YES
Termination Proof
Termination Proof
by ttt2 (version ttt2 1.15)
Input
The rewrite relation of the following TRS is considered.
| 
a12(a12(x0)) | 
→ | 
x0 | 
| 
a13(a13(x0)) | 
→ | 
x0 | 
| 
a14(a14(x0)) | 
→ | 
x0 | 
| 
a15(a15(x0)) | 
→ | 
x0 | 
| 
a16(a16(x0)) | 
→ | 
x0 | 
| 
a23(a23(x0)) | 
→ | 
x0 | 
| 
a24(a24(x0)) | 
→ | 
x0 | 
| 
a25(a25(x0)) | 
→ | 
x0 | 
| 
a26(a26(x0)) | 
→ | 
x0 | 
| 
a34(a34(x0)) | 
→ | 
x0 | 
| 
a35(a35(x0)) | 
→ | 
x0 | 
| 
a36(a36(x0)) | 
→ | 
x0 | 
| 
a45(a45(x0)) | 
→ | 
x0 | 
| 
a46(a46(x0)) | 
→ | 
x0 | 
| 
a56(a56(x0)) | 
→ | 
x0 | 
| 
a13(x0) | 
→ | 
a12(a23(a12(x0))) | 
| 
a14(x0) | 
→ | 
a12(a23(a34(a23(a12(x0))))) | 
| 
a15(x0) | 
→ | 
a12(a23(a34(a45(a34(a23(a12(x0))))))) | 
| 
a16(x0) | 
→ | 
a12(a23(a34(a45(a56(a45(a34(a23(a12(x0))))))))) | 
| 
a24(x0) | 
→ | 
a23(a34(a23(x0))) | 
| 
a25(x0) | 
→ | 
a23(a34(a45(a34(a23(x0))))) | 
| 
a26(x0) | 
→ | 
a23(a34(a45(a56(a45(a34(a23(x0))))))) | 
| 
a35(x0) | 
→ | 
a34(a45(a34(x0))) | 
| 
a36(x0) | 
→ | 
a34(a45(a56(a45(a34(x0))))) | 
| 
a46(x0) | 
→ | 
a45(a56(a45(x0))) | 
| 
a12(a23(a12(a23(a12(a23(x0)))))) | 
→ | 
x0 | 
| 
a23(a34(a23(a34(a23(a34(x0)))))) | 
→ | 
x0 | 
| 
a34(a45(a34(a45(a34(a45(x0)))))) | 
→ | 
x0 | 
| 
a45(a56(a45(a56(a45(a56(x0)))))) | 
→ | 
x0 | 
| 
a12(a34(x0)) | 
→ | 
a34(a12(x0)) | 
| 
a12(a45(x0)) | 
→ | 
a45(a12(x0)) | 
| 
a12(a56(x0)) | 
→ | 
a56(a12(x0)) | 
| 
a23(a45(x0)) | 
→ | 
a45(a23(x0)) | 
| 
a23(a56(x0)) | 
→ | 
a56(a23(x0)) | 
| 
a34(a56(x0)) | 
→ | 
a56(a34(x0)) | 
Proof
1 Rule Removal
      Using the
      linear polynomial interpretation over the arctic semiring over the integers
| [a16(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [a26(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [a13(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [a15(x1)] | 
 =  | 
4 · 
                    x1 + 
                -∞
             | 
| [a23(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [a35(x1)] | 
 =  | 
5 · 
                    x1 + 
                -∞
             | 
| [a12(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [a25(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [a56(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [a45(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [a36(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [a34(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [a46(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [a24(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [a14(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
          the
          rules
| 
a12(a12(x0)) | 
→ | 
x0 | 
| 
a13(a13(x0)) | 
→ | 
x0 | 
| 
a14(a14(x0)) | 
→ | 
x0 | 
| 
a16(a16(x0)) | 
→ | 
x0 | 
| 
a23(a23(x0)) | 
→ | 
x0 | 
| 
a24(a24(x0)) | 
→ | 
x0 | 
| 
a25(a25(x0)) | 
→ | 
x0 | 
| 
a26(a26(x0)) | 
→ | 
x0 | 
| 
a34(a34(x0)) | 
→ | 
x0 | 
| 
a36(a36(x0)) | 
→ | 
x0 | 
| 
a45(a45(x0)) | 
→ | 
x0 | 
| 
a46(a46(x0)) | 
→ | 
x0 | 
| 
a56(a56(x0)) | 
→ | 
x0 | 
| 
a13(x0) | 
→ | 
a12(a23(a12(x0))) | 
| 
a14(x0) | 
→ | 
a12(a23(a34(a23(a12(x0))))) | 
| 
a16(x0) | 
→ | 
a12(a23(a34(a45(a56(a45(a34(a23(a12(x0))))))))) | 
| 
a24(x0) | 
→ | 
a23(a34(a23(x0))) | 
| 
a25(x0) | 
→ | 
a23(a34(a45(a34(a23(x0))))) | 
| 
a26(x0) | 
→ | 
a23(a34(a45(a56(a45(a34(a23(x0))))))) | 
| 
a36(x0) | 
→ | 
a34(a45(a56(a45(a34(x0))))) | 
| 
a46(x0) | 
→ | 
a45(a56(a45(x0))) | 
| 
a12(a23(a12(a23(a12(a23(x0)))))) | 
→ | 
x0 | 
| 
a23(a34(a23(a34(a23(a34(x0)))))) | 
→ | 
x0 | 
| 
a34(a45(a34(a45(a34(a45(x0)))))) | 
→ | 
x0 | 
| 
a45(a56(a45(a56(a45(a56(x0)))))) | 
→ | 
x0 | 
| 
a12(a34(x0)) | 
→ | 
a34(a12(x0)) | 
| 
a12(a45(x0)) | 
→ | 
a45(a12(x0)) | 
| 
a12(a56(x0)) | 
→ | 
a56(a12(x0)) | 
| 
a23(a45(x0)) | 
→ | 
a45(a23(x0)) | 
| 
a23(a56(x0)) | 
→ | 
a56(a23(x0)) | 
| 
a34(a56(x0)) | 
→ | 
a56(a34(x0)) | 
          remain.
        1.1 Rule Removal
      Using the
      linear polynomial interpretation over the arctic semiring over the integers
| [a16(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [a26(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [a13(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [a23(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [a12(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [a25(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [a56(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [a45(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [a36(x1)] | 
 =  | 
1 · 
                    x1 + 
                -∞
             | 
| [a34(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [a46(x1)] | 
 =  | 
1 · 
                    x1 + 
                -∞
             | 
| [a24(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [a14(x1)] | 
 =  | 
2 · 
                    x1 + 
                -∞
             | 
          the
          rules
| 
a12(a12(x0)) | 
→ | 
x0 | 
| 
a13(a13(x0)) | 
→ | 
x0 | 
| 
a16(a16(x0)) | 
→ | 
x0 | 
| 
a23(a23(x0)) | 
→ | 
x0 | 
| 
a24(a24(x0)) | 
→ | 
x0 | 
| 
a25(a25(x0)) | 
→ | 
x0 | 
| 
a26(a26(x0)) | 
→ | 
x0 | 
| 
a34(a34(x0)) | 
→ | 
x0 | 
| 
a45(a45(x0)) | 
→ | 
x0 | 
| 
a56(a56(x0)) | 
→ | 
x0 | 
| 
a13(x0) | 
→ | 
a12(a23(a12(x0))) | 
| 
a16(x0) | 
→ | 
a12(a23(a34(a45(a56(a45(a34(a23(a12(x0))))))))) | 
| 
a24(x0) | 
→ | 
a23(a34(a23(x0))) | 
| 
a25(x0) | 
→ | 
a23(a34(a45(a34(a23(x0))))) | 
| 
a26(x0) | 
→ | 
a23(a34(a45(a56(a45(a34(a23(x0))))))) | 
| 
a12(a23(a12(a23(a12(a23(x0)))))) | 
→ | 
x0 | 
| 
a23(a34(a23(a34(a23(a34(x0)))))) | 
→ | 
x0 | 
| 
a34(a45(a34(a45(a34(a45(x0)))))) | 
→ | 
x0 | 
| 
a45(a56(a45(a56(a45(a56(x0)))))) | 
→ | 
x0 | 
| 
a12(a34(x0)) | 
→ | 
a34(a12(x0)) | 
| 
a12(a45(x0)) | 
→ | 
a45(a12(x0)) | 
| 
a12(a56(x0)) | 
→ | 
a56(a12(x0)) | 
| 
a23(a45(x0)) | 
→ | 
a45(a23(x0)) | 
| 
a23(a56(x0)) | 
→ | 
a56(a23(x0)) | 
| 
a34(a56(x0)) | 
→ | 
a56(a34(x0)) | 
          remain.
        1.1.1 Rule Removal
      Using the
      linear polynomial interpretation over the arctic semiring over the integers
| [a16(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [a26(x1)] | 
 =  | 
8 · 
                    x1 + 
                -∞
             | 
| [a13(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [a23(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [a12(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [a25(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [a56(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [a45(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [a34(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [a24(x1)] | 
 =  | 
8 · 
                    x1 + 
                -∞
             | 
          the
          rules
| 
a12(a12(x0)) | 
→ | 
x0 | 
| 
a13(a13(x0)) | 
→ | 
x0 | 
| 
a16(a16(x0)) | 
→ | 
x0 | 
| 
a23(a23(x0)) | 
→ | 
x0 | 
| 
a25(a25(x0)) | 
→ | 
x0 | 
| 
a34(a34(x0)) | 
→ | 
x0 | 
| 
a45(a45(x0)) | 
→ | 
x0 | 
| 
a56(a56(x0)) | 
→ | 
x0 | 
| 
a13(x0) | 
→ | 
a12(a23(a12(x0))) | 
| 
a16(x0) | 
→ | 
a12(a23(a34(a45(a56(a45(a34(a23(a12(x0))))))))) | 
| 
a25(x0) | 
→ | 
a23(a34(a45(a34(a23(x0))))) | 
| 
a12(a23(a12(a23(a12(a23(x0)))))) | 
→ | 
x0 | 
| 
a23(a34(a23(a34(a23(a34(x0)))))) | 
→ | 
x0 | 
| 
a34(a45(a34(a45(a34(a45(x0)))))) | 
→ | 
x0 | 
| 
a45(a56(a45(a56(a45(a56(x0)))))) | 
→ | 
x0 | 
| 
a12(a34(x0)) | 
→ | 
a34(a12(x0)) | 
| 
a12(a45(x0)) | 
→ | 
a45(a12(x0)) | 
| 
a12(a56(x0)) | 
→ | 
a56(a12(x0)) | 
| 
a23(a45(x0)) | 
→ | 
a45(a23(x0)) | 
| 
a23(a56(x0)) | 
→ | 
a56(a23(x0)) | 
| 
a34(a56(x0)) | 
→ | 
a56(a34(x0)) | 
          remain.
        1.1.1.1 Rule Removal
      Using the
      linear polynomial interpretation over the arctic semiring over the integers
| [a16(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [a13(x1)] | 
 =  | 
10 · 
                    x1 + 
                -∞
             | 
| [a23(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [a12(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [a25(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [a56(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [a45(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [a34(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
          the
          rules
| 
a12(a12(x0)) | 
→ | 
x0 | 
| 
a16(a16(x0)) | 
→ | 
x0 | 
| 
a23(a23(x0)) | 
→ | 
x0 | 
| 
a25(a25(x0)) | 
→ | 
x0 | 
| 
a34(a34(x0)) | 
→ | 
x0 | 
| 
a45(a45(x0)) | 
→ | 
x0 | 
| 
a56(a56(x0)) | 
→ | 
x0 | 
| 
a16(x0) | 
→ | 
a12(a23(a34(a45(a56(a45(a34(a23(a12(x0))))))))) | 
| 
a25(x0) | 
→ | 
a23(a34(a45(a34(a23(x0))))) | 
| 
a12(a23(a12(a23(a12(a23(x0)))))) | 
→ | 
x0 | 
| 
a23(a34(a23(a34(a23(a34(x0)))))) | 
→ | 
x0 | 
| 
a34(a45(a34(a45(a34(a45(x0)))))) | 
→ | 
x0 | 
| 
a45(a56(a45(a56(a45(a56(x0)))))) | 
→ | 
x0 | 
| 
a12(a34(x0)) | 
→ | 
a34(a12(x0)) | 
| 
a12(a45(x0)) | 
→ | 
a45(a12(x0)) | 
| 
a12(a56(x0)) | 
→ | 
a56(a12(x0)) | 
| 
a23(a45(x0)) | 
→ | 
a45(a23(x0)) | 
| 
a23(a56(x0)) | 
→ | 
a56(a23(x0)) | 
| 
a34(a56(x0)) | 
→ | 
a56(a34(x0)) | 
          remain.
        1.1.1.1.1 Rule Removal
      Using the
      linear polynomial interpretation over the arctic semiring over the integers
| [a16(x1)] | 
 =  | 
2 · 
                    x1 + 
                -∞
             | 
| [a23(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [a12(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [a25(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [a56(x1)] | 
 =  | 
2 · 
                    x1 + 
                -∞
             | 
| [a45(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [a34(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
          the
          rules
| 
a12(a12(x0)) | 
→ | 
x0 | 
| 
a23(a23(x0)) | 
→ | 
x0 | 
| 
a25(a25(x0)) | 
→ | 
x0 | 
| 
a34(a34(x0)) | 
→ | 
x0 | 
| 
a45(a45(x0)) | 
→ | 
x0 | 
| 
a16(x0) | 
→ | 
a12(a23(a34(a45(a56(a45(a34(a23(a12(x0))))))))) | 
| 
a25(x0) | 
→ | 
a23(a34(a45(a34(a23(x0))))) | 
| 
a12(a23(a12(a23(a12(a23(x0)))))) | 
→ | 
x0 | 
| 
a23(a34(a23(a34(a23(a34(x0)))))) | 
→ | 
x0 | 
| 
a34(a45(a34(a45(a34(a45(x0)))))) | 
→ | 
x0 | 
| 
a12(a34(x0)) | 
→ | 
a34(a12(x0)) | 
| 
a12(a45(x0)) | 
→ | 
a45(a12(x0)) | 
| 
a12(a56(x0)) | 
→ | 
a56(a12(x0)) | 
| 
a23(a45(x0)) | 
→ | 
a45(a23(x0)) | 
| 
a23(a56(x0)) | 
→ | 
a56(a23(x0)) | 
| 
a34(a56(x0)) | 
→ | 
a56(a34(x0)) | 
          remain.
        1.1.1.1.1.1 Rule Removal
      Using the
      linear polynomial interpretation over the arctic semiring over the integers
| [a16(x1)] | 
 =  | 
12 · 
                    x1 + 
                -∞
             | 
| [a23(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [a12(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [a25(x1)] | 
 =  | 
1 · 
                    x1 + 
                -∞
             | 
| [a56(x1)] | 
 =  | 
8 · 
                    x1 + 
                -∞
             | 
| [a45(x1)] | 
 =  | 
1 · 
                    x1 + 
                -∞
             | 
| [a34(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
          the
          rules
| 
a12(a12(x0)) | 
→ | 
x0 | 
| 
a23(a23(x0)) | 
→ | 
x0 | 
| 
a34(a34(x0)) | 
→ | 
x0 | 
| 
a25(x0) | 
→ | 
a23(a34(a45(a34(a23(x0))))) | 
| 
a12(a23(a12(a23(a12(a23(x0)))))) | 
→ | 
x0 | 
| 
a23(a34(a23(a34(a23(a34(x0)))))) | 
→ | 
x0 | 
| 
a12(a34(x0)) | 
→ | 
a34(a12(x0)) | 
| 
a12(a45(x0)) | 
→ | 
a45(a12(x0)) | 
| 
a12(a56(x0)) | 
→ | 
a56(a12(x0)) | 
| 
a23(a45(x0)) | 
→ | 
a45(a23(x0)) | 
| 
a23(a56(x0)) | 
→ | 
a56(a23(x0)) | 
| 
a34(a56(x0)) | 
→ | 
a56(a34(x0)) | 
          remain.
        1.1.1.1.1.1.1 Rule Removal
      Using the
      linear polynomial interpretation over the arctic semiring over the integers
| [a23(x1)] | 
 =  | 
2 · 
                    x1 + 
                -∞
             | 
| [a12(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [a25(x1)] | 
 =  | 
6 · 
                    x1 + 
                -∞
             | 
| [a56(x1)] | 
 =  | 
2 · 
                    x1 + 
                -∞
             | 
| [a45(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [a34(x1)] | 
 =  | 
1 · 
                    x1 + 
                -∞
             | 
          the
          rules
| 
a12(a12(x0)) | 
→ | 
x0 | 
| 
a25(x0) | 
→ | 
a23(a34(a45(a34(a23(x0))))) | 
| 
a12(a34(x0)) | 
→ | 
a34(a12(x0)) | 
| 
a12(a45(x0)) | 
→ | 
a45(a12(x0)) | 
| 
a12(a56(x0)) | 
→ | 
a56(a12(x0)) | 
| 
a23(a45(x0)) | 
→ | 
a45(a23(x0)) | 
| 
a23(a56(x0)) | 
→ | 
a56(a23(x0)) | 
| 
a34(a56(x0)) | 
→ | 
a56(a34(x0)) | 
          remain.
        1.1.1.1.1.1.1.1 Rule Removal
      Using the
      linear polynomial interpretation over the arctic semiring over the integers
| [a23(x1)] | 
 =  | 
3 · 
                    x1 + 
                -∞
             | 
| [a12(x1)] | 
 =  | 
6 · 
                    x1 + 
                -∞
             | 
| [a25(x1)] | 
 =  | 
8 · 
                    x1 + 
                -∞
             | 
| [a56(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [a45(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [a34(x1)] | 
 =  | 
1 · 
                    x1 + 
                -∞
             | 
          the
          rules
| 
a25(x0) | 
→ | 
a23(a34(a45(a34(a23(x0))))) | 
| 
a12(a34(x0)) | 
→ | 
a34(a12(x0)) | 
| 
a12(a45(x0)) | 
→ | 
a45(a12(x0)) | 
| 
a12(a56(x0)) | 
→ | 
a56(a12(x0)) | 
| 
a23(a45(x0)) | 
→ | 
a45(a23(x0)) | 
| 
a23(a56(x0)) | 
→ | 
a56(a23(x0)) | 
| 
a34(a56(x0)) | 
→ | 
a56(a34(x0)) | 
          remain.
        1.1.1.1.1.1.1.1.1 Rule Removal
      Using the
      linear polynomial interpretation over the arctic semiring over the integers
| [a23(x1)] | 
 =  | 
4 · 
                    x1 + 
                -∞
             | 
| [a12(x1)] | 
 =  | 
15 · 
                    x1 + 
                -∞
             | 
| [a25(x1)] | 
 =  | 
13 · 
                    x1 + 
                -∞
             | 
| [a56(x1)] | 
 =  | 
1 · 
                    x1 + 
                -∞
             | 
| [a45(x1)] | 
 =  | 
4 · 
                    x1 + 
                -∞
             | 
| [a34(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
          the
          rules
| 
a12(a34(x0)) | 
→ | 
a34(a12(x0)) | 
| 
a12(a45(x0)) | 
→ | 
a45(a12(x0)) | 
| 
a12(a56(x0)) | 
→ | 
a56(a12(x0)) | 
| 
a23(a45(x0)) | 
→ | 
a45(a23(x0)) | 
| 
a23(a56(x0)) | 
→ | 
a56(a23(x0)) | 
| 
a34(a56(x0)) | 
→ | 
a56(a34(x0)) | 
          remain.
        1.1.1.1.1.1.1.1.1.1 Rule Removal
      Using the
      Knuth Bendix order with w0 = 1 and the following precedence and weight function
| prec(a56) | 
= | 
0 | 
 | 
weight(a56) | 
= | 
1 | 
 | 
 | 
 | 
| prec(a45) | 
= | 
0 | 
 | 
weight(a45) | 
= | 
1 | 
 | 
 | 
 | 
| prec(a34) | 
= | 
2 | 
 | 
weight(a34) | 
= | 
1 | 
 | 
 | 
 | 
| prec(a23) | 
= | 
1 | 
 | 
weight(a23) | 
= | 
1 | 
 | 
 | 
 | 
| prec(a12) | 
= | 
3 | 
 | 
weight(a12) | 
= | 
0 | 
 | 
 | 
 | 
          all rules could be removed.
        1.1.1.1.1.1.1.1.1.1.1 R is empty 
There are no rules in the TRS. Hence, it is terminating.