YES
by ttt2 (version ttt2 1.15)
The rewrite relation of the following TRS is considered.
| 2(5(3(0(x0)))) | → | 1(0(0(1(3(0(4(5(1(2(x0)))))))))) | 
| 1(3(5(4(3(x0))))) | → | 2(1(4(1(4(0(3(0(1(1(x0)))))))))) | 
| 5(1(3(5(0(x0))))) | → | 5(1(4(3(0(4(4(5(2(1(x0)))))))))) | 
| 5(4(4(2(5(x0))))) | → | 4(3(1(1(1(1(5(3(3(5(x0)))))))))) | 
| 2(2(5(0(5(4(x0)))))) | → | 2(1(4(1(3(3(2(2(5(4(x0)))))))))) | 
| 3(0(5(5(4(3(x0)))))) | → | 3(3(0(3(2(3(5(5(1(0(x0)))))))))) | 
| 3(5(4(3(5(2(x0)))))) | → | 2(0(5(2(0(5(2(2(3(2(x0)))))))))) | 
| 4(4(2(5(5(0(x0)))))) | → | 4(4(0(0(3(3(3(2(2(3(x0)))))))))) | 
| 4(5(3(5(5(0(x0)))))) | → | 4(2(2(3(0(2(4(1(1(5(x0)))))))))) | 
| 5(4(5(1(1(2(x0)))))) | → | 5(4(0(3(3(3(3(2(5(5(x0)))))))))) | 
| 5(5(5(5(5(3(x0)))))) | → | 5(5(0(1(4(0(0(5(0(1(x0)))))))))) | 
| 3(5(0(0(5(4(3(x0))))))) | → | 0(1(2(1(1(5(5(2(1(0(x0)))))))))) | 
| 3(5(4(2(5(2(3(x0))))))) | → | 4(0(4(0(0(2(2(3(4(4(x0)))))))))) | 
| 3(5(4(5(1(4(0(x0))))))) | → | 1(1(1(0(0(3(3(1(2(5(x0)))))))))) | 
| 0(3(5(2(x0)))) | → | 2(1(5(4(0(3(1(0(0(1(x0)))))))))) | 
| 3(4(5(3(1(x0))))) | → | 1(1(0(3(0(4(1(4(1(2(x0)))))))))) | 
| 0(5(3(1(5(x0))))) | → | 1(2(5(4(4(0(3(4(1(5(x0)))))))))) | 
| 5(2(4(4(5(x0))))) | → | 5(3(3(5(1(1(1(1(3(4(x0)))))))))) | 
| 4(5(0(5(2(2(x0)))))) | → | 4(5(2(2(3(3(1(4(1(2(x0)))))))))) | 
| 3(4(5(5(0(3(x0)))))) | → | 0(1(5(5(3(2(3(0(3(3(x0)))))))))) | 
| 2(5(3(4(5(3(x0)))))) | → | 2(3(2(2(5(0(2(5(0(2(x0)))))))))) | 
| 0(5(5(2(4(4(x0)))))) | → | 3(2(2(3(3(3(0(0(4(4(x0)))))))))) | 
| 0(5(5(3(5(4(x0)))))) | → | 5(1(1(4(2(0(3(2(2(4(x0)))))))))) | 
| 2(1(1(5(4(5(x0)))))) | → | 5(5(2(3(3(3(3(0(4(5(x0)))))))))) | 
| 3(5(5(5(5(5(x0)))))) | → | 1(0(5(0(0(4(1(0(5(5(x0)))))))))) | 
| 3(4(5(0(0(5(3(x0))))))) | → | 0(1(2(5(5(1(1(2(1(0(x0)))))))))) | 
| 3(2(5(2(4(5(3(x0))))))) | → | 4(4(3(2(2(0(0(4(0(4(x0)))))))))) | 
| 0(4(1(5(4(5(3(x0))))))) | → | 5(2(1(3(3(0(0(1(1(1(x0)))))))))) | 
final states:
{122, 113, 103, 94, 85, 76, 67, 58, 48, 42, 32, 22, 12, 1}
transitions:
| 32 | → | 23 | 
| 103 | → | 34 | 
| 103 | → | 49 | 
| 122 | → | 114 | 
| 122 | → | 104 | 
| 1 | → | 104 | 
| 76 | → | 96 | 
| 76 | → | 104 | 
| 58 | → | 13 | 
| 22 | → | 104 | 
| 67 | → | 96 | 
| 67 | → | 104 | 
| 12 | → | 34 | 
| 12 | → | 49 | 
| 85 | → | 13 | 
| 113 | → | 49 | 
| 42 | → | 86 | 
| 42 | → | 33 | 
| 48 | → | 34 | 
| 48 | → | 49 | 
| 94 | → | 49 | 
| 50(130) | → | 122 | 
| 50(46) | → | 47 | 
| 50(92) | → | 93 | 
| 50(41) | → | 32 | 
| 50(93) | → | 85 | 
| 50(29) | → | 30 | 
| 50(108) | → | 109 | 
| 50(9) | → | 10 | 
| 50(59) | → | 60 | 
| 50(84) | → | 76 | 
| 50(109) | → | 110 | 
| 50(62) | → | 63 | 
| 50(55) | → | 56 | 
| 50(2) | → | 23 | 
| 50(23) | → | 95 | 
| 50(100) | → | 101 | 
| 50(54) | → | 55 | 
| 50(38) | → | 39 | 
| 40(2) | → | 33 | 
| 40(120) | → | 121 | 
| 40(16) | → | 17 | 
| 40(28) | → | 29 | 
| 40(24) | → | 25 | 
| 40(47) | → | 42 | 
| 40(8) | → | 9 | 
| 40(114) | → | 115 | 
| 40(14) | → | 15 | 
| 40(27) | → | 28 | 
| 40(23) | → | 86 | 
| 40(97) | → | 98 | 
| 40(121) | → | 113 | 
| 40(33) | → | 68 | 
| 40(81) | → | 82 | 
| 10(106) | → | 107 | 
| 10(23) | → | 24 | 
| 10(123) | → | 124 | 
| 10(37) | → | 38 | 
| 10(35) | → | 36 | 
| 10(34) | → | 35 | 
| 10(107) | → | 108 | 
| 10(56) | → | 57 | 
| 10(36) | → | 37 | 
| 10(82) | → | 83 | 
| 10(3) | → | 123 | 
| 10(104) | → | 105 | 
| 10(111) | → | 112 | 
| 10(96) | → | 97 | 
| 10(128) | → | 129 | 
| 10(83) | → | 84 | 
| 10(102) | → | 94 | 
| 10(15) | → | 16 | 
| 10(20) | → | 21 | 
| 10(13) | → | 14 | 
| 10(21) | → | 12 | 
| 10(31) | → | 22 | 
| 10(5) | → | 6 | 
| 10(10) | → | 11 | 
| 10(2) | → | 3 | 
| 00(19) | → | 20 | 
| 00(125) | → | 126 | 
| 00(17) | → | 18 | 
| 00(101) | → | 102 | 
| 00(112) | → | 103 | 
| 00(99) | → | 100 | 
| 00(61) | → | 62 | 
| 00(86) | → | 87 | 
| 00(98) | → | 99 | 
| 00(50) | → | 51 | 
| 00(69) | → | 70 | 
| 00(124) | → | 125 | 
| 00(26) | → | 27 | 
| 00(4) | → | 5 | 
| 00(7) | → | 8 | 
| 00(13) | → | 59 | 
| 00(116) | → | 117 | 
| 00(3) | → | 4 | 
| 00(57) | → | 48 | 
| 00(95) | → | 96 | 
| 00(79) | → | 80 | 
| 00(33) | → | 114 | 
| 00(68) | → | 69 | 
| 00(115) | → | 116 | 
| 00(2) | → | 104 | 
| 30(90) | → | 91 | 
| 30(70) | → | 71 | 
| 30(16) | → | 43 | 
| 30(87) | → | 88 | 
| 30(65) | → | 66 | 
| 30(53) | → | 54 | 
| 30(88) | → | 89 | 
| 30(72) | → | 73 | 
| 30(18) | → | 19 | 
| 30(40) | → | 41 | 
| 30(6) | → | 7 | 
| 30(126) | → | 127 | 
| 30(119) | → | 120 | 
| 30(71) | → | 72 | 
| 30(127) | → | 128 | 
| 30(49) | → | 50 | 
| 30(43) | → | 44 | 
| 30(89) | → | 90 | 
| 30(2) | → | 49 | 
| 30(75) | → | 67 | 
| 30(78) | → | 79 | 
| 30(33) | → | 34 | 
| 30(39) | → | 40 | 
| 30(51) | → | 52 | 
| 30(25) | → | 26 | 
| f60 | → | 2 | 
| 20(2) | → | 13 | 
| 20(117) | → | 118 | 
| 20(91) | → | 92 | 
| 20(105) | → | 106 | 
| 20(110) | → | 111 | 
| 20(64) | → | 65 | 
| 20(80) | → | 81 | 
| 20(30) | → | 31 | 
| 20(63) | → | 64 | 
| 20(74) | → | 75 | 
| 20(11) | → | 1 | 
| 20(118) | → | 119 | 
| 20(66) | → | 58 | 
| 20(33) | → | 77 | 
| 20(52) | → | 53 | 
| 20(45) | → | 46 | 
| 20(129) | → | 130 | 
| 20(73) | → | 74 | 
| 20(60) | → | 61 | 
| 20(44) | → | 45 | 
| 20(77) | → | 78 |