YES
by ttt2 (version ttt2 1.15)
The rewrite relation of the following TRS is considered.
| 0(1(1(2(x0)))) | → | 0(1(0(3(1(2(x0)))))) |
| 0(2(3(1(x0)))) | → | 0(3(2(0(1(x0))))) |
| 0(2(3(1(x0)))) | → | 1(0(3(4(2(x0))))) |
| 0(2(3(1(x0)))) | → | 4(0(3(2(1(x0))))) |
| 0(2(3(1(x0)))) | → | 0(0(3(2(1(4(x0)))))) |
| 3(0(1(1(x0)))) | → | 0(3(4(1(1(0(x0)))))) |
| 3(0(1(2(x0)))) | → | 0(3(4(1(2(4(x0)))))) |
| 3(0(1(2(x0)))) | → | 0(3(4(4(1(2(x0)))))) |
| 3(0(2(1(x0)))) | → | 0(3(2(1(0(x0))))) |
| 3(0(2(1(x0)))) | → | 0(3(2(1(4(x0))))) |
| 3(0(2(1(x0)))) | → | 0(3(4(2(1(0(x0)))))) |
| 0(1(0(1(2(x0))))) | → | 0(0(2(1(1(3(x0)))))) |
| 0(1(1(4(2(x0))))) | → | 1(0(3(1(4(2(x0)))))) |
| 0(1(2(3(1(x0))))) | → | 1(0(3(1(2(2(x0)))))) |
| 0(1(2(3(1(x0))))) | → | 1(4(0(3(1(2(x0)))))) |
| 0(1(2(3(1(x0))))) | → | 2(1(0(3(2(1(x0)))))) |
| 0(1(5(3(1(x0))))) | → | 0(3(1(5(4(1(x0)))))) |
| 0(2(3(2(1(x0))))) | → | 0(3(2(4(1(2(x0)))))) |
| 0(2(4(3(1(x0))))) | → | 0(3(4(1(2(0(x0)))))) |
| 0(2(4(3(1(x0))))) | → | 1(0(0(3(4(2(x0)))))) |
| 0(3(3(1(2(x0))))) | → | 3(0(1(0(3(2(x0)))))) |
| 0(3(3(2(1(x0))))) | → | 0(3(2(3(1(4(x0)))))) |
| 0(5(2(3(1(x0))))) | → | 0(3(2(1(5(4(x0)))))) |
| 0(5(2(3(1(x0))))) | → | 0(5(0(3(2(1(x0)))))) |
| 0(5(4(3(1(x0))))) | → | 0(3(4(1(4(5(x0)))))) |
| 1(4(0(1(2(x0))))) | → | 2(1(4(0(3(1(x0)))))) |
| 3(0(1(0(2(x0))))) | → | 0(3(2(0(4(1(x0)))))) |
| 3(0(2(3(1(x0))))) | → | 3(0(0(3(1(2(x0)))))) |
| 3(0(2(5(1(x0))))) | → | 0(3(2(5(0(1(x0)))))) |
| 3(0(2(5(1(x0))))) | → | 0(3(5(2(1(4(x0)))))) |
| 3(0(2(5(1(x0))))) | → | 5(4(0(3(2(1(x0)))))) |
| 3(0(4(5(1(x0))))) | → | 5(0(0(3(4(1(x0)))))) |
| 3(3(0(1(4(x0))))) | → | 3(0(0(3(1(4(x0)))))) |
| 3(3(1(1(1(x0))))) | → | 0(3(1(3(1(1(x0)))))) |
| 3(3(1(1(2(x0))))) | → | 1(3(2(1(4(3(x0)))))) |
| 3(3(1(1(4(x0))))) | → | 4(4(3(1(3(1(x0)))))) |
| 3(4(3(2(1(x0))))) | → | 3(0(3(2(4(1(x0)))))) |
| 3(5(0(2(1(x0))))) | → | 0(3(2(0(5(1(x0)))))) |
| 3(5(0(2(1(x0))))) | → | 0(3(5(2(4(1(x0)))))) |
| 4(0(1(1(4(x0))))) | → | 1(0(3(4(4(1(x0)))))) |
| 4(5(3(2(1(x0))))) | → | 0(3(1(5(2(4(x0)))))) |
| 5(0(1(1(4(x0))))) | → | 0(3(1(5(1(4(x0)))))) |
| 5(0(2(3(1(x0))))) | → | 5(0(3(2(1(0(x0)))))) |
| 5(3(0(1(1(x0))))) | → | 0(3(1(1(5(0(x0)))))) |
| 5(3(0(2(1(x0))))) | → | 0(3(4(2(1(5(x0)))))) |
| 5(3(0(2(1(x0))))) | → | 0(3(5(1(2(4(x0)))))) |
| 5(3(1(1(2(x0))))) | → | 3(1(2(1(4(5(x0)))))) |
| 5(3(1(1(4(x0))))) | → | 3(4(1(5(2(1(x0)))))) |
| 5(4(3(4(1(x0))))) | → | 0(3(4(4(1(5(x0)))))) |
final states:
{189, 185, 182, 179, 174, 169, 168, 164, 160, 156, 153, 148, 144, 140, 135, 130, 127, 123, 122, 119, 115, 113, 109, 104, 98, 96, 91, 87, 82, 80, 75, 72, 67, 65, 63, 58, 54, 48, 45, 26, 42, 38, 33, 27, 21, 17, 13, 8, 1}
transitions:
| 33 | → | 49 |
| 87 | → | 28 |
| 80 | → | 28 |
| 98 | → | 28 |
| 96 | → | 28 |
| 119 | → | 49 |
| 122 | → | 49 |
| 65 | → | 10 |
| 65 | → | 28 |
| 185 | → | 99 |
| 130 | → | 49 |
| 1 | → | 10 |
| 1 | → | 28 |
| 123 | → | 49 |
| 8 | → | 28 |
| 127 | → | 49 |
| 13 | → | 28 |
| 135 | → | 49 |
| 179 | → | 99 |
| 26 | → | 49 |
| 38 | → | 49 |
| 91 | → | 28 |
| 58 | → | 10 |
| 58 | → | 28 |
| 21 | → | 28 |
| 72 | → | 28 |
| 153 | → | 49 |
| 109 | → | 49 |
| 54 | → | 10 |
| 54 | → | 28 |
| 75 | → | 28 |
| 174 | → | 99 |
| 67 | → | 10 |
| 67 | → | 28 |
| 82 | → | 28 |
| 45 | → | 49 |
| 63 | → | 10 |
| 63 | → | 28 |
| 169 | → | 99 |
| 104 | → | 23 |
| 104 | → | 9 |
| 140 | → | 49 |
| 113 | → | 49 |
| 182 | → | 99 |
| 42 | → | 49 |
| 189 | → | 92 |
| 189 | → | 99 |
| 115 | → | 49 |
| 48 | → | 10 |
| 48 | → | 28 |
| 17 | → | 28 |
| 160 | → | 100 |
| 160 | → | 22 |
| 164 | → | 116 |
| 164 | → | 170 |
| 164 | → | 99 |
| 168 | → | 170 |
| 168 | → | 99 |
| 148 | → | 49 |
| 144 | → | 49 |
| 27 | → | 49 |
| 156 | → | 22 |
| f60 | → | 2 |
| 50(20) | → | 97 |
| 50(18) | → | 186 |
| 50(68) | → | 69 |
| 50(24) | → | 120 |
| 50(34) | → | 161 |
| 50(22) | → | 92 |
| 50(9) | → | 149 |
| 50(23) | → | 165 |
| 50(42) | → | 168 |
| 50(145) | → | 154 |
| 50(126) | → | 123 |
| 50(2) | → | 99 |
| 50(28) | → | 170 |
| 50(35) | → | 180 |
| 50(10) | → | 116 |
| 50(17) | → | 122 |
| 10(100) | → | 101 |
| 10(165) | → | 166 |
| 10(170) | → | 171 |
| 10(81) | → | 80 |
| 10(76) | → | 77 |
| 10(14) | → | 55 |
| 10(183) | → | 184 |
| 10(59) | → | 60 |
| 10(159) | → | 156 |
| 10(136) | → | 137 |
| 10(84) | → | 85 |
| 10(132) | → | 133 |
| 10(34) | → | 35 |
| 10(105) | → | 141 |
| 10(99) | → | 175 |
| 10(6) | → | 7 |
| 10(107) | → | 108 |
| 10(92) | → | 93 |
| 10(29) | → | 30 |
| 10(28) | → | 29 |
| 10(3) | → | 4 |
| 10(139) | → | 135 |
| 10(69) | → | 70 |
| 10(64) | → | 63 |
| 10(57) | → | 54 |
| 10(9) | → | 131 |
| 10(161) | → | 162 |
| 10(50) | → | 51 |
| 10(49) | → | 50 |
| 10(20) | → | 66 |
| 10(62) | → | 58 |
| 10(2) | → | 9 |
| 10(171) | → | 172 |
| 10(16) | → | 13 |
| 10(22) | → | 23 |
| 10(186) | → | 187 |
| 30(31) | → | 32 |
| 30(180) | → | 181 |
| 30(46) | → | 47 |
| 30(11) | → | 12 |
| 30(166) | → | 167 |
| 30(78) | → | 79 |
| 30(141) | → | 142 |
| 30(73) | → | 74 |
| 30(162) | → | 163 |
| 30(157) | → | 158 |
| 30(120) | → | 121 |
| 30(3) | → | 83 |
| 30(86) | → | 82 |
| 30(129) | → | 127 |
| 30(24) | → | 25 |
| 30(184) | → | 182 |
| 30(89) | → | 90 |
| 30(133) | → | 134 |
| 30(111) | → | 112 |
| 30(138) | → | 139 |
| 30(114) | → | 113 |
| 30(18) | → | 19 |
| 30(68) | → | 124 |
| 30(9) | → | 105 |
| 30(70) | → | 71 |
| 30(151) | → | 152 |
| 30(131) | → | 132 |
| 30(94) | → | 95 |
| 30(60) | → | 61 |
| 30(145) | → | 146 |
| 30(177) | → | 178 |
| 30(102) | → | 103 |
| 30(55) | → | 56 |
| 30(4) | → | 5 |
| 30(117) | → | 118 |
| 30(191) | → | 192 |
| 30(14) | → | 15 |
| 30(36) | → | 37 |
| 30(43) | → | 44 |
| 30(40) | → | 41 |
| 30(2) | → | 49 |
| 30(23) | → | 88 |
| 30(147) | → | 144 |
| 30(154) | → | 155 |
| 30(172) | → | 173 |
| 30(188) | → | 185 |
| 20(2) | → | 3 |
| 20(175) | → | 176 |
| 20(51) | → | 52 |
| 20(110) | → | 111 |
| 20(88) | → | 89 |
| 20(28) | → | 76 |
| 20(150) | → | 151 |
| 20(108) | → | 104 |
| 20(9) | → | 18 |
| 20(93) | → | 94 |
| 20(68) | → | 145 |
| 20(23) | → | 24 |
| 20(137) | → | 138 |
| 20(116) | → | 117 |
| 20(66) | → | 65 |
| 20(39) | → | 73 |
| 20(3) | → | 59 |
| 20(10) | → | 11 |
| 20(29) | → | 43 |
| 20(101) | → | 183 |
| 20(22) | → | 34 |
| 00(2) | → | 28 |
| 00(167) | → | 164 |
| 00(163) | → | 160 |
| 00(149) | → | 150 |
| 00(56) | → | 57 |
| 00(9) | → | 10 |
| 00(90) | → | 87 |
| 00(128) | → | 129 |
| 00(134) | → | 130 |
| 00(146) | → | 147 |
| 00(105) | → | 106 |
| 00(95) | → | 91 |
| 00(79) | → | 75 |
| 00(19) | → | 20 |
| 00(152) | → | 148 |
| 00(71) | → | 67 |
| 00(25) | → | 26 |
| 00(124) | → | 125 |
| 00(61) | → | 62 |
| 00(26) | → | 21 |
| 00(37) | → | 33 |
| 00(155) | → | 153 |
| 00(74) | → | 72 |
| 00(178) | → | 174 |
| 00(181) | → | 179 |
| 00(192) | → | 189 |
| 00(6) | → | 114 |
| 00(83) | → | 84 |
| 00(118) | → | 115 |
| 00(53) | → | 48 |
| 00(125) | → | 126 |
| 00(32) | → | 27 |
| 00(121) | → | 119 |
| 00(173) | → | 169 |
| 00(112) | → | 109 |
| 00(7) | → | 1 |
| 00(15) | → | 16 |
| 00(52) | → | 53 |
| 00(103) | → | 98 |
| 00(85) | → | 86 |
| 00(12) | → | 8 |
| 00(97) | → | 96 |
| 00(41) | → | 38 |
| 00(44) | → | 42 |
| 00(16) | → | 81 |
| 00(5) | → | 6 |
| 00(88) | → | 128 |
| 00(68) | → | 110 |
| 00(158) | → | 159 |
| 00(47) | → | 45 |
| 40(143) | → | 140 |
| 40(101) | → | 102 |
| 40(106) | → | 107 |
| 40(142) | → | 143 |
| 40(99) | → | 100 |
| 40(4) | → | 39 |
| 40(43) | → | 46 |
| 40(6) | → | 64 |
| 40(39) | → | 40 |
| 40(20) | → | 17 |
| 40(9) | → | 68 |
| 40(49) | → | 136 |
| 40(35) | → | 36 |
| 40(3) | → | 14 |
| 40(30) | → | 31 |
| 40(190) | → | 191 |
| 40(176) | → | 177 |
| 40(175) | → | 190 |
| 40(77) | → | 78 |
| 40(68) | → | 157 |
| 40(187) | → | 188 |
| 40(2) | → | 22 |