YES
Termination Proof
Termination Proof
by ttt2 (version ttt2 1.15)
Input
The rewrite relation of the following TRS is considered.
| 
a(b(x0)) | 
→ | 
b(c(a(x0))) | 
| 
b(c(x0)) | 
→ | 
c(b(b(x0))) | 
| 
a(c(x0)) | 
→ | 
c(a(b(x0))) | 
| 
a(a(x0)) | 
→ | 
a(d(d(d(x0)))) | 
| 
d(a(x0)) | 
→ | 
d(d(c(x0))) | 
| 
a(d(d(c(x0)))) | 
→ | 
a(a(a(d(x0)))) | 
| 
e(e(f(f(x0)))) | 
→ | 
f(f(f(e(e(x0))))) | 
| 
e(x0) | 
→ | 
a(x0) | 
| 
b(d(x0)) | 
→ | 
d(d(x0)) | 
Proof
1 Rule Removal
      Using the
      linear polynomial interpretation over the arctic semiring over the integers
| [f(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [a(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [d(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [e(x1)] | 
 =  | 
1 · 
                    x1 + 
                -∞
             | 
| [b(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [c(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
          the
          rules
| 
a(b(x0)) | 
→ | 
b(c(a(x0))) | 
| 
b(c(x0)) | 
→ | 
c(b(b(x0))) | 
| 
a(c(x0)) | 
→ | 
c(a(b(x0))) | 
| 
a(a(x0)) | 
→ | 
a(d(d(d(x0)))) | 
| 
d(a(x0)) | 
→ | 
d(d(c(x0))) | 
| 
a(d(d(c(x0)))) | 
→ | 
a(a(a(d(x0)))) | 
| 
e(e(f(f(x0)))) | 
→ | 
f(f(f(e(e(x0))))) | 
| 
b(d(x0)) | 
→ | 
d(d(x0)) | 
          remain.
        1.1 Rule Removal
      Using the
      linear polynomial interpretation over (2 x 2)-matrices with strict dimension 1 
            over the naturals
| [f(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [a(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [d(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [e(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [b(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [c(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
          the
          rules
| 
a(b(x0)) | 
→ | 
b(c(a(x0))) | 
| 
b(c(x0)) | 
→ | 
c(b(b(x0))) | 
| 
a(c(x0)) | 
→ | 
c(a(b(x0))) | 
| 
a(a(x0)) | 
→ | 
a(d(d(d(x0)))) | 
| 
d(a(x0)) | 
→ | 
d(d(c(x0))) | 
| 
a(d(d(c(x0)))) | 
→ | 
a(a(a(d(x0)))) | 
| 
b(d(x0)) | 
→ | 
d(d(x0)) | 
          remain.
        1.1.1 String Reversal
        Since only unary symbols occur, one can reverse all terms and obtains the TRS        
        
| 
b(a(x0)) | 
→ | 
a(c(b(x0))) | 
| 
c(b(x0)) | 
→ | 
b(b(c(x0))) | 
| 
c(a(x0)) | 
→ | 
b(a(c(x0))) | 
| 
a(a(x0)) | 
→ | 
d(d(d(a(x0)))) | 
| 
a(d(x0)) | 
→ | 
c(d(d(x0))) | 
| 
c(d(d(a(x0)))) | 
→ | 
d(a(a(a(x0)))) | 
| 
d(b(x0)) | 
→ | 
d(d(x0)) | 
1.1.1.1 Rule Removal
      Using the
      linear polynomial interpretation over (3 x 3)-matrices with strict dimension 1 
            over the naturals
| [a(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [d(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [b(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [c(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
          the
          rules
| 
b(a(x0)) | 
→ | 
a(c(b(x0))) | 
| 
c(b(x0)) | 
→ | 
b(b(c(x0))) | 
| 
c(a(x0)) | 
→ | 
b(a(c(x0))) | 
| 
a(a(x0)) | 
→ | 
d(d(d(a(x0)))) | 
| 
a(d(x0)) | 
→ | 
c(d(d(x0))) | 
| 
c(d(d(a(x0)))) | 
→ | 
d(a(a(a(x0)))) | 
          remain.
        1.1.1.1.1 Dependency Pair Transformation
          The following set of initial dependency pairs has been identified.
          
| 
b#(a(x0)) | 
→ | 
b#(x0) | 
| 
b#(a(x0)) | 
→ | 
c#(b(x0)) | 
| 
b#(a(x0)) | 
→ | 
a#(c(b(x0))) | 
| 
c#(b(x0)) | 
→ | 
c#(x0) | 
| 
c#(b(x0)) | 
→ | 
b#(c(x0)) | 
| 
c#(b(x0)) | 
→ | 
b#(b(c(x0))) | 
| 
c#(a(x0)) | 
→ | 
c#(x0) | 
| 
c#(a(x0)) | 
→ | 
a#(c(x0)) | 
| 
c#(a(x0)) | 
→ | 
b#(a(c(x0))) | 
| 
a#(d(x0)) | 
→ | 
c#(d(d(x0))) | 
| 
c#(d(d(a(x0)))) | 
→ | 
a#(a(x0)) | 
| 
c#(d(d(a(x0)))) | 
→ | 
a#(a(a(x0))) | 
1.1.1.1.1.1 Dependency Graph Processor
The dependency pairs are split into 2
        components.