YES
by ttt2 (version ttt2 1.15)
The rewrite relation of the following TRS is considered.
| 0(4(x0)) | → | 0(1(4(2(3(3(x0)))))) | 
| 0(4(x0)) | → | 0(2(1(4(3(4(x0)))))) | 
| 0(0(4(x0))) | → | 1(1(5(2(3(4(x0)))))) | 
| 0(1(1(x0))) | → | 0(2(2(1(1(1(x0)))))) | 
| 0(1(3(x0))) | → | 0(2(4(3(4(4(x0)))))) | 
| 0(2(4(x0))) | → | 1(5(4(3(4(4(x0)))))) | 
| 0(4(0(x0))) | → | 0(1(2(1(0(3(x0)))))) | 
| 1(2(3(x0))) | → | 5(1(4(1(4(4(x0)))))) | 
| 1(3(3(x0))) | → | 0(2(1(1(0(5(x0)))))) | 
| 1(3(3(x0))) | → | 5(4(0(3(2(3(x0)))))) | 
| 1(3(5(x0))) | → | 1(1(4(3(3(2(x0)))))) | 
| 2(0(0(x0))) | → | 2(4(3(4(4(4(x0)))))) | 
| 2(0(1(x0))) | → | 2(1(5(1(0(1(x0)))))) | 
| 2(0(1(x0))) | → | 2(4(3(5(2(3(x0)))))) | 
| 2(0(4(x0))) | → | 2(0(2(1(4(3(x0)))))) | 
| 2(0(4(x0))) | → | 2(4(1(4(3(1(x0)))))) | 
| 3(0(1(x0))) | → | 3(1(4(3(4(1(x0)))))) | 
| 3(0(5(x0))) | → | 3(1(0(2(3(2(x0)))))) | 
| 4(0(0(x0))) | → | 2(5(2(1(1(1(x0)))))) | 
| 4(0(5(x0))) | → | 4(1(4(5(1(4(x0)))))) | 
| 4(0(5(x0))) | → | 4(2(1(4(3(5(x0)))))) | 
| 5(0(2(x0))) | → | 1(5(2(1(0(2(x0)))))) | 
| 5(0(4(x0))) | → | 1(0(3(2(4(4(x0)))))) | 
| 5(0(4(x0))) | → | 1(5(1(0(3(4(x0)))))) | 
| 4(0(x0)) | → | 3(3(2(4(1(0(x0)))))) | 
| 4(0(x0)) | → | 4(3(4(1(2(0(x0)))))) | 
| 4(0(0(x0))) | → | 4(3(2(5(1(1(x0)))))) | 
| 1(1(0(x0))) | → | 1(1(1(2(2(0(x0)))))) | 
| 3(1(0(x0))) | → | 4(4(3(4(2(0(x0)))))) | 
| 4(2(0(x0))) | → | 4(4(3(4(5(1(x0)))))) | 
| 0(4(0(x0))) | → | 3(0(1(2(1(0(x0)))))) | 
| 3(2(1(x0))) | → | 4(4(1(4(1(5(x0)))))) | 
| 3(3(1(x0))) | → | 5(0(1(1(2(0(x0)))))) | 
| 3(3(1(x0))) | → | 3(2(3(0(4(5(x0)))))) | 
| 5(3(1(x0))) | → | 2(3(3(4(1(1(x0)))))) | 
| 0(0(2(x0))) | → | 4(4(4(3(4(2(x0)))))) | 
| 1(0(2(x0))) | → | 1(0(1(5(1(2(x0)))))) | 
| 1(0(2(x0))) | → | 3(2(5(3(4(2(x0)))))) | 
| 4(0(2(x0))) | → | 3(4(1(2(0(2(x0)))))) | 
| 4(0(2(x0))) | → | 1(3(4(1(4(2(x0)))))) | 
| 1(0(3(x0))) | → | 1(4(3(4(1(3(x0)))))) | 
| 5(0(3(x0))) | → | 2(3(2(0(1(3(x0)))))) | 
| 0(0(4(x0))) | → | 1(1(1(2(5(2(x0)))))) | 
| 5(0(4(x0))) | → | 4(1(5(4(1(4(x0)))))) | 
| 5(0(4(x0))) | → | 5(3(4(1(2(4(x0)))))) | 
| 2(0(5(x0))) | → | 2(0(1(2(5(1(x0)))))) | 
| 4(0(5(x0))) | → | 4(4(2(3(0(1(x0)))))) | 
| 4(0(5(x0))) | → | 4(3(0(1(5(1(x0)))))) | 
final states:
{112, 107, 103, 98, 92, 87, 83, 77, 73, 68, 65, 60, 54, 50, 45, 42, 36, 32, 27, 23, 19, 13, 8, 1}
transitions:
| 23 | → | 78 | 
| 32 | → | 3 | 
| 87 | → | 3 | 
| 103 | → | 9 | 
| 103 | → | 55 | 
| 98 | → | 37 | 
| 129 | → | 24 | 
| 129 | → | 56 | 
| 145 | → | 124 | 
| 50 | → | 37 | 
| 65 | → | 4 | 
| 65 | → | 14 | 
| 65 | → | 124 | 
| 107 | → | 93 | 
| 1 | → | 93 | 
| 8 | → | 93 | 
| 13 | → | 93 | 
| 60 | → | 4 | 
| 60 | → | 14 | 
| 60 | → | 124 | 
| 73 | → | 93 | 
| 36 | → | 78 | 
| 54 | → | 3 | 
| 105 | → | 144 | 
| 143 | → | 15 | 
| 2 | → | 123 | 
| 45 | → | 78 | 
| 63 | → | 137 | 
| 112 | → | 93 | 
| 77 | → | 4 | 
| 77 | → | 14 | 
| 77 | → | 124 | 
| 42 | → | 78 | 
| 83 | → | 37 | 
| 68 | → | 93 | 
| 92 | → | 37 | 
| 19 | → | 15 | 
| 19 | → | 14 | 
| 19 | → | 124 | 
| 27 | → | 56 | 
| 27 | → | 93 | 
| f60 | → | 2 | 
| 50(55) | → | 88 | 
| 50(95) | → | 96 | 
| 50(61) | → | 62 | 
| 50(14) | → | 28 | 
| 50(2) | → | 37 | 
| 50(44) | → | 42 | 
| 50(102) | → | 98 | 
| 50(15) | → | 16 | 
| 50(57) | → | 66 | 
| 11(142) | → | 143 | 
| 11(140) | → | 141 | 
| 11(141) | → | 142 | 
| 11(144) | → | 145 | 
| 11(123) | → | 124 | 
| 01(137) | → | 138 | 
| 20(106) | → | 103 | 
| 20(86) | → | 83 | 
| 20(84) | → | 85 | 
| 20(109) | → | 110 | 
| 20(88) | → | 89 | 
| 20(28) | → | 104 | 
| 20(3) | → | 9 | 
| 20(69) | → | 70 | 
| 20(9) | → | 20 | 
| 20(53) | → | 50 | 
| 20(48) | → | 49 | 
| 20(5) | → | 6 | 
| 20(93) | → | 99 | 
| 20(2) | → | 55 | 
| 20(4) | → | 33 | 
| 20(66) | → | 67 | 
| 20(16) | → | 17 | 
| 21(138) | → | 139 | 
| 21(139) | → | 140 | 
| 40(31) | → | 27 | 
| 40(74) | → | 75 | 
| 40(115) | → | 112 | 
| 40(30) | → | 31 | 
| 40(37) | → | 46 | 
| 40(41) | → | 36 | 
| 40(25) | → | 26 | 
| 40(58) | → | 59 | 
| 40(26) | → | 23 | 
| 40(111) | → | 107 | 
| 40(18) | → | 13 | 
| 40(9) | → | 24 | 
| 40(59) | → | 54 | 
| 40(79) | → | 80 | 
| 40(94) | → | 95 | 
| 40(110) | → | 111 | 
| 40(71) | → | 72 | 
| 40(15) | → | 51 | 
| 40(55) | → | 56 | 
| 40(97) | → | 92 | 
| 40(81) | → | 82 | 
| 40(10) | → | 11 | 
| 40(4) | → | 5 | 
| 40(28) | → | 29 | 
| 40(40) | → | 41 | 
| 40(2) | → | 93 | 
| 40(57) | → | 58 | 
| 40(100) | → | 101 | 
| 40(12) | → | 8 | 
| 40(38) | → | 39 | 
| 41(125) | → | 126 | 
| 41(127) | → | 128 | 
| 41(128) | → | 129 | 
| 10(20) | → | 21 | 
| 10(2) | → | 14 | 
| 10(78) | → | 79 | 
| 10(82) | → | 77 | 
| 10(21) | → | 22 | 
| 10(28) | → | 113 | 
| 10(37) | → | 38 | 
| 10(76) | → | 73 | 
| 10(70) | → | 71 | 
| 10(89) | → | 90 | 
| 10(91) | → | 87 | 
| 10(55) | → | 61 | 
| 10(9) | → | 10 | 
| 10(99) | → | 100 | 
| 10(93) | → | 94 | 
| 10(14) | → | 15 | 
| 10(56) | → | 74 | 
| 10(64) | → | 60 | 
| 10(62) | → | 63 | 
| 10(90) | → | 91 | 
| 10(39) | → | 40 | 
| 10(33) | → | 34 | 
| 10(3) | → | 4 | 
| 10(10) | → | 43 | 
| 10(104) | → | 105 | 
| 10(96) | → | 97 | 
| 10(22) | → | 19 | 
| 30(2) | → | 78 | 
| 30(51) | → | 52 | 
| 30(114) | → | 115 | 
| 30(56) | → | 57 | 
| 30(49) | → | 45 | 
| 30(67) | → | 65 | 
| 30(80) | → | 81 | 
| 30(24) | → | 25 | 
| 30(17) | → | 18 | 
| 30(11) | → | 12 | 
| 30(6) | → | 7 | 
| 30(29) | → | 30 | 
| 30(7) | → | 1 | 
| 30(52) | → | 53 | 
| 30(35) | → | 32 | 
| 30(101) | → | 102 | 
| 30(75) | → | 76 | 
| 30(85) | → | 86 | 
| 30(108) | → | 109 | 
| 30(72) | → | 68 | 
| 30(47) | → | 48 | 
| 31(126) | → | 127 | 
| 51(124) | → | 125 | 
| 00(46) | → | 47 | 
| 00(63) | → | 64 | 
| 00(43) | → | 44 | 
| 00(14) | → | 108 | 
| 00(34) | → | 35 | 
| 00(79) | → | 84 | 
| 00(55) | → | 69 | 
| 00(105) | → | 106 | 
| 00(2) | → | 3 | 
| 00(113) | → | 114 |