YES
by ttt2 (version ttt2 1.15)
The rewrite relation of the following TRS is considered.
| 0(0(1(0(2(x0))))) | → | 0(0(1(2(2(x0))))) |
| 0(0(1(0(2(x0))))) | → | 0(0(2(1(2(x0))))) |
| 0(0(1(0(2(x0))))) | → | 0(1(0(2(2(x0))))) |
| 0(0(1(0(2(x0))))) | → | 0(1(1(2(2(x0))))) |
| 0(0(1(0(2(x0))))) | → | 0(1(2(0(2(x0))))) |
| 0(0(1(0(2(x0))))) | → | 0(1(2(2(0(x0))))) |
| 0(0(1(0(2(x0))))) | → | 0(1(2(2(2(x0))))) |
| 0(0(1(0(2(x0))))) | → | 0(2(1(0(2(x0))))) |
| 0(0(1(0(2(x0))))) | → | 0(2(1(2(2(x0))))) |
| 0(0(1(0(2(x0))))) | → | 0(2(2(1(0(x0))))) |
| 0(0(1(0(2(x0))))) | → | 0(2(2(1(2(x0))))) |
| 0(0(1(0(2(x0))))) | → | 1(0(0(2(2(x0))))) |
| 0(0(1(0(2(x0))))) | → | 1(0(2(0(2(x0))))) |
| 0(0(1(0(2(x0))))) | → | 1(0(2(2(0(x0))))) |
| 0(0(1(0(2(x0))))) | → | 1(0(2(2(2(x0))))) |
| 0(0(1(0(2(x0))))) | → | 1(1(0(2(2(x0))))) |
| 0(0(1(0(2(x0))))) | → | 1(2(0(2(2(x0))))) |
| 0(0(1(0(2(x0))))) | → | 1(2(1(0(2(x0))))) |
| 0(0(1(0(2(x0))))) | → | 1(2(2(0(2(x0))))) |
| 0(0(1(0(2(x0))))) | → | 1(2(2(2(0(x0))))) |
| 0(0(1(0(2(x0))))) | → | 2(1(0(2(2(x0))))) |
| 0(0(1(0(2(x0))))) | → | 2(2(1(0(2(x0))))) |
| 0(0(1(0(2(x0))))) | → | 2(2(2(1(0(x0))))) |
| 0(1(2(0(2(x0))))) | → | 0(1(0(2(2(x0))))) |
| 0(1(2(0(2(x0))))) | → | 0(1(1(2(2(x0))))) |
| 0(1(2(0(2(x0))))) | → | 0(1(2(2(2(x0))))) |
| 0(1(2(0(2(x0))))) | → | 0(2(1(0(2(x0))))) |
| 0(1(2(0(2(x0))))) | → | 0(2(1(2(2(x0))))) |
| 0(1(2(0(2(x0))))) | → | 0(2(2(1(0(x0))))) |
| 0(1(2(0(2(x0))))) | → | 0(2(2(1(2(x0))))) |
| 0(1(2(0(2(x0))))) | → | 1(0(2(2(2(x0))))) |
| 0(1(2(0(2(x0))))) | → | 1(2(0(2(2(x0))))) |
| 0(1(2(0(2(x0))))) | → | 1(2(2(0(2(x0))))) |
| 0(1(2(0(2(x0))))) | → | 1(2(2(2(0(x0))))) |
| 1(0(1(0(2(x0))))) | → | 0(1(2(2(2(x0))))) |
| 1(0(1(0(2(x0))))) | → | 0(2(1(2(2(x0))))) |
| 1(0(1(0(2(x0))))) | → | 1(0(0(2(2(x0))))) |
| 1(0(1(0(2(x0))))) | → | 1(0(1(2(2(x0))))) |
| 1(0(1(0(2(x0))))) | → | 1(0(2(0(2(x0))))) |
| 1(0(1(0(2(x0))))) | → | 1(0(2(1(2(x0))))) |
| 1(0(1(0(2(x0))))) | → | 1(0(2(2(0(x0))))) |
| 1(0(1(0(2(x0))))) | → | 1(0(2(2(2(x0))))) |
| 1(0(1(0(2(x0))))) | → | 1(1(0(2(2(x0))))) |
| 1(0(1(0(2(x0))))) | → | 1(2(0(2(2(x0))))) |
| 1(0(1(0(2(x0))))) | → | 1(2(1(0(2(x0))))) |
| 1(0(1(0(2(x0))))) | → | 1(2(2(0(2(x0))))) |
| 1(0(1(0(2(x0))))) | → | 1(2(2(2(0(x0))))) |
| 1(0(1(0(2(x0))))) | → | 2(0(1(2(2(x0))))) |
| 1(0(1(0(2(x0))))) | → | 2(0(2(1(2(x0))))) |
| 1(0(1(0(2(x0))))) | → | 2(1(0(2(2(x0))))) |
| 1(0(1(0(2(x0))))) | → | 2(1(2(0(2(x0))))) |
| 1(0(1(0(2(x0))))) | → | 2(1(2(2(0(x0))))) |
| 1(0(1(0(2(x0))))) | → | 2(2(0(1(2(x0))))) |
| 1(0(1(0(2(x0))))) | → | 2(2(1(0(2(x0))))) |
| 1(0(1(0(2(x0))))) | → | 2(2(1(2(0(x0))))) |
| 1(0(1(0(2(x0))))) | → | 2(2(2(1(0(x0))))) |
| 1(0(2(0(2(x0))))) | → | 1(0(2(2(2(x0))))) |
| 1(0(2(0(2(x0))))) | → | 1(2(0(2(2(x0))))) |
| 1(0(2(0(2(x0))))) | → | 1(2(2(0(2(x0))))) |
| 1(0(2(0(2(x0))))) | → | 1(2(2(2(0(x0))))) |
| 1(0(2(0(2(x0))))) | → | 2(1(0(2(2(x0))))) |
| 1(0(2(0(2(x0))))) | → | 2(2(1(0(2(x0))))) |
| 1(1(2(0(2(x0))))) | → | 0(1(2(2(2(x0))))) |
| 1(1(2(0(2(x0))))) | → | 0(2(1(2(2(x0))))) |
| 1(1(2(0(2(x0))))) | → | 0(2(2(1(2(x0))))) |
| 1(1(2(0(2(x0))))) | → | 1(0(0(2(2(x0))))) |
| 1(1(2(0(2(x0))))) | → | 1(0(1(2(2(x0))))) |
| 1(1(2(0(2(x0))))) | → | 1(0(2(0(2(x0))))) |
| 1(1(2(0(2(x0))))) | → | 1(0(2(1(2(x0))))) |
| 1(1(2(0(2(x0))))) | → | 1(0(2(2(0(x0))))) |
| 1(1(2(0(2(x0))))) | → | 1(0(2(2(2(x0))))) |
| 1(1(2(0(2(x0))))) | → | 1(1(0(2(2(x0))))) |
| 1(1(2(0(2(x0))))) | → | 1(2(0(2(2(x0))))) |
| 1(1(2(0(2(x0))))) | → | 1(2(1(0(2(x0))))) |
| 1(1(2(0(2(x0))))) | → | 1(2(2(0(2(x0))))) |
| 1(1(2(0(2(x0))))) | → | 1(2(2(2(0(x0))))) |
| 1(1(2(0(2(x0))))) | → | 2(0(1(2(2(x0))))) |
| 1(1(2(0(2(x0))))) | → | 2(1(0(2(2(x0))))) |
| 1(1(2(0(2(x0))))) | → | 2(1(2(0(2(x0))))) |
| 1(1(2(0(2(x0))))) | → | 2(2(0(1(2(x0))))) |
| 1(1(2(0(2(x0))))) | → | 2(2(1(0(2(x0))))) |
| 1(1(2(0(2(x0))))) | → | 2(2(2(1(0(x0))))) |
| 1(2(2(0(2(x0))))) | → | 1(0(2(2(2(x0))))) |
| 2(0(1(0(2(x0))))) | → | 2(0(1(2(2(x0))))) |
| 2(0(1(0(2(x0))))) | → | 2(0(2(1(2(x0))))) |
| 2(0(1(0(2(x0))))) | → | 2(1(0(2(2(x0))))) |
| 2(0(1(0(2(x0))))) | → | 2(1(2(0(2(x0))))) |
| 2(0(1(0(2(x0))))) | → | 2(1(2(2(0(x0))))) |
| 2(0(1(0(2(x0))))) | → | 2(2(0(1(2(x0))))) |
| 2(0(1(0(2(x0))))) | → | 2(2(1(0(2(x0))))) |
| 2(0(1(0(2(x0))))) | → | 2(2(1(2(0(x0))))) |
| 2(0(1(0(2(x0))))) | → | 2(2(2(1(0(x0))))) |
| 2(1(1(0(2(x0))))) | → | 2(0(1(0(2(x0))))) |
| 2(1(1(0(2(x0))))) | → | 2(0(2(1(2(x0))))) |
| 2(1(1(0(2(x0))))) | → | 2(1(2(0(2(x0))))) |
| 2(1(1(0(2(x0))))) | → | 2(2(1(0(2(x0))))) |
| 2(1(2(0(2(x0))))) | → | 2(0(1(2(2(x0))))) |
| 2(1(2(0(2(x0))))) | → | 2(1(0(2(2(x0))))) |
| 2(1(2(0(2(x0))))) | → | 2(2(1(0(2(x0))))) |
| 2(1(2(0(2(x0))))) | → | 2(2(2(1(0(x0))))) |
| [0(x1)] | = | 2 · x1 + -∞ |
| [2(x1)] | = | 0 · x1 + -∞ |
| [1(x1)] | = | 2 · x1 + -∞ |
| 0(1(2(0(2(x0))))) | → | 0(1(0(2(2(x0))))) |
| 0(1(2(0(2(x0))))) | → | 0(1(1(2(2(x0))))) |
| 0(1(2(0(2(x0))))) | → | 0(2(1(0(2(x0))))) |
| 0(1(2(0(2(x0))))) | → | 0(2(2(1(0(x0))))) |
| 1(1(2(0(2(x0))))) | → | 1(0(0(2(2(x0))))) |
| 1(1(2(0(2(x0))))) | → | 1(0(1(2(2(x0))))) |
| 1(1(2(0(2(x0))))) | → | 1(0(2(0(2(x0))))) |
| 1(1(2(0(2(x0))))) | → | 1(0(2(1(2(x0))))) |
| 1(1(2(0(2(x0))))) | → | 1(0(2(2(0(x0))))) |
| 1(1(2(0(2(x0))))) | → | 1(1(0(2(2(x0))))) |
| 1(1(2(0(2(x0))))) | → | 1(2(1(0(2(x0))))) |
| 1(2(2(0(2(x0))))) | → | 1(0(2(2(2(x0))))) |
| 2(1(1(0(2(x0))))) | → | 2(0(1(0(2(x0))))) |
| 2(1(2(0(2(x0))))) | → | 2(0(1(2(2(x0))))) |
| 2(1(2(0(2(x0))))) | → | 2(1(0(2(2(x0))))) |
| 2(1(2(0(2(x0))))) | → | 2(2(1(0(2(x0))))) |
| 2(1(2(0(2(x0))))) | → | 2(2(2(1(0(x0))))) |
final states:
{44, 43, 42, 41, 39, 36, 35, 34, 30, 26, 23, 21, 19, 14, 10, 7, 1}
transitions:
| 10 | → | 15 |
| 41 | → | 28 |
| 41 | → | 3 |
| 39 | → | 3 |
| 1 | → | 15 |
| 44 | → | 28 |
| 44 | → | 3 |
| 36 | → | 8 |
| 36 | → | 27 |
| 14 | → | 15 |
| 7 | → | 15 |
| 42 | → | 28 |
| 42 | → | 3 |
| 43 | → | 28 |
| 43 | → | 3 |
| f30 | → | 2 |
| 00(37) | → | 38 |
| 00(5) | → | 20 |
| 00(9) | → | 7 |
| 00(8) | → | 22 |
| 00(2) | → | 15 |
| 00(32) | → | 33 |
| 00(12) | → | 40 |
| 00(18) | → | 14 |
| 00(6) | → | 1 |
| 00(24) | → | 25 |
| 00(4) | → | 5 |
| 00(3) | → | 11 |
| 00(13) | → | 10 |
| 00(28) | → | 29 |
| 20(11) | → | 24 |
| 20(22) | → | 41 |
| 20(3) | → | 4 |
| 20(18) | → | 44 |
| 20(15) | → | 31 |
| 20(40) | → | 39 |
| 20(16) | → | 17 |
| 20(2) | → | 3 |
| 20(4) | → | 37 |
| 20(31) | → | 32 |
| 20(27) | → | 28 |
| 20(12) | → | 13 |
| 20(13) | → | 43 |
| 20(17) | → | 18 |
| 20(6) | → | 42 |
| 10(22) | → | 21 |
| 10(38) | → | 36 |
| 10(8) | → | 9 |
| 10(15) | → | 16 |
| 10(29) | → | 26 |
| 10(6) | → | 34 |
| 10(13) | → | 35 |
| 10(33) | → | 30 |
| 10(5) | → | 6 |
| 10(20) | → | 19 |
| 10(11) | → | 12 |
| 10(25) | → | 23 |
| 10(3) | → | 27 |
| 10(4) | → | 8 |