YES
by ttt2 (version ttt2 1.15)
The rewrite relation of the following TRS is considered.
| 4(2(4(x0))) | → | 2(0(0(5(3(3(5(2(0(4(x0)))))))))) |
| 4(4(2(4(2(x0))))) | → | 2(0(5(2(1(4(0(2(0(1(x0)))))))))) |
| 0(5(4(2(4(3(x0)))))) | → | 5(1(5(5(3(5(3(0(0(0(x0)))))))))) |
| 1(1(4(5(3(3(x0)))))) | → | 1(3(1(1(3(0(1(2(2(1(x0)))))))))) |
| 3(1(4(3(1(2(x0)))))) | → | 0(0(1(1(4(2(3(0(0(3(x0)))))))))) |
| 3(2(4(2(4(1(x0)))))) | → | 0(2(1(1(1(5(3(1(3(3(x0)))))))))) |
| 3(3(0(4(1(2(x0)))))) | → | 3(5(1(2(0(2(0(5(3(1(x0)))))))))) |
| 4(1(4(5(0(5(4(x0))))))) | → | 4(1(5(3(1(0(5(3(1(0(x0)))))))))) |
| 4(4(0(5(4(2(2(x0))))))) | → | 4(0(4(3(4(4(4(5(4(1(x0)))))))))) |
| 5(4(5(3(2(4(3(x0))))))) | → | 2(5(5(5(0(4(5(0(1(4(x0)))))))))) |
| 4(2(4(x0))) | → | 4(0(2(5(3(3(5(0(0(2(x0)))))))))) |
| 2(4(2(4(4(x0))))) | → | 1(0(2(0(4(1(2(5(0(2(x0)))))))))) |
| 3(4(2(4(5(0(x0)))))) | → | 0(0(0(3(5(3(5(5(1(5(x0)))))))))) |
| 3(3(5(4(1(1(x0)))))) | → | 1(2(2(1(0(3(1(1(3(1(x0)))))))))) |
| 2(1(3(4(1(3(x0)))))) | → | 3(0(0(3(2(4(1(1(0(0(x0)))))))))) |
| 1(4(2(4(2(3(x0)))))) | → | 3(3(1(3(5(1(1(1(2(0(x0)))))))))) |
| 2(1(4(0(3(3(x0)))))) | → | 1(3(5(0(2(0(2(1(5(3(x0)))))))))) |
| 4(5(0(5(4(1(4(x0))))))) | → | 0(1(3(5(0(1(3(5(1(4(x0)))))))))) |
| 2(2(4(5(0(4(4(x0))))))) | → | 1(4(5(4(4(4(3(4(0(4(x0)))))))))) |
| 3(4(2(3(5(4(5(x0))))))) | → | 4(1(0(5(4(0(5(5(5(2(x0)))))))))) |
final states:
{88, 79, 69, 59, 50, 40, 30, 20, 12, 1}
transitions:
| 50 | → | 71 |
| 50 | → | 31 |
| 59 | → | 3 |
| 20 | → | 60 |
| 1 | → | 70 |
| 40 | → | 3 |
| 79 | → | 3 |
| 88 | → | 60 |
| 12 | → | 3 |
| 69 | → | 70 |
| 30 | → | 60 |
| 20(37) | → | 38 |
| 20(41) | → | 51 |
| 20(45) | → | 46 |
| 20(64) | → | 65 |
| 20(9) | → | 10 |
| 20(62) | → | 63 |
| 20(13) | → | 14 |
| 20(2) | → | 3 |
| 20(17) | → | 18 |
| 20(38) | → | 39 |
| 50(2) | → | 21 |
| 50(25) | → | 26 |
| 50(71) | → | 72 |
| 50(4) | → | 13 |
| 50(85) | → | 86 |
| 50(8) | → | 9 |
| 50(89) | → | 90 |
| 50(60) | → | 61 |
| 50(93) | → | 94 |
| 50(23) | → | 24 |
| 50(54) | → | 55 |
| 50(90) | → | 91 |
| 50(66) | → | 67 |
| 50(3) | → | 89 |
| 50(75) | → | 76 |
| 50(5) | → | 6 |
| 50(22) | → | 23 |
| 00(65) | → | 66 |
| 00(70) | → | 80 |
| 00(41) | → | 42 |
| 00(78) | → | 69 |
| 00(91) | → | 92 |
| 00(63) | → | 64 |
| 00(35) | → | 36 |
| 00(29) | → | 20 |
| 00(18) | → | 19 |
| 00(28) | → | 29 |
| 00(3) | → | 4 |
| 00(47) | → | 48 |
| 00(94) | → | 95 |
| 00(27) | → | 28 |
| 00(74) | → | 75 |
| 00(48) | → | 49 |
| 00(10) | → | 11 |
| 00(2) | → | 41 |
| 00(4) | → | 5 |
| 00(16) | → | 17 |
| 30(58) | → | 50 |
| 30(46) | → | 47 |
| 30(26) | → | 27 |
| 30(7) | → | 8 |
| 30(6) | → | 7 |
| 30(67) | → | 68 |
| 30(49) | → | 40 |
| 30(72) | → | 73 |
| 30(31) | → | 32 |
| 30(34) | → | 35 |
| 30(81) | → | 82 |
| 30(57) | → | 58 |
| 30(24) | → | 25 |
| 30(76) | → | 77 |
| 30(55) | → | 56 |
| 30(2) | → | 60 |
| 10(70) | → | 71 |
| 10(87) | → | 79 |
| 10(77) | → | 78 |
| 10(53) | → | 54 |
| 10(68) | → | 59 |
| 10(21) | → | 22 |
| 10(95) | → | 96 |
| 10(19) | → | 12 |
| 10(73) | → | 74 |
| 10(32) | → | 33 |
| 10(61) | → | 62 |
| 10(42) | → | 43 |
| 10(14) | → | 15 |
| 10(43) | → | 44 |
| 10(2) | → | 31 |
| 10(36) | → | 37 |
| 10(52) | → | 53 |
| 10(56) | → | 57 |
| 10(33) | → | 34 |
| 10(39) | → | 30 |
| 10(51) | → | 52 |
| f60 | → | 2 |
| 40(2) | → | 70 |
| 40(80) | → | 81 |
| 40(92) | → | 93 |
| 40(96) | → | 88 |
| 40(11) | → | 1 |
| 40(84) | → | 85 |
| 40(86) | → | 87 |
| 40(83) | → | 84 |
| 40(15) | → | 16 |
| 40(82) | → | 83 |
| 40(44) | → | 45 |