YES
Termination Proof
Termination Proof
by ttt2 (version ttt2 1.15)
Input
The rewrite relation of the following TRS is considered.
|
b(b(x0)) |
→ |
c(d(x0)) |
|
c(c(x0)) |
→ |
d(d(d(x0))) |
|
c(x0) |
→ |
g(x0) |
|
d(d(x0)) |
→ |
c(f(x0)) |
|
d(d(d(x0))) |
→ |
g(c(x0)) |
|
f(x0) |
→ |
a(g(x0)) |
|
g(x0) |
→ |
d(a(b(x0))) |
|
g(g(x0)) |
→ |
b(c(x0)) |
Proof
1 Rule Removal
Using the
linear polynomial interpretation over (2 x 2)-matrices with strict dimension 1
over the naturals
| [f(x1)] |
= |
·
x1 +
|
| [d(x1)] |
= |
·
x1 +
|
| [g(x1)] |
= |
·
x1 +
|
| [a(x1)] |
= |
·
x1 +
|
| [b(x1)] |
= |
·
x1 +
|
| [c(x1)] |
= |
·
x1 +
|
the
rules
|
c(c(x0)) |
→ |
d(d(d(x0))) |
|
c(x0) |
→ |
g(x0) |
|
d(d(x0)) |
→ |
c(f(x0)) |
|
d(d(d(x0))) |
→ |
g(c(x0)) |
|
f(x0) |
→ |
a(g(x0)) |
|
g(x0) |
→ |
d(a(b(x0))) |
|
g(g(x0)) |
→ |
b(c(x0)) |
remain.
1.1 Rule Removal
Using the
linear polynomial interpretation over (2 x 2)-matrices with strict dimension 1
over the arctic semiring over the integers
| [f(x1)] |
= |
·
x1 +
|
| [d(x1)] |
= |
·
x1 +
|
| [g(x1)] |
= |
·
x1 +
|
| [a(x1)] |
= |
·
x1 +
|
| [b(x1)] |
= |
·
x1 +
|
| [c(x1)] |
= |
·
x1 +
|
the
rules
|
c(c(x0)) |
→ |
d(d(d(x0))) |
|
c(x0) |
→ |
g(x0) |
|
d(d(x0)) |
→ |
c(f(x0)) |
|
d(d(d(x0))) |
→ |
g(c(x0)) |
|
f(x0) |
→ |
a(g(x0)) |
|
g(x0) |
→ |
d(a(b(x0))) |
remain.
1.1.1 Rule Removal
Using the
linear polynomial interpretation over (2 x 2)-matrices with strict dimension 1
over the arctic semiring over the integers
| [f(x1)] |
= |
·
x1 +
|
| [d(x1)] |
= |
·
x1 +
|
| [g(x1)] |
= |
·
x1 +
|
| [a(x1)] |
= |
·
x1 +
|
| [b(x1)] |
= |
·
x1 +
|
| [c(x1)] |
= |
·
x1 +
|
the
rules
|
c(c(x0)) |
→ |
d(d(d(x0))) |
|
c(x0) |
→ |
g(x0) |
|
d(d(x0)) |
→ |
c(f(x0)) |
|
f(x0) |
→ |
a(g(x0)) |
|
g(x0) |
→ |
d(a(b(x0))) |
remain.
1.1.1.1 String Reversal
Since only unary symbols occur, one can reverse all terms and obtains the TRS
|
c(c(x0)) |
→ |
d(d(d(x0))) |
|
c(x0) |
→ |
g(x0) |
|
d(d(x0)) |
→ |
f(c(x0)) |
|
f(x0) |
→ |
g(a(x0)) |
|
g(x0) |
→ |
b(a(d(x0))) |
1.1.1.1.1 Bounds
The given TRS is
match-bounded by 3.
This is shown by the following automaton.
-
final states:
{10, 8, 6, 5, 1}
-
transitions:
| 25 |
→ |
54 |
| 29 |
→ |
78 |
| 81 |
→ |
30 |
| 97 |
→ |
55 |
| 15 |
→ |
7 |
| 18 |
→ |
1 |
| 41 |
→ |
8 |
| 3 |
→ |
16 |
| 9 |
→ |
38 |
| 65 |
→ |
90 |
| 55 |
→ |
26 |
| 62 |
→ |
106 |
| 1 |
→ |
61 |
| 1 |
→ |
28 |
| 1 |
→ |
7 |
| 1 |
→ |
26 |
| 26 |
→ |
61 |
| 6 |
→ |
75 |
| 6 |
→ |
3 |
| 6 |
→ |
43 |
| 6 |
→ |
95 |
| 109 |
→ |
27 |
| 109 |
→ |
63 |
| 54 |
→ |
94 |
| 52 |
→ |
110 |
| 53 |
→ |
17 |
| 2 |
→ |
14 |
| 2 |
→ |
25 |
| 2 |
→ |
42 |
| 45 |
→ |
5 |
| 66 |
→ |
1 |
| 66 |
→ |
18 |
| 16 |
→ |
52 |
| 14 |
→ |
74 |
| 93 |
→ |
18 |
| 93 |
→ |
66 |
| 63 |
→ |
4 |
| 63 |
→ |
27 |
| 77 |
→ |
28 |
| 77 |
→ |
7 |
| 77 |
→ |
15 |
| 7 |
→ |
28 |
| 113 |
→ |
53 |
| 30 |
→ |
6 |
| 17 |
→ |
64 |
| 27 |
→ |
4 |
| 27 |
→ |
111 |
|
f60
|
→ |
2 |
|
g2(52) |
→ |
53 |
|
g2(62) |
→ |
63 |
|
g2(54) |
→ |
55 |
|
g2(65) |
→ |
66 |
|
d2(74) |
→ |
75 |
|
d2(78) |
→ |
79 |
|
b0(11) |
→ |
10 |
|
g1(29) |
→ |
30 |
|
g1(14) |
→ |
15 |
|
c1(16) |
→ |
17 |
|
c1(25) |
→ |
26 |
|
g0(9) |
→ |
8 |
|
g0(2) |
→ |
5 |
|
f1(17) |
→ |
18 |
|
f1(26) |
→ |
27 |
|
a3(111) |
→ |
112 |
|
a3(95) |
→ |
96 |
|
a3(91) |
→ |
92 |
|
a3(107) |
→ |
108 |
|
f0(7) |
→ |
6 |
|
b1(44) |
→ |
45 |
|
b1(40) |
→ |
41 |
|
c0(2) |
→ |
7 |
|
d0(2) |
→ |
3 |
|
d0(4) |
→ |
1 |
|
d0(3) |
→ |
4 |
|
a1(39) |
→ |
40 |
|
a1(28) |
→ |
29 |
|
a1(43) |
→ |
44 |
|
d1(38) |
→ |
39 |
|
d1(42) |
→ |
43 |
|
b3(96) |
→ |
97 |
|
b3(92) |
→ |
93 |
|
b3(108) |
→ |
109 |
|
b3(112) |
→ |
113 |
|
a2(79) |
→ |
80 |
|
a2(64) |
→ |
65 |
|
a2(61) |
→ |
62 |
|
a2(75) |
→ |
76 |
|
a0(3) |
→ |
11 |
|
a0(2) |
→ |
9 |
|
b2(76) |
→ |
77 |
|
b2(80) |
→ |
81 |
|
d3(106) |
→ |
107 |
|
d3(94) |
→ |
95 |
|
d3(110) |
→ |
111 |
|
d3(90) |
→ |
91 |