → | 128 | 
| 176 | → | 44 | 
| 32 | → | 18 | 
| 29 | → | 18 | 
| 81 | → | 66 | 
| 81 | → | 18 | 
| 136 | → | 61 | 
| 136 | → | 13 | 
| 167 | → | 128 | 
| 167 | → | 44 | 
| 122 | → | 18 | 
| 120 | → | 18 | 
| 108 | → | 18 | 
| 37 | → | 18 | 
| 95 | → | 18 | 
| 65 | → | 66 | 
| 65 | → | 18 | 
| 185 | → | 56 | 
| 185 | → | 44 | 
| 55 | → | 18 | 
| 90 | → | 18 | 
| 49 | → | 18 | 
| 1 | → | 18 | 
| 40 | → | 18 | 
| 165 | → | 128 | 
| 165 | → | 44 | 
| 127 | → | 87 | 
| 127 | → | 61 | 
| 127 | → | 13 | 
| 60 | → | 66 | 
| 60 | → | 18 | 
| 26 | → | 18 | 
| 86 | → | 18 | 
| 171 | → | 128 | 
| 171 | → | 44 | 
| 54 | → | 18 | 
| 22 | → | 18 | 
| 75 | → | 66 | 
| 75 | → | 18 | 
| 105 | → | 18 | 
| 180 | → | 128 | 
| 180 | → | 44 | 
| 12 | → | 18 | 
| 140 | → | 168 | 
| 140 | → | 116 | 
| 140 | → | 13 | 
| 100 | → | 18 | 
| 7 | → | 18 | 
| 113 | → | 18 | 
| 189 | → | 56 | 
| 189 | → | 44 | 
| 162 | → | 128 | 
| 162 | → | 44 | 
| 115 | → | 18 | 
| 17 | → | 18 | 
| 160 | → | 128 | 
| 160 | → | 44 | 
| 148 | → | 82 | 
| 148 | → | 76 | 
| 132 | → | 61 | 
| 132 | → | 13 | 
| 144 | → | 82 | 
| 144 | → | 76 | 
| 43 | → | 18 | 
| 70 | → | 66 | 
| 70 | → | 18 | 
| 151 | → | 128 | 
| 151 | → | 44 | 
| 155 | → | 128 | 
| 155 | → | 44 | 
| 192 | → | 56 | 
| 192 | → | 44 | 
| f60 | → | 2 | 
| 50(184) | → | 180 | 
| 50(31) | → | 161 | 
| 50(121) | → | 120 | 
| 50(18) | → | 128 | 
| 50(128) | → | 152 | 
| 50(166) | → | 165 | 
| 50(172) | → | 173 | 
| 50(98) | → | 99 | 
| 50(188) | → | 185 | 
| 50(91) | → | 92 | 
| 50(181) | → | 182 | 
| 50(119) | → | 115 | 
| 50(63) | → | 114 | 
| 50(83) | → | 84 | 
| 50(2) | → | 44 | 
| 50(142) | → | 143 | 
| 50(143) | → | 140 | 
| 50(8) | → | 56 | 
| 50(164) | → | 162 | 
| 50(13) | → | 123 | 
| 50(187) | → | 188 | 
| 00(106) | → | 107 | 
| 00(137) | → | 138 | 
| 00(170) | → | 167 | 
| 00(78) | → | 79 | 
| 00(91) | → | 186 | 
| 00(14) | → | 30 | 
| 00(183) | → | 184 | 
| 00(19) | → | 20 | 
| 00(85) | → | 81 | 
| 00(118) | → | 119 | 
| 00(58) | → | 59 | 
| 00(51) | → | 52 | 
| 00(35) | → | 36 | 
| 00(8) | → | 91 | 
| 00(45) | → | 177 | 
| 00(125) | → | 126 | 
| 00(38) | → | 39 | 
| 00(79) | → | 80 | 
| 00(158) | → | 159 | 
| 00(131) | → | 127 | 
| 00(46) | → | 47 | 
| 00(18) | → | 66 | 
| 00(3) | → | 23 | 
| 00(175) | → | 171 | 
| 00(97) | → | 98 | 
| 00(64) | → | 60 | 
| 00(111) | → | 112 | 
| 00(57) | → | 58 | 
| 00(96) | → | 97 | 
| 00(101) | → | 102 | 
| 00(94) | → | 90 | 
| 00(102) | → | 103 | 
| 00(193) | → | 194 | 
| 00(15) | → | 16 | 
| 00(74) | → | 70 | 
| 00(71) | → | 72 | 
| 00(62) | → | 63 | 
| 00(5) | → | 6 | 
| 00(10) | → | 11 | 
| 00(2) | → | 18 | 
| 00(141) | → | 142 | 
| 00(153) | → | 154 | 
| 00(24) | → | 163 | 
| 00(190) | → | 191 | 
| 30(130) | → | 131 | 
| 30(173) | → | 174 | 
| 30(73) | → | 74 | 
| 30(30) | → | 31 | 
| 30(157) | → | 158 | 
| 30(174) | → | 175 | 
| 30(3) | → | 71 | 
| 30(186) | → | 187 | 
| 30(44) | → | 45 | 
| 30(195) | → | 192 | 
| 30(45) | → | 46 | 
| 30(66) | → | 67 | 
| 30(123) | → | 137 | 
| 30(61) | → | 62 | 
| 30(50) | → | 51 | 
| 30(80) | → | 75 | 
| 30(89) | → | 86 | 
| 30(159) | → | 155 | 
| 30(128) | → | 129 | 
| 30(56) | → | 57 | 
| 30(18) | → | 19 | 
| 30(9) | → | 10 | 
| 30(84) | → | 85 | 
| 30(110) | → | 111 | 
| 30(109) | → | 110 | 
| 30(15) | → | 38 | 
| 30(101) | → | 141 | 
| 30(149) | → | 150 | 
| 30(76) | → | 96 | 
| 30(13) | → | 101 | 
| 30(5) | → | 106 | 
| 30(4) | → | 5 | 
| 30(117) | → | 118 | 
| 30(124) | → | 125 | 
| 30(14) | → | 15 | 
| 30(182) | → | 183 | 
| 30(2) | → | 8 | 
| 30(23) | → | 24 | 
| 30(154) | → | 151 | 
| 30(34) | → | 35 | 
| 30(168) | → | 190 | 
| 30(20) | → | 41 | 
| 30(194) | → | 195 | 
| 30(152) | → | 153 | 
| 10(41) | → | 42 | 
| 10(20) | → | 21 | 
| 10(2) | → | 13 | 
| 10(6) | → | 166 | 
| 10(129) | → | 130 | 
| 10(44) | → | 116 | 
| 10(103) | → | 104 | 
| 10(133) | → | 134 | 
| 10(24) | → | 25 | 
| 10(47) | → | 48 | 
| 10(8) | → | 9 | 
| 10(135) | → | 132 | 
| 10(92) | → | 93 | 
| 10(99) | → | 95 | 
| 10(93) | → | 94 | 
| 10(68) | → | 69 | 
| 10(18) | → | 61 | 
| 10(27) | → | 28 | 
| 10(163) | → | 164 | 
| 10(56) | → | 168 | 
| 10(134) | → | 135 | 
| 10(139) | → | 136 | 
| 10(13) | → | 33 | 
| 10(156) | → | 157 | 
| 10(66) | → | 87 | 
| 10(67) | → | 68 | 
| 10(146) | → | 147 | 
| 10(3) | → | 4 | 
| 10(52) | → | 53 | 
| 20(2) | → | 3 | 
| 20(114) | → | 113 | 
| 20(28) | → | 26 | 
| 20(48) | → | 43 | 
| 20(191) | → | 189 | 
| 20(19) | → | 133 | 
| 20(36) | → | 32 | 
| 20(107) | → | 105 | 
| 20(25) | → | 22 | 
| 20(21) | → | 17 | 
| 20(63) | → | 64 | 
| 20(104) | → | 100 | 
| 20(76) | → | 172 | 
| 20(138) | → | 139 | 
| 20(11) | → | 7 | 
| 20(147) | → | 144 | 
| 20(6) | → | 1 | 
| 20(87) | → | 149 | 
| 20(53) | → | 49 | 
| 20(112) | → | 108 | 
| 20(33) | → | 34 | 
| 20(42) | → | 40 | 
| 20(82) | → | 83 | 
| 20(39) | → | 37 | 
| 20(126) | → | 122 | 
| 20(44) | → | 156 | 
| 20(16) | → | 12 | 
| 20(59) | → | 55 | 
| 20(31) | → | 29 | 
| 20(77) | → | 78 | 
| 20(179) | → | 176 | 
| 20(13) | → | 14 | 
| 20(88) | → | 89 | 
| 20(169) | → | 170 | 
| 20(116) | → | 193 | 
| 20(47) | → | 54 | 
| 20(69) | → | 65 | 
| 40(19) | → | 27 | 
| 40(87) | → | 88 | 
| 40(47) | → | 121 | 
| 40(123) | → | 124 | 
| 40(177) | → | 178 | 
| 40(44) | → | 50 | 
| 40(13) | → | 109 | 
| 40(161) | → | 160 | 
| 40(116) | → | 117 | 
| 40(72) | → | 73 | 
| 40(145) | → | 146 | 
| 40(3) | → | 181 | 
| 40(150) | → | 148 | 
| 40(18) | → | 82 | 
| 40(76) | → | 77 | 
| 40(91) | → | 145 | 
| 40(178) | → | 179 | 
| 40(2) | → | 76 | 
| 40(168) | → | 169 |