YES
Termination Proof
Termination Proof
by ttt2 (version ttt2 1.15)
Input
The rewrite relation of the following TRS is considered.
| 
b(b(x0)) | 
→ | 
c(d(x0)) | 
| 
c(c(x0)) | 
→ | 
d(d(d(x0))) | 
| 
c(x0) | 
→ | 
g(x0) | 
| 
d(d(x0)) | 
→ | 
c(f(x0)) | 
| 
d(d(d(x0))) | 
→ | 
g(c(x0)) | 
| 
f(x0) | 
→ | 
a(g(x0)) | 
| 
g(x0) | 
→ | 
d(a(b(x0))) | 
| 
g(g(x0)) | 
→ | 
b(c(x0)) | 
Proof
1 Rule Removal
      Using the
      linear polynomial interpretation over (2 x 2)-matrices with strict dimension 1 
            over the naturals
| [f(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [d(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [g(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [a(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [b(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [c(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
          the
          rules
| 
c(c(x0)) | 
→ | 
d(d(d(x0))) | 
| 
c(x0) | 
→ | 
g(x0) | 
| 
d(d(x0)) | 
→ | 
c(f(x0)) | 
| 
d(d(d(x0))) | 
→ | 
g(c(x0)) | 
| 
f(x0) | 
→ | 
a(g(x0)) | 
| 
g(x0) | 
→ | 
d(a(b(x0))) | 
| 
g(g(x0)) | 
→ | 
b(c(x0)) | 
          remain.
        1.1 Rule Removal
      Using the
      linear polynomial interpretation over (2 x 2)-matrices with strict dimension 1 
            over the arctic semiring over the integers
| [f(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [d(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [g(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [a(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [b(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [c(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
          the
          rules
| 
c(c(x0)) | 
→ | 
d(d(d(x0))) | 
| 
c(x0) | 
→ | 
g(x0) | 
| 
d(d(x0)) | 
→ | 
c(f(x0)) | 
| 
d(d(d(x0))) | 
→ | 
g(c(x0)) | 
| 
f(x0) | 
→ | 
a(g(x0)) | 
| 
g(x0) | 
→ | 
d(a(b(x0))) | 
          remain.
        1.1.1 Rule Removal
      Using the
      linear polynomial interpretation over (2 x 2)-matrices with strict dimension 1 
            over the arctic semiring over the integers
| [f(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [d(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [g(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [a(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [b(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [c(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
          the
          rules
| 
c(c(x0)) | 
→ | 
d(d(d(x0))) | 
| 
c(x0) | 
→ | 
g(x0) | 
| 
d(d(x0)) | 
→ | 
c(f(x0)) | 
| 
f(x0) | 
→ | 
a(g(x0)) | 
| 
g(x0) | 
→ | 
d(a(b(x0))) | 
          remain.
        1.1.1.1 String Reversal
        Since only unary symbols occur, one can reverse all terms and obtains the TRS        
        
| 
c(c(x0)) | 
→ | 
d(d(d(x0))) | 
| 
c(x0) | 
→ | 
g(x0) | 
| 
d(d(x0)) | 
→ | 
f(c(x0)) | 
| 
f(x0) | 
→ | 
g(a(x0)) | 
| 
g(x0) | 
→ | 
b(a(d(x0))) | 
1.1.1.1.1 Bounds
        The given TRS is 
        match-bounded by 3.
        This is shown by the following automaton.
        
- 
final states:
{10, 8, 6, 5, 1}
 
- 
transitions:
| 25 | 
 →  | 
54 | 
| 29 | 
 →  | 
78 | 
| 81 | 
 →  | 
30 | 
| 97 | 
 →  | 
55 | 
| 15 | 
 →  | 
7 | 
| 18 | 
 →  | 
1 | 
| 41 | 
 →  | 
8 | 
| 3 | 
 →  | 
16 | 
| 9 | 
 →  | 
38 | 
| 65 | 
 →  | 
90 | 
| 55 | 
 →  | 
26 | 
| 62 | 
 →  | 
106 | 
| 1 | 
 →  | 
61 | 
| 1 | 
 →  | 
28 | 
| 1 | 
 →  | 
7 | 
| 1 | 
 →  | 
26 | 
| 26 | 
 →  | 
61 | 
| 6 | 
 →  | 
75 | 
| 6 | 
 →  | 
3 | 
| 6 | 
 →  | 
43 | 
| 6 | 
 →  | 
95 | 
| 109 | 
 →  | 
27 | 
| 109 | 
 →  | 
63 | 
| 54 | 
 →  | 
94 | 
| 52 | 
 →  | 
110 | 
| 53 | 
 →  | 
17 | 
| 2 | 
 →  | 
14 | 
| 2 | 
 →  | 
25 | 
| 2 | 
 →  | 
42 | 
| 45 | 
 →  | 
5 | 
| 66 | 
 →  | 
1 | 
| 66 | 
 →  | 
18 | 
| 16 | 
 →  | 
52 | 
| 14 | 
 →  | 
74 | 
| 93 | 
 →  | 
18 | 
| 93 | 
 →  | 
66 | 
| 63 | 
 →  | 
4 | 
| 63 | 
 →  | 
27 | 
| 77 | 
 →  | 
28 | 
| 77 | 
 →  | 
7 | 
| 77 | 
 →  | 
15 | 
| 7 | 
 →  | 
28 | 
| 113 | 
 →  | 
53 | 
| 30 | 
 →  | 
6 | 
| 17 | 
 →  | 
64 | 
| 27 | 
 →  | 
4 | 
| 27 | 
 →  | 
111 | 
| 
f60
 | 
 →  | 
2 | 
| 
g2(52) | 
 →  | 
53 | 
| 
g2(62) | 
 →  | 
63 | 
| 
g2(54) | 
 →  | 
55 | 
| 
g2(65) | 
 →  | 
66 | 
| 
d2(74) | 
 →  | 
75 | 
| 
d2(78) | 
 →  | 
79 | 
| 
b0(11) | 
 →  | 
10 | 
| 
g1(29) | 
 →  | 
30 | 
| 
g1(14) | 
 →  | 
15 | 
| 
c1(16) | 
 →  | 
17 | 
| 
c1(25) | 
 →  | 
26 | 
| 
g0(9) | 
 →  | 
8 | 
| 
g0(2) | 
 →  | 
5 | 
| 
f1(17) | 
 →  | 
18 | 
| 
f1(26) | 
 →  | 
27 | 
| 
a3(111) | 
 →  | 
112 | 
| 
a3(95) | 
 →  | 
96 | 
| 
a3(91) | 
 →  | 
92 | 
| 
a3(107) | 
 →  | 
108 | 
| 
f0(7) | 
 →  | 
6 | 
| 
b1(44) | 
 →  | 
45 | 
| 
b1(40) | 
 →  | 
41 | 
| 
c0(2) | 
 →  | 
7 | 
| 
d0(2) | 
 →  | 
3 | 
| 
d0(4) | 
 →  | 
1 | 
| 
d0(3) | 
 →  | 
4 | 
| 
a1(39) | 
 →  | 
40 | 
| 
a1(28) | 
 →  | 
29 | 
| 
a1(43) | 
 →  | 
44 | 
| 
d1(38) | 
 →  | 
39 | 
| 
d1(42) | 
 →  | 
43 | 
| 
b3(96) | 
 →  | 
97 | 
| 
b3(92) | 
 →  | 
93 | 
| 
b3(108) | 
 →  | 
109 | 
| 
b3(112) | 
 →  | 
113 | 
| 
a2(79) | 
 →  | 
80 | 
| 
a2(64) | 
 →  | 
65 | 
| 
a2(61) | 
 →  | 
62 | 
| 
a2(75) | 
 →  | 
76 | 
| 
a0(3) | 
 →  | 
11 | 
| 
a0(2) | 
 →  | 
9 | 
| 
b2(76) | 
 →  | 
77 | 
| 
b2(80) | 
 →  | 
81 | 
| 
d3(106) | 
 →  | 
107 | 
| 
d3(94) | 
 →  | 
95 | 
| 
d3(110) | 
 →  | 
111 | 
| 
d3(90) | 
 →  | 
91 |