YES
Termination Proof
Termination Proof
by ttt2 (version ttt2 1.15)
Input
The rewrite relation of the following TRS is considered.
| 
c(c(x0)) | 
→ | 
a(b(x0)) | 
| 
b(x0) | 
→ | 
a(a(x0)) | 
| 
b(b(b(x0))) | 
→ | 
a(c(b(x0))) | 
| 
a(c(a(x0))) | 
→ | 
a(c(c(x0))) | 
Proof
1 Rule Removal
      Using the
      linear polynomial interpretation over (2 x 2)-matrices with strict dimension 1 
            over the arctic semiring over the integers
| [b(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [c(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [a(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
          the
          rules
| 
c(c(x0)) | 
→ | 
a(b(x0)) | 
| 
b(x0) | 
→ | 
a(a(x0)) | 
| 
a(c(a(x0))) | 
→ | 
a(c(c(x0))) | 
          remain.
        1.1 String Reversal
        Since only unary symbols occur, one can reverse all terms and obtains the TRS        
        
| 
c(c(x0)) | 
→ | 
b(a(x0)) | 
| 
b(x0) | 
→ | 
a(a(x0)) | 
| 
a(c(a(x0))) | 
→ | 
c(c(a(x0))) | 
1.1.1 Bounds
        The given TRS is 
        match-bounded by 4.
        This is shown by the following automaton.
        
- 
final states:
{5, 4, 1}
 
- 
transitions:
| 80 | 
 →  | 
30 | 
| 80 | 
 →  | 
77 | 
| 51 | 
 →  | 
57 | 
| 3 | 
 →  | 
10 | 
| 50 | 
 →  | 
29 | 
| 50 | 
 →  | 
27 | 
| 50 | 
 →  | 
40 | 
| 5 | 
 →  | 
10 | 
| 5 | 
 →  | 
3 | 
| 5 | 
 →  | 
48 | 
| 5 | 
 →  | 
38 | 
| 5 | 
 →  | 
42 | 
| 59 | 
 →  | 
11 | 
| 59 | 
 →  | 
4 | 
| 59 | 
 →  | 
53 | 
| 31 | 
 →  | 
26 | 
| 31 | 
 →  | 
6 | 
| 31 | 
 →  | 
28 | 
| 31 | 
 →  | 
51 | 
| 31 | 
 →  | 
75 | 
| 49 | 
 →  | 
66 | 
| 40 | 
 →  | 
27 | 
| 38 | 
 →  | 
48 | 
| 86 | 
 →  | 
77 | 
| 86 | 
 →  | 
80 | 
| 79 | 
 →  | 
84 | 
| 58 | 
 →  | 
72 | 
| 6 | 
 →  | 
26 | 
| 22 | 
 →  | 
5 | 
| 22 | 
 →  | 
12 | 
| 22 | 
 →  | 
38 | 
| 75 | 
 →  | 
78 | 
| 53 | 
 →  | 
20 | 
| 53 | 
 →  | 
4 | 
| 53 | 
 →  | 
13 | 
| 53 | 
 →  | 
11 | 
| 53 | 
 →  | 
66 | 
| 53 | 
 →  | 
49 | 
| 2 | 
 →  | 
41 | 
| 11 | 
 →  | 
13 | 
| 11 | 
 →  | 
20 | 
| 28 | 
 →  | 
6 | 
| 28 | 
 →  | 
39 | 
| 14 | 
 →  | 
1 | 
| 12 | 
 →  | 
5 | 
| 77 | 
 →  | 
30 | 
| 42 | 
 →  | 
38 | 
| 68 | 
 →  | 
40 | 
| 68 | 
 →  | 
50 | 
| 74 | 
 →  | 
59 | 
| 27 | 
 →  | 
29 | 
| 
c0(3) | 
 →  | 
6 | 
| 
c0(6) | 
 →  | 
5 | 
| 
a3(72) | 
 →  | 
73 | 
| 
a3(73) | 
 →  | 
74 | 
| 
a3(66) | 
 →  | 
67 | 
| 
a3(78) | 
 →  | 
79 | 
| 
a3(67) | 
 →  | 
68 | 
| 
b0(3) | 
 →  | 
1 | 
| 
b1(11) | 
 →  | 
12 | 
| 
b1(27) | 
 →  | 
28 | 
| 
a2(30) | 
 →  | 
31 | 
| 
a2(48) | 
 →  | 
49 | 
| 
a2(21) | 
 →  | 
22 | 
| 
a2(29) | 
 →  | 
30 | 
| 
a2(57) | 
 →  | 
58 | 
| 
a2(20) | 
 →  | 
21 | 
| 
c2(76) | 
 →  | 
77 | 
| 
c2(75) | 
 →  | 
76 | 
| 
c1(51) | 
 →  | 
52 | 
| 
c1(39) | 
 →  | 
40 | 
| 
c1(38) | 
 →  | 
39 | 
| 
c1(52) | 
 →  | 
53 | 
| 
a1(10) | 
 →  | 
11 | 
| 
a1(26) | 
 →  | 
27 | 
| 
a1(41) | 
 →  | 
42 | 
| 
a1(13) | 
 →  | 
14 | 
| 
b3(79) | 
 →  | 
80 | 
| 
a4(85) | 
 →  | 
86 | 
| 
a4(84) | 
 →  | 
85 | 
| 
f30
 | 
 →  | 
2 | 
| 
b2(58) | 
 →  | 
59 | 
| 
b2(49) | 
 →  | 
50 | 
| 
a0(2) | 
 →  | 
3 | 
| 
a0(3) | 
 →  | 
4 |